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Brownian Motion of Charged Particles in Crossed. Electric and Magnetic Fields

RICHARD I . LIBOPZ

School of Electrical Engineering, Cornell University, Ithaca, It'ew Forh

(Received 30 August 1965)

A new method for evaluating the Brownian motion of charged particles in crossed electric and magnetic
fields is presented. In the problems considered, a steady 8, Geld and radial electric Geld are em-
bedded in a viscous medium. Calculations are made for the three-dimensional mean-square displacement of
particles migrating away from the cylindrical axis. The results are applied to the theory of sheaths to uncover
the manner in which the wall charge affects the familiar Debye displacement. The resulting formula is
independent of the presence of a magnetic Geld parallel to the wall. Relaxing the electric conditions yields
the Brownian motion of a neutral particle in a neutral viscous Quid.

I. INTRODUCTION AND SUMMARY
OF RESULTS

The problem of the Brownian motion of charged
particles in electric and magnetic Gelds is greatly
obscured by the Larmor effects and only lower order
estimates of the diffusion coefficient are available. "

In this paper we wish to present a new method of
calculating the Brownian motion of charged particles
in crossed electric and magnetic fields which is closely
related to the phenomenological approach mentioned
above. However, results are readily obtained which
render considerable insight into the problem at hand.

The method consists of Grst: obtaining an exact
equation (within the framework of a Langevin formula-
tion) for r', the square of the absolute value of the
radius vector from the origin to the Brownian particle;
second: obtaining from this equation an exact equation
for the time average, (r'); third: solving this equation
in appropriate limits.

The method is best suited for motion in a plane which
is normal to a steady magnetic field. The plane so
defined includes a radial electric Geld. For problems
involving only radial fields (e.g. , Coulomb and New-

tonian) the method is easily extended to three
dimensions.

In the Grst configuration a wire of constant charge
density, which is oriented parallel to a steady magnetic
field, creates an electric field which decays as the
inverse radius. These Gelds are embedded in a viscous
medium characterized in the force equation by a con-
stant collision frequency. Evaluating the time average
of the mean-square displacement (in a plane normal
to the magnetic field) after many collisions have taken
place indicates that the sole effect of the electric field
is to cause the square of a characteristic electric velocity
to be added to the square of the thermal speed as it
appears in the Chapman-Cowling'' estimate of the
diffusion coefficient. The mean-square displacement
grows linearly with time and the particle diffuses
"outward" in the same manner as in the Einstein'
result. If the wire charge is opposite in sign to the test
charge, the diffusion is sti11 outward granted that the
line charge density is less than the critical value

p.„t=27rephT/q, where ep is the permitivity of free

'HE theory of Brownian motion' divides into two
classes of endeavor, these being the nonphenom-

enological and phenomenological approaches respec-
tively. The former class stems from a statistical-
mechanics point of view and was initiated with Ein-
stein's' and Smoluchowski's' classical treatments of the
problem. The more detailed kinetic analyses' "which
are centered about refined calculations of the diffusion
coefFicient from the Boltzmann equation are also part
of this first class. More recently Lebowitz and Rubin"
treat the problem of Brownian motion in terms of a
joint distribution function for the Quid and the Brown-
ian particle. An equation for this distribution is derived
from the Liouville equation.

In the simpler but more phenomonological approach
initiated by Langevin, " the starting point is Newton's
second law in which the interaction between the
Brownian particle and host appears as a dissipative
term. Such formulations may be found in many "modern
physics" texts" where they are often loosely presented,
as are the original works. "

' See (a) Selected Papers on Poise and Stochastic Processes,
edited by N. Wax (Dover Publications Inc. , New York, 1954);
(b) G. L. deHaas-Lorentz, Die Brownische Bewegnng and Einige
Verwandte Erscheinnngen (3raunschweig, 1913).

s Investigations on the Theory of the Brownian Movement, edited
with notes by R. Fiirth (Dover Publications Inc. , New York,
1956).' M. V. Smoluchowski, Ann. Physik 21, 756 (1906).' S. Chapman and T. G. Cowling, The Mathematica/ Theory of
IIon Uniform Gases -(Cambridge University Press, New York,
1953).' R. L. Liboff, Phys. Fluids 5, 963, (1962).

'M. N. Rosenbluth and A. N. Kaufman, Phys. Rev. 109, 1
(1958).

r J. P. Wright, Phys. Fluids 3, 607 (1960); 41, 1341 (1961).
8 J. B.Taylor, Phys. Rev. Letters 6, 262 (1961).
I.B. Taylor, Phys. Fluids 4, 1142 (1961)."J.3 Taylor, Nuc. l. Fusion 2, 477 (1962).

"J.Lebowitz and E. Rubin, Phys. Rev. 131, 2381 (1963).
n P. Langevin, Compt. Rend. 146, 530 (1908).
'In such analyses authors indiscriminately interchange dif-

ferentiating and time averaging operations. Examples include:
H. Semat, IrItroductiorl, to Atomic arId NNcleur Physics (Holt,
Rinehart and Winston, Inc. , New York, 1962); A. D. French,
Princi ples of 3Iodern Physics (John Wiley tk Sons Inc. , New York,
1958).

'4 See Ref. 1b.
'5 For recent experimental results see O. D. Olsen and H. M.

Skarsgard, Can. J. Phys. 43, 855 (1965).
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space, k is Boltzmann's constant, T is the temperature,
and q is the charge of the test particle, In either case of
like or oppositely charged test particle and line source,
the presence of the magnetic field reduces the rate at
which the mean-square displacement grows by the
factor D.+ (Q/p)s] ', where Q is the Larmor frequency
and v is the collision frequency between the Brownian
particle and the host. In both cases an expression for
the three-dimensional mean-square displacement is
easily obtained by adding the "longitudinal" diffusion
to the above described "transverse" diffusion.

In the second conGguration the cylindrical geometry
is Glled with a viscous medium of uniform charge den-
sity and a steady magnetic Geld is again oriented
parallel to the axis of symmetry. The charged medium
generates a field which grows linearly with the radius.
When the medium and test particle are of like charge
the particle diffuses outward, exponentially in time, for
arbitrarily small charge density and arbitrarily large
magnetic Geld. The presence of the magnetic Geld
reduces the mean-square displacement by the factor

$/+ (Q/p)sj exp{—to sQst/p(ps+Qs))

where m~ is the plasma frequency of the medium" and
t is the time. If the medium and Brownian particle are
of opposite sign the particle migrates to, but not further
than, a Debye distance from the central axis, a result
which is independent of the magnetic Geld or the
collision frequency. An expression for the three-
dimensional mean-square displacement indicates that
the particle diffuses transversely, exponentially faster
than it does longitudinally.

It is interesting to note that this second problem in
which a charged particle migrates into a charged
cylindrical medium does not permit the magnetic-
diffusion result of Chapman and Cowling to be re-
captured in a uniform continuous manner, as was
possible in the Grst example discussed above. The reason
is that the presence of the electric term completely
alters the form of the "unperturbed" force equation
Lsee, for instance Eq. (27)j.An important consequence
is that a Chapman-Cowling procedure about zero
electric Geld would give the Chapman-Cowling mag-
netic diffusion coeKcient as the lowest order estimate,
which would be an erroneous result. The underlying

difhculty is the long-range nature of the Coulomb
force."

Included in the latter part of the paper is a brief
discussion of the application of these results to the
theory of the structure of sheaths. The familiar" Grst-
order estimates show that the sheath maximum lies at

"See Eq. (26) and Ref. 24.
"See R. L. Liboif, Phys. Fluids 2, 40 (1959) for extended

references on this topic.' See L. Spitzer, Jr., I'hysics of Fully ionia'ed Gases (Inter-
science Publishers, Inc. , New York, 1956), and J. L. Delcroix,
INtrodttctioN to the Theory of Iolised Gases (Interscience Publishers,
Inc. , New York, 1960).

a Debye distance from the disturbing wall. This result
is corrected to account for the Geld generated by the
wall charge. The augmented Debye distance squared
appears as d'= (27restt 2'+ tIpl)/q'rt where pt, is the charge
density of an effective line and e is the number density
of the medium.

Finally the conditions of the Grst example are relaxed
to give the motion of a neutral particle in a neutral
fIuid. Although the asymptotic formula agrees vrith

that of previous investigators, "' there is disagreement
for earlier times. In the included analysis the mean-
square (three-dimensional) displacement (rsr) is given

by
(y—2)

(a) (rs') = (2C /p') +—(&—e ")
2

while in the work referred to one Gnds

The difference between the two formulations is most
likely due to the fact that in the included analysis
(r') is a time average quantity while the classical results
pertain to an ensemble average quantity.

In this vein a discussion on "ergodic differential
equations" is included. An ergodic differential equation
is one which has an ergodic solution, i.e., a solution
whose time and ensemble averages are the same. It is
shown that some of the equations which arise in the
included area of investigation are not ergodic, whence
the ensemble average becomes distinct. Furthermore,
trivial examples serve to illustrate that a characteristic
difference in form between the time and ensemble
average is similar to the difference in form (viz. , e

versus e '/t) which arises between the two averages

(a) and (b) presented above.

II. ANALYSIS

The motion of an isolated "test" charge in a viscous
medium in which electric and magnetic Gelds are
embedded is given by

ttti= gi x 8+qE—ptmr+tttl .

In this equation m and q are the mass and charge of
the Brownian particle, respectively, and E and 8 are
the imposed Gelds. The magnetic field is steady and in
the z direction, while E is radial. The interaction be-
tween the particle and the medium is given in terms of
the collision frequency v and the stochastically Quctuat-
ing Geld I, characteristic to Brownian motion. The
Geld I incorporates short-range discontinuous collisions,
while the coefficient v gives rise to a smooth dissipative
effect. Both of these phenomenological parameters are,
to lowest order, independent of the applied fields, (i.e.,
they do not vanish if the Acids are turned. off).

ie L. S. Ornstein, Versl. Acad. Ainst. 26, 1005 (1917).
se R. Fiirth, Z. Physik. 2, 244 (1920).
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(r')"= 2r r'+2r'. (2)

Primes and dots are used interchangeably to denote
time derivatives. Forming the scalar product of
Eq. (1) with r and using Eq. (2) to eliminate r r', there
results

(r')"—2r'+v(r')' —2(q/m)r E=2Qb r x r'+2r F. (3)

The Larmor frequency Q is given by

while b is a unit vector in the direction of B. Solving
Eq. (1) for r' and substituting the resulting form into
the right side of Eq. (3) gives the desired result,

-,'[(r')"+n(r')'j —(q/m) r E
=r'+(Q/v)b [(q/m)r x E+r x1'

—(1/m)r xFj+r 1', (5)

vn=—v +Q (6)

The force field F is the instantaneous force on the
particle, i.e.,

F=mr'.

Since the electric field is radial,

E r=rE; rxE=O.

Equation (5), still an exact relation, then reduces to
the desired form,

2[(r')"+n(r')'j —(q/m)rE=r'+r 1

+(Q/v)b [r x1'—(1/m)r xFj. (9)

Our primary interest at this point involves the mean
square displacement,

(10)

in the limit vt&)1, i.e., after many "collisions" have
taken place. The inverse of the latter equation is

(tb)'= r'.

Note that in going to a representation of the average
variable 5, as given by Eq. (11) an element of precision
is lost. Although r is uniquely determined by 5, knowing
r' determines 8 only to within an additive term (E'/t)
where E is any constant.

Inserting the relation (11) into Eq. (9) yields,

(tb)'"+n(tb)" 2(q/m)Er= 2(t(r')—)'
+2(Q/v)[(t(b (r x1)))'—(1/m)(t(b (r xF)))]

+2(t(1 r))'. (12)

This equation, together with the relation (10), is
still an exact form. Owing to the vector products,
however, it is not self-contained.

Our object at this point is to obtain an equation for
r'=x'+y' T.o this end we first note the relation.

To remedy the situation, consider first the form
r &F. This vector is the torque of I about the origin.
If F is a random force field, the average of this torque
must vanish. If (b (r x1 )) were positive, say, then the
force would exert a preferred rotation about the origin.
But this is contradictory to our assumption that F is
random. Therefore, this average quantity vanishes.

The (1'.r) term may be neglected, in the random
phase approximation. Namely, consider that 1 „exp'&t
and r expnv2t. Then the average inner product will
contain terms like JP cos(a&i co~)—t If .the phases ari

and ~2 are random, in a sufficiently long time interval,
the cos term is positive as often as it is negative and
the integral tends to zero.

The remaining cross term is the b component of the
torque of the total force F about the origin. The fact
that the B field causes a preferred sense of rotation of
the test particle between collisions does not necessarily
imply that (b (r xF)) is finite. Indeed, even in the
limit of no collisions, unless the origin is an interior
point of the particle orbit, ((r x F) b)=0. If Q))v and
the radius R of the domain of motion is large compared
to a Larmor radius Rg, then the ratio of orbits which
enclose the origin to those which do not is (Ro/R)'.
(Assume a uniform density, then all orbits in a circle
or radius 2 Rg about the origin enclose the origin.
Particles exterior to this central circle do not. ) For
sufficiently large magnetic field this ratio becomes
vanishingly small. In the more consistent limit, v))0,
so that the particle never completes a Larmor orbit.
The force field F is randomized by collisions and
(b (r x F)) vanishes. Inasmuch as this is the domain of
interest for the ensuing analysis, we will set (b. (r x F))
equal to zero.

Note that all of the terms neglected are averages of
two distinct randomly fluctuating variables, and there-
fore can be consistently neglected within the random
phase approximation. Such a formal procedure necessi-
tates that the interval over which average quantities
are defined be sufficiently long. It is this formal proce-
dure that implies that the de6ning equations, Eq. (10),
includes the limit, t —+~.

Our final assumption regards the mean-square speed
(r') (after a sufficiently long time interval). Were there
no electric field imposed in the problem, then it would
be consistent to speak of the test particle and medium
being in equilibrium at the temperature T. In this case
(r')=2kT/m=C', the two-dimensional mean thermal
speed. With an electric field present this is not generally
the case, inasmuch as the electric field will clearly add
to the energy of the particle. However, if collisions are
frequent enough, the electric field never gets the chance
to contribute to the energy of the particle. This will be
the case if the work done on the particle by the electric
field E between collisions is small compared to the
thermal energy kT. If X is the mean free path, then this
condition is satisfied if kT&)XEq. With this constant in
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(8)"'+n(t5)"—2(q/rm)Er= 2C'. (13) V' =—qpz/2, s eprw,

mind, we set (r') = C' to obtain" our starting equation (Coulombs/m) then the related electric field is

)from Eq. (12)). Kgz/2trepr') r, (14)

(13)

This latter assumption regarding the mean thermal
speed may formally be viewed as a 6rst approximation
in an iteration scheme. The next-order equations would
then include a corrected value of (r') obtained from the
6rst iterate. Inasmuch as the included analysis obtains
only lowest order results, they are applicable only to a
medium of suKciently high temperature.

In passing we note that an alternative method of
solution is to solve for the ensemble average of r'.
Ensemble averages, we recall, are employed to obtain
expressions for the physically relevant time average.
However, it is quite clear that an ordinary differential
equation whose homogeneous solution grows in time is
not ergodic. "By way of example consider the trivial
case,

P—yI"=0.

where V is a characteristic velocity.
In terms of these parameters Eq. (13) appears as

(f5)"'+n(t5)"= 2(V'+C') =—2Ps. (16)

The solution is

f3 =A+Fe ~'+ (i3s/n') $(nf)'+D(nf)) (17)

where 3, F, and D are constants to be determined.
The initial conditions are given by the constraint that

the particle move uniformly in the early times, so that
about f =0, (r') t', or that (f5) fs, which is equivalent.

to three pieces of initial data. This constraint, together
with the exponential form of the general solution serves

to determine the coefficient which multiplies the P term.
Expanding Eq. (12) and then setting the hrst three

coeKcients equal to zero gives

If Y is the ensemble average, and (Y) the time average,
there results,

Y=Ae&'&(Y)= A (e"/yf),

A+F=O,

(P/n)'D —nF = 0,
n'F+ 2P'= 0,

(18a)

(18b)

(18c)

and the differential equation is not ergodic. If on the
other hand the inhomogeneous solution is constant, and
dominates the long time behavior, the equation is
ergodic. Consider, for example,

Y'+yT = rl.

Then

Y = tf/y = (Y) .

and the equation is ergodic. Since the equations we will
encounter are of both types, and the formulation of the
time average is not dificult, ensemble averages will be
ignored. Equation (13) will serve as our starting equa-
tion in the subsequent analysis. The recipe is to solve
for 6 and then pass to the limit vt&)1.

Case 1. Motion About a Charged Wire

In the first example we consider the Brownian mo-
tion of charged particles about a straight uniformly
charged wire which is parallel to a constant uniform
magnetic field. If pL, is the charge density of the line

si In setting the two-dimensional entity (r') equal to C we are
tacitly assuming that the Brownian particle is constrained to move
in two dimensions. For two-dimensional motion in three-dimen-
sional space, on the other hand, (r')=2C /3. For the first case
Cs=2kT/m, while for the second C 3kT/m In ei=ther cas.e
(r')= (i'+fl')=2kT/m. Also, for the first case (x')= (r')/2, while
for the second, (g')=(rss)/3. The three-dimensional radius vector
1S r3.

~ An "ergodic differential equation" is one which has an ergodic
solution.

which gives the desired result,

(")-(V+C)«(1+(«) ) (21a)

The sole eBect of the electric field is to augment the
thermal diffusing inhuence by an additive term t/'.
The variable (r') in Eq. (21)-a represents the mean

square displacement of a particle constrained to move in

plane (hitherto called the "transverse" displacement).
It can be made to represent the projected two-dimen-

sional displacement, for an unconstrained particle, by
merely changing C' to 2C'/3. Furthermore, the s com-

ponent of Eq. (1) can easily be shown to yield (ss)
~C'f/3i It follow. s that if C' in Eq. (21-a) is changed

to 2C'/3 and then the resulting formula is added to
(s'), one obtains an expressionss for (rss) = (xs+y'+s'),
with the 8 field in the s direction and the E field in the

(x,y) plane. There results

(rss) (C't/3v) 1+ (2+ (3Vs/Cs)) . (21b)
(1+(fl/~)')

ss See S. Chandrasekhar, Rev. Mod. Phys. IS, 1 (1943) Lfirst
article in Ref. 1(a))for discussions of three-dimensional Brownian
motion. It is also an excellent review article on Brownian motion.

from which there results

(n'/2P') ~= (1/y) (1—s ")+(y
—2)/2 (19)

In this formula y is the nondimensional time et.
In the limit as y))2

(20)
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(ar '/C') (/8) =A (e +' 1)—+P(P ' -1)——&,

22
where the exponents are the roots

If q and pL, are oppositely charged then V' is a The solution is
negative number, —u', and Eq. (21a) reads

(r')- (C'—u') t/v (1+(«v)').
(28)

From this equation it follows that the diffusion is still
"outward, "granted that

(29)~~L~2+ (2~ )2/1/2

The form of Eq. (28) is chosen to insure that the particle
behaves kinematically about 1=0 viz 5 P. This serves
to determine the constants A and F,

(kT/m)) qpr, /2' Epm. (23)

This criterion is independent of the strength of the
magnetic field.

The above results indicate that the mean-square dis-
placement (r')~, without the magnetic field is reduced
by the factor

(30a)

(30b)

~ =D-/(D+LD--D+1)

~=D+/(D LD+ D-j). —-
In the diffusion problem at hand ef, containing the

(24) term vt, is a large number. The two relevant expansions
of D+ are

in the presence of the magnetic Geld, for both subcases
of like and oppositely charged wire and test particle.

In the limit of vanishing electric and magnetic Gelds
Eq. (21b) gives the mean-square displacement of a
neutral particle diffusing through a neutral medi

(31a)

(31b)

D~-+a) v'/e,

D ~—Q.

( ')-(C'/ )~. (32a)

(32b)Comparing this with the Einstein result, A ~cK/cov ~

um These in turn supply the proper limiting forms of the
coeKcients A and Ii,

~v/~ ~

(rg') (2C'/v) t,

we see that the two formulas diGer by a factor of 2.
This is best explained by the fact that the Einstein
average is an ensemble average while in the included
analysis, a time average is calculated. Finally, we note
that a generalization of Eq. (25a) to early time behavior
is obtained by setting n'= v' and P'= 2C'/3 in Eq. (19)
and adding the result to (s'). This latter variable is
also obtained from Eq. (19) by setting n'=v' and
P'= C'/3. Adding the two results gives Eq. (a) which is
discussed in the Introduction.

Case 2. Motion in a Uniformly Charged
Cylindrical Medium

In this second example the cylindrical geometry is
uniformly Glled with a viscous medium of constant
charge density. A steady magnetic field oriented parallel
to the axis of symmetry permeates the medium. If e is
the number density of the medium then the charge
density is eq; where for convenience, the unit of charge
of the medium q is the same as that of the test particle.
The electric field is

E= r(qadi/2eo) = r(m/2g)~„' (26)

which also serves to deGne the plasma frequency'4 co„.
If this latter form is substituted into Eq. (13), there

results

The corresponding form of Eq. (28) is

Rg/C2~~1{ (~ 9/~8)P-et

+ (n/id 2)Lexp (~0 't/a) —1g—]) (33a)

which Gnally appears as

$= (y2)~$C2ii/f&g 4jexp{&g ~f/~) . (33b)

An expression for (rP) is obtained in the same manner
as described after Eq. (21a). There results

(ra) (2C't/3v){1+(vn/Pro 4)exp(~ 't/n)). (33c)

The particle di6uses transversely, exponentially
faster than it does longitudinally.

Furthermore an important implication of Eq. (33b)
is that one may not approach the case of zero-charge
density uniformly. The long-range nature of the
Coulomb interaction imposes an "on-off" effect, so that
results which appear in its absence are vastly removed
from those which appear in the presence of the inter-
action, for arbitrarily small charge density. A Chapman-
Cowling iteration about zero-charge density would fail,
yielding as it would the incorrect lowest order estimate,
viz. Eq. (21) with V'=0.

Returning to the main stream of the analysis it is
again instructive to note that the two-dimensional
mean square displacement is diminished by the factor

(tb)'"+n(Q)"—~ '(/5)'= 2C'

~4 Note that co~ includes the mass of the Brownian particle —not
of the medium.

(27)
in the presence of the magnetic 6eld.

In the event that medium and test particle are
oppositely charged, ru„2 is a negative number and the
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asymptotic form of Eq. (33) is

(r2)~C2/
(
~ 2

~

=d 2 (35)

After many collisions the particle migrates to, but
not further than a Debye distance d from the axis of
symmetry. The result being obviously an equation of
energies is independent of the magnetic field.

III. SOME COMMENTS RELATING TO
THE SHEATH PROBLEM

IV. DOMAIN OF VALIDITY OF INCLUDED
ANALYSIS

Because of the invariance of r (t) under the transforma-
tion 8 ~ 5'= 5+ (A/t), there is an inherent uncertainty
in the included analyses of the order of A/t. The
arbitrary constant A is related to the natural periods in

Standard qualitative descriptions of the formation of
a sheath about a conducting surface in a plasma are as
follows. The electrons being of higher thermal velocity
than the ions strike the conducting surface more fre-
6uently. The fraction which attach charge the surface
negatively. The 6eld so generated causes electrons to be
rejected into a positive residue all at temperature T,
until some steady-state sheath structure emerges.

Clearly the Brownian motion of a negative particle
moving away from a negative source into a positively
charged viscous medium is very relevant to the model
just described. Comparison of Eqs. (16) and (27) indi-
cate that the desired result is obtained by merely
changing C' and pi~' in Eq. (27) to read C'+ V' and
—~„', respectively. One then obtains

(r2)~ (C2+ P'2)/~ 2 —j2 (36)

in place of Eq. (35). The augmented Debye distance
d is

d'= (2m-ppkT+qqr)/q'N. (37)

As a low-order estimate this result appears to be more
accurate than previous results" which do not account
in any way for the 6eld generated by the conductor.

Concluding we note also that a magnetic 6eld normal
to the direction of diQusion would not in any way in-
Quence the result as given by the equation above. This,
of course, might be easily substantiated by noting the
difference in the position of the sheath maximum with
and without such a magnetic 6eld.

the problem, which for a neutral environment reduces
to the collision period. After a moderate number of
collisions the results presented above become more
certain.

Granted that the extended Langevin equation, Eq.
(1), is a valid description and that the uncertainty spoken
of above is removed, there remains an approximation
inserted early in the analysis which merits justi6cation.
This is that (r') is the square of the constant thermal

speed C. For the problems treated above the electric
field does work on the particles between collisions and
their mean square velocity increases. If, however, this
work qEX (X=mean free path) is small compared. to the
thermal energy kT the time between collisions is not
long enough for the electric 6eld to impart a significant
amount of energy. Under such circumstances setting
(r')=C' is a fi.rst-order solution in which the energy
imparted by the electric 6eld between collisions is a
small perturbation.

The domain of validity becomes qZA(&'kT. For the
first problem where the radial electric field is due to a
uniformly charged straight wire, the criterion of
validity becomes

r))r„=qqr, ) /2' ppkT. (38)

For arbitrary temperature and charge density the
formalism remains valid for r large compared to r„.
To insure that this is satisfied in an actual experiment
one need only design the radius of the center wire to be
of the order of r„.

In the second problem where the electric field is that
due to a uniformly charged medium, the condition

pe.(&'k T becomes,

r&(r„=kT2cp/q'riX (39)

so that for sufficiently large temperature the analysis
becomes valid for this problem also.
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