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action are different phenomena with different kinds of
off-diagonal corrections and there is no a priori reason
why, for real atoms, (1/r'), of the hyperfine interaction
should be equal to ((1/r) (d V/dr)), of the fine-structure
interaction. One can try to account for the non-
Coulombic nature of the screened nucleus by the use of
an effective charge, ' but there exist still other correc-
tions to f (spin-other orbit, orbit-orbit, spin-spin) which
are dificult to evaluate and which do not aGect the
hyperfine interaction. One should not be surprised then
to find that the (1/r'), 's estimated in these two difierent
ways differ by 15' or so.

The value of the quadrupole moment Q obtained
with the(1/r ), from the corrected a of the sPs state has
not been corrected for the Sternheimer eGect. Stern-
heimer'4 estimates the angular part of this correction for

'4 R. Sternheimer, Phys. Rev. 84, 244 (1951).

4p electrons to be +4.4%%uz. The importance of the radial
part of this correction is still in doubt. It was decided,
because of this uncertainty, to give recognition to the
importance of this correction by enlarging the limits of
error assigned to Q.

It should be remembered that core polarization was
assumed to account for all&of the configuration inter-
action necessary to give the' observed c factor of the 'E&
state. The validity of this assumption must be judged
upon the basis of its consistency with future develop-
ments of theory and experiment.
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The problem of electron capture by a polar molecule with simultaneous rotational excitation of the mole-
cule is analyzed. Capture cross sections and lifetimes of temporary negative-ion states so formed are cal-
culated on the assumption that the electron interacts primarily at large distances from the molecule by means
of the dipole Geld and forms only loosely bound ionic states. The capture probability is proportional to the
ratio (D/I)', where D is the dipole moment and I the moment of inertia of the molecule about a perpendicu-
lar axis passing through the center of the dipole. Electron capture by rotational excitation is most probable
for polar molecules that have both a relatively large dipole moment and a small moment of inertia. In
order for this process to make effective contributions to momentum-transfer cross sections measured, e. g.,
in electron-swarm experiments, the spacing of the rotational levels of the molecule must be of the order of
thermal energies, so that a relatively large number of electrons can be captured and released. These cir-
cumstances, viz. , the relatively large value of D/I and the right spacing of rotational levels, appear to offer
an explanation of the particular behavior of H20, D20, and H2S among a number of polar molecules with
which recent swarm experiments have been made. According to the theory, some other molecules (e. g. ,
NHz, HF, HC1, and H202) should exhibit a similar behavior. Lifetimes of negative ions formed by this
process are estimated to be of the order of 10 "sec.

I. INTRODUCTION

'HE interaction of low-energy electrons with mole-
cules has been the subject of many investigations. '

In particular, a number of theoretical studies have been
made on the excitation of rotational motion in molecules

by electron impact. ' 4 On the experimental side, it has
been found that the drift velocity of electrons in swarm
experiments decreases with the addition of a gas having
a permanent electric dipole moment' and that the

+ Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.' See E. Gerjuoy, Phys. Today 18, 24 (1965).' H. S. W. Massey, Proc. Cambridge Phil. Soc. 28, 99 (1932).' E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955).

4 K.. Takayanagi and S. Geltman, Phys. Letters 13, 135 (1964).' G. S.Hurst, L.B.O'Kelly, and J.A. Stockdale, Nature 195,66
(1962).

amount of decrease is correlated with the magnitude of
the dipole moment of the added gas. ' It has been sug-
gested that the dipole moment provides for the electron-
molecule interaction a long-range force, the principal
e8ect of which is to give rise to collisions of relatively
long duration during which the electron is scattered
from the molecule. ' The experimental results were in-
terpreted in terms of Altshuler's theory" of low-energy
electron scattering by polar molecules. Although ex-
periment and theory agree satisfactorily for other polar
molecules, a discrepancy was found for H20, D20, and
H2S. The momentum-transfer cross sections, or dif-
fusion cross sections, for these three molecules were

' G. S. Hurst, J. A. Stockdale, and L. B. O'Kelly, J. Chem.
Phys. BS, 2572 (1963).' Saul Altshuler, Phys. Rev. 107, 114 (1957).
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found to be larger by about a factor of 2 than the values
predicted by Altshuler's theory.

To account for the discrepancy, it was suggested that
electrons, in addition to being scattered, might also be
captured, or at least momentarily held, by the mole-
cules. ' A passing electron can exert a torque on the
molecular dipole and might excite the molecule to a
higher rotational state. The electron might lose enough
energy in doing this to form a bound ionic or quasi-
trapped state in the field of the dipole. The natural de-

cay of this temporary state would supply electrons back
into the swarm, thus introducing a contribution to the
momentum-transfer cross section not included in
Altshuler's theory. Since spacing between rotational
states is of the order of thermal energies (kT), stabilized
negative ions are not formed by this mechanism.

The present investigation was prompted by the pic-
ture just described. Cross sections for capture and life-
times of the states formed are calculated below. Such a
calculation shows the details of electron capture by the
mechanism described. The theoretical results sub-
stantiate the hypothesis that short-lived ions can be
formed by the permanent dipole-electron interaction and
appear to oBer an explanation of the particular behavior
of H20, DgO, and H2S in swarm experiments.

II. GENERAL FORMVLAS

The calculation of the cross section for the transition
of a free electron to a bound state in the Geld of a polar
molecule with the simultaneous rotational excitation of
the dipole can be carried out along the lines of an earlier
theory employed for unimolecular electron capture with
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vibrational excitation. ' ' As shown in Fig. 1, we repre-
sent the molecule as a rigid dipole with charges ~Q
separated by a distance b. We choose the center of the
dipole as the origin of a set of axes XYZ which are
6xed in space and which we shall call the laboratory
system. The polar and azimuthal angles of the dipole
relative to XVZ are denoted by (p,v) and the spherical
coordinates of the electron relative to XYZ are denoted
by (r,8, p). We shall also employ polar and azimuthal
angles (8,p) of the electron relative to the dipole. In
terms of the separations r~ and r2 of the electron from.
the charges ~Q, the complete Hamiltonian of the sys-
tem, molecule plus electron, is

Qe Qe
H=H"+H, = ——O'' — 'P ——+

2I 2m r~ r2

Here H" —O'0"'/2=I is the Hamiltonian of a rigid
rotator representing the polar molecule with moment of
inertia I, and H, is the Hamiltonian of the electron in
the field of the dipole. The operator 'p' depends on the
coordinates (r,8, y) of the electron, whose mass is m.
The operator 0"' is the square of the total angular mo-
mentum of the dipole (in units of h) and depends on the
coordinates (p,v) of the dipole in the laboratory system.

We represent an eigenfunction 0' of H as a product of
an eigenfunction 1'(r,8, g) of H, calculated for fixed dipole
coordinates and an angular momentum eigenfunction
'gz~(p, v) of H~. %=/(rA g) g~~(p, v) It is assumed
that the functions f and 'gz,"are related adiabatically. "
The quantity —O'0"/2I representing the rotational
kinetic energy of the molecule can be treated as a per-
turbation that couples the motion of the molecule and
the motion of an electron in its Geld. '

Consider an electron swarm moving through a gas
consisting of 2V identical, randomly oriented polar
molecules per unit volume. If initially an electron is in a
positive-energy eigenstate 1'; normalized to unit volume
and the molecule is in an angular-momentum eigenstate
'gz, .~„ then the transition probability for capture of the
electron to state Pg with simultaneous excitation of the
molecule to a rotational state '/zan"r is given by

2'
w= —

l Tg;l sXf(E)
IE,

2~ ) h'
=—64$zr"rl I
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FIG. 1.Reference axes and coordinates used in calculation.

It is assumed that the electron swarm is characterized
by an energy distribution for which f(E)dE represents
the probability of ending an electron with energy be-

Felix Bloch and Norris E. Bradbury, Phys. Rev. 48, 689
(1935}.' H. S. W. Massey, Segattve Ioas (University Press, Cambridge,
England 1938).

"M.Born and J.R. Oppenheimer, Ann. Physik 84, 457 (1927).
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tween E and E+dE. It is understood that the energy E
to be used in Eq. (2) is the particular value of the elec-
tron kinetic energy for which energy is conserved in the
transition f tjr„sr, ~ |ty'JJIr sent. Transitions to a definite
final state thus select electrons from the swarm in a
narrow energy interval dE, the breadth of which is de-
termined by the lifetime of the final state.

The capture cross section 0-, is defined in terms of the
average speed vo of electrons as

(3)
with

'o )2E ils

»=
i f(E)dE.

, km

To a good approximation, electrons in the swarm
experiments to be considered are in thermal equilibrium
and can be characterized by a normalized Maxwellian
distribution "

The quantity 0-, is measured experimentally provided
the negative ions formed by capture are stabilized be-
fore they have a chance to decay, i.e., provided the life-
time of the ion is long compared with the time needed
for transfer of the excitation energy to another mole-
cule by collision. When the ions are stabilized, the ex-
pression (3) should be multiplied by a pressure factor
p/(p+p'), where p is the gas pressure and p' is the
"critical pressure" at which the lifetime of the negative
ion is equal to the time needed for transfer of the excita-
tion energy. ' The estimates below show that stable ions
are not formed; hence we make no use of the pressure
factor.

The intrinsic lifetimes of negative ions can be esti-
mated from the matrix element T~;. For decay of the
state f&'Jjr,furr ~ iP ter„.sr, , the lifetime is given by

coso'
esx r d3r

I2
(10)

in which K =ks—k is the momentum change of the scat-
tered electron in units of k and

~

k
~

=
( ks ~. Carrying out

the integration in Eq. (10) gives

the normalized spherical harmonics as defined by Bethe
and Salpeter. " For the electronic wave functions we
assume that the wavelength of an electron in a swarm at
thermal energies is long compared with the extension b

of the molecular dipole and that in the trapped state the
electron is only loosely bound over a volume with di-
mensions large compared to b. We then approximate the
interaction of the electron with the molecule by the in-
teraction of the electron with a point dipole. Expanding
the potential energy part of II, in terms of Legendre
polynomials involving the orientation 8 of the position
of the electron with respect to the dipole axis and keep-
ing only the lowest order terms, we obtain from Eq. (1)

II f =(—(k'/2rr4)V' —(De/r ) cos8)lt;=E f (8)

where D=bQ is the dipole moment of the molecule and
E, is the electron energy in the captured state (E.(0).
In terms of the initial kinetic energy E of the electron
and the rotational excitation energy AE of the molecule,
the conservation of energy requires that AE=E—E,.

We regard the initial electron state as consisting of the
sum of a plane wave e'~', with the wave number
k=(2mE/k')'", incident along the positive Z axis in
the laboratory system and an outgoing spherical wave
f(8,p)e'""/r of relatively small amplitude that repre-
sents elastic scattering" from the dipole with a Gxed
orientation (p,v) in space (Fig. 1):

e4kz+ f(8 ~)(s4kr/r)

Substituting Eq. (9) into (8) and neglecting terms of
order Df and higher, we obtain'4

in which dr4/dE is the density of final states. For the
free electron and neutral molecule, dl/dE=k'/27r'he,
where Ak is the magnitude of the momentum of the
electron, and so

r= ark'/rN(2Ere)'"
( Tfz~

III. WAVE FUNCTIONS

To calculate the transition probability (2) for elec-
tron capture explicitly, we next determine the wave
functions involved. For the initial and final rotational
eigenstates of the molecule, 'Jlr„sr, and 'JJz,fez, we choose. .

"Here, as later, the symbol k appearing with the absolute tem-
perature T denotes Boltzman's constant; k used by itself will de-
note the wave number of an electron.

where y' is the direction cosine of the axis of the dipole
with respect to the direction of K. To write Eq. (11)
explicitly in terms of (p,v) and (8, p), we form the scalar
product of K with the unit vector D along the dipole
axis in the direction from the origin to the charge +Q

K D=Ey'=rrK +PE„+pe, . (12)

Here E„E„,and E, are the components of 'K in the
laboratory system (Fig. 1) and n, P, and p are the

~ H. A. Bethe and E. E. Salpteter, Qguntgm MechorIics of One
and Two E/ectroe Atoms (Academic Press Inc. , New York, 1957).

"See D. M. Chase, Phys. Rev. 104, 838 (1956). Note that
Altshuler's theory, which rests on the adiabatic approximation as
discussed by Chase, explicitly leaves out transitions to bound or
quasibound states, such as those considered here.

"See, e.g., L. I. Schiff, Qzzarzizzzzz Mechalzcs (McGraw-Hill
Book Company, Inc., New York, 1955), 2nd ed. , p. 165.
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E,=Eo —k, = —k sing cosy,

E„=ko„—k„=—k sing sing,

E,=ks, —k, =k(1—cosg) .
(14)

As indicated in Fig. 1, K=2k sin(-, 0), and so we write
in place of Eq. (11)

iDem
f(0 ~)=

2h'k

—n sing cosy —P sin8 sinq+y(1 —cos8)X— (15)
sin'(zr 8)

This expression, combined with (9), gives the initial-
state electron wave function. Note that f depends on
the coordinates of the dipole in the laboratory system
through n, P, y and Eq. (13).

For the hnal bound state we choose a function for the
electron which is a sum of 5 and I' states referred to
angles (H, g) of the electron's position relative to the
dipole axis. These angular-momentum values are
coupled by the dipole operator and tend to concen-
trate the probability density for the electron in the
region of space on the side of the perpendicular plane
bisecting the dipole axis that contains the positive
charge +Q. We form a trial function for the electron
with a hydrogenic radial dependence corresponding to a
principal quantum number e= 1 and write

6= 2(Z/~) 'e- ~ .LC,J'ss(0, g)+C, I'„(8,p)g. (16)

Here a= k'/me' is the Bohr radius for hydrogen and Fpp

and I'~0 are normalized spherical harmonics" depending
on the electron coordinates relative to the dipole. The
quantity Z plays the role of an "effective charge" that
serves as a scaling factor in the expression for the ex-
pectation value of the electron energy. For the moment
we leave the value of Z unspecified. The function fr
is normalized by requring that

I
CsI'+

I
CtI'=1. (17)

In order to test the suitability of (16) as a trial function,
we demonstrate that it can provide a negative expecta-
tion value, which we can minimize afterwards by ad-
justing Cs and Ci, for the energy of the electron (H,.).
The calculation of (H, ) using (16) is straightforward and
yields

4De Re(CsCi*)2e
(18)«.)=z —(IC.I'+5Ic I')-

2g

direction cosines of D in this system:

n= sing cosv,

p=sinp sinv,

p= cosy.

The initial momentum ks of the electron is directed
along the positive Z axis, and so

The hrst term in the bracket represents the kinetic-
energy operator in (8) averaged over the wave function
(16). The factor 5 multiplying

I
Ci

I

' in this term arises
from the use of a hydrogenic radial state with m=1
together with the angular-momentum eigenstate V~0 in
(16). Under the condition (17) relating Cs and Ci, the
value of (H,) as given by (18) will be a minimum when
the phases of Co and C~ are the same, so that the second
term will have its maximum magnitude. For real Co and
Ci, combining (17) and (18) gives

(H )=ZsL(es/2g)(1+4Cts)
—(4De/v3a') C (1—C ')'"7 (19)

For a fixed value of C& the electron energy will be nega-
tive provided the dipole Inoment D is large enough. The
minimum value of the dipole moment that will give
bound states can be found by setting (H,)=0, solving
for D, and then setting BD/BCt 0."Th——is occurs when
Ct=1/g6, and the minimum value of the energy is
given by

(H.); = (5P/3) Ry(1 —(4D/ca+15)), (20)

where Ry= e'/2a is the Rydberg energy. This result im-
plies that there is a bound state for an electron in the
held of a point dipole for a dipole moment D&eu
X4+15=2.46X10 "esu cm. This value of the dipole
moment is somewhat larger than that of H~O
(1.85)&10 " esu crn)" The smallest value of dipole
moment for which nuxnerical calculations have appar-
ently been made is 2.14&&10 " esu-cm; the binding
energy in this case is 6.3)&10 4 eV."

The binding energy itself is not given until the quan-
tity Z' in Eq. (20) is evaluated. A plot of the numerical
values" of the electron ground-state binding energies
—E, shows an almost linear dependence on dipole mo-
ment over a wide range in the region D 2 to 8)&10 '8

esu-cm. The linear function (20) of D can, accordingly,
be adjusted to give the correct binding energies over
this range. For D= ea= 2.54)&10 " esu cm challis
et a/. find E,= —2.05)&10—' Ry. Using these values in
Eq. (20) gives Z' 0.04, which we shall use below in

, making numerical estimates.
Finally, we express the angular variables in the trial

function (16) in terms of the coordinates (p,v) and

"flecause of the linear dependence of (H,) on D in Eq. (19),
this procedure gives the same result (with less algebraic work} as
that obtained by first taking 8(EE,)/sCg 0. ——

~6 A separate calculation by Dr. K. Fox and the author with a
trial function having a radial dependence of the form exp( —o.r"),
where n and n are positive real numbers, gives a bound state for
D~1.65)&10 "esu-cm when n becomes large. Some results from
a study of electronic bound states in the Geld of a permanent elec-
tric dipole appear in Oak Ridge National Laboratory Report No.
ORNL-3895 (unpublished). Note that for a trial function utilizing
only S- and E-state wave functions for the electron, Kq. (8)
is equivalent to the complete Hamiltonian for the point dipole.
The matrix elements of the third and higher order Legendre
polynomials in the potential energy haveero valve with this trial z
function."R. F. Wallis, R.Herman, and H. W. Milnes, J.Mol. Spectros-
copy 4, 51 (1960).
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V. NUMERICAL ESTIMATES AND COMPARISON
WITH EXPERIMENT

In this section we present a few quantitative esti-
mates based on the theory described above. To be

specific, we consider an experiment at room temperature
(kT 0.025 eV) with molecules for which D 2X10 "
esu-cm and I 10 "g cm'. These values approximate,
at least, conditions for swarm experiments with H20,
D20, and H~S. '

It follows from the result of the numerical calculation
discussed after Eq. (20) that the binding energy —E, of
an electron in the 6eld of a dipole with D 2)&10 "
esu-cm is less than 6.3&10 4 eV. We shall neglect,
therefore, the binding energy of the electron in com-
parison with the energies needed for excitation of the
molecule. For I 10 4' g cm', the rotational eigenstates
L,=1, 2, 3, for example, have energies 0.006, 0.019, and
0.038 eV. Typically, then, with E, 0, a neutral mole-
cule in the state L=2 can capture an electron with
kinetic energy E equal to the difference in energies of
the states L=3 and L=2, i.e., with energy E=0.019
eV. The importance of this transition in a swarm ex-
periment depends, of course, on the availability of
electrons having energies close to this value. Apart from
the dependence of the transition probability on the
ratio (D/I)' through Eq. (36), it is important that I be
small so that the spacing of rotational levels in the mole-
cule is of the order of kT.

We shall give explicit results for the transition be-
tween the states L=2 and L=3 with 31=0. Using the
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FIG. 2. Summary of data from Hurst, Stockdale, and O'Kelly
(Ref. 6), compared with Altshuler's theory. The ordinate gives the
momentum transfer cross section ratio for various polar molecules
and ethylene.

To make numerical estimates for electron capture in
swarm experiments, we evaluate the leading terms in
the above expressions at low energies, ak —+ 0. In this
case, I2 —+ 0, I~ and I3 can be combined, and the matrix
element (23) becomes

iDem (a)»'
Tf; ——

i
—

i
(2(5s.)'i'5 .&'&+(3Tr)'i'S &sl) . (36)

Ik+6 kZ )

numerical values just discussed and remembering that
Z 0.20, we End from Eq. (36) that ~Ty;~' 3.6X10 4'

erg'. The capture cross section (3) for the transition
L=2 —+L=3(M=O) is o, 2.4X10 '4 cm'. For the
negative ion formed in the state L=3, M=O, Eq. (7)
gives for the lifetime r 1.3)&10—"sec. By comparison,
the rotational period of the state L=3 is 1.8X10 "
sec. The theory thus indicates that electrons in a swarm
can, by means of rotational excitation of the dipole,
become attached to a polar molecule for times less than
or comparable to the rotational periods of the molecule.
The ions do not live long enough, however, to become
stabilized, and their decay returns electrons to the
swarm.

In effect, the two-step process of capture and loss
serves as a mechanism for', scattering electrons elastically
from the molecules. This process should, therefore, con-
tribute to the momentum transfer cross section. "
The experimental results of Hurst, Stockdale, and
O'K,elly, which are interpreted in terms of Altshuler's
theory, are shown in Fig. 2. Except for H20, D2O, and
H2S, which have small polarizabilities, the departures
of the experimental results from theory can be attributed
to induced polarization of the molecules. From among
the molecules shown, H2O, D20, and H2S appear to be
the only ones that satisfy the criteria of having rela-
tively large values of D/I and level spacings comparable
to kT.

A search through molecular data tables shows that
relatively few molecules meet both these criteria. For
all but the lightest molecules, rotational energy level
spacings are much less than kT. Prom among other
compounds, the theory given here predicts behavior
similar to that of HgO, D20, and H2S for the mole-
cules NH3, HF, HCl, and H202.

Xofe added ir4 Proof. A recent calculation of elastic
scattering of electrons on a dipole has been done by
M. H. Mittleman and. R. E. von Holdt LPhys. Rev.
140, A726 (1965)j. The newer theory gives a curved
line lying somewhat above that in Fig. 2. As in the older
theory, however, there is no indication that the ob-
served momentum-transfer cross sections of H20, D2O,
and H2S should be so large compared with those of
other molecules having approximately the same dipole
moment.
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