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Theory of the Stimulated Raman Effect in Plasmas
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The stimulated Raman eBect in gaseous plasmas is investigated by means of a coupled-mode analysis. A
macroscopic representation for the electron density fluctuations is employed, and is shown to reduce to
previous results on the optical pumping of plasmas. The Raman threshold power levels calculated are cur-
rently achievable in giant-pulse ruby lasers, but the available laser pulse durations are too brief to al1ow ob-
servable amounts of Raman radiation to build up from the thermal noise background, in the case of ordinary
plasmas. However, the eGect may possibly be observable in the laser-produced type of plasma.

I. INTRODUCTION

'HE stimulated Raman effect in liquids was first
observed by Woodbury and co-workers. ' ' They

noticed that a substantial amount of the coherent
light leaving the optical cavity of a giant-pulse ruby
laser was down-shifted in frequency by an amount equal
to the vibrational frequency characteristic of the liquid
in the Kerr shutter. Subsequently, Hellw'arth'4 worked
out the corresponding theory of stimulated emission of
light in Raman-active materials. For further details,
the reader is referred to the recent book by Bloem-
bergen, s and the recent review articles by Loudon and
Zubov et al.'

The quantized molecular-vibrational waves corre-
spond to optical phonons, as do the electron oscillations
in a gaseous plasma; hence it is natural to look for the
stimulated Raman effect in plasmas, as well as liquids
and solids. ' However, the nonlinear optical effects in
a plasma are expected from elementary considerations
to be weaker than the analogous effects in a liquid by a
factor of 10 ". Since the Koodbury experiments"
indicate a threshold laser intensity exceeding 1 MW/
cm', one would estimate the threshold in plasmas to
exceed 10r MW/cm', a 6gure which lies only slightly
outside the present state of the art."Consequently, it
seems worthwhile to do a more careful calculation.

In the present paper a classical, coupled-mode

analysis is performed to determine the Raman laser
threshold in gaseous plasmas governed by Maxwell-
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4 R. W. Hellwarth, Appl. Optics 2, 847 (1963).». Bloembergen, Eonlieeur OPt~cs (W. A. Benjamin, Inc. ,

New York, 1965).
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Fiz. Nauk 83, 197 (1964) /English transl. : Soviet Phys. —Usp.
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8The theory of ordinary Raman scattering in a solid-state
plasma was Grst investigated by I. I. Sobel'man and E. L. Fein-
berg, Zh. Eksperim. i Teor. Fiz. 34, 494 (1958) LEnglish transl. :
Soviet Phys. —JETP 7, 339 (1958)j.

9 See the free-electron calculations presented in'the Appendix
of the present paper.I In the stimulated Brillouin scattering measurements oE R.
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592 (1964), power levels up to 10' MW/cm' were obtained from
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Boltzmann statistics. Bloembergens has already demon-
strated the close connection between the classical,
coupled-mode approach of parametric-ampliher theory
and the quantum-mechanical treatment of Hellwarth' 4;
furthermore, since Raman-scattering matrix-element
calculations tend to involve a large number of inter-
mediate virtual states, it seems prudent to work along
classical lines. " The analogous question of the stim-
ulated Brillouin effect associated with ion-acoustic
oscillations (acoustical phonons) in plasmas shall not
be examined here, in view of the experiments of Chiao,
Townes, and Stoicheff" indicating thresholds in solids
many orders of magnitude higher than the Raman
thresh olds.

r)p/c)t+V j=0,
r)j/Bt+3v o'V'p (e/rrs) (ps+ p) E= —v—,3,

V E=4z-p,

(1)

(~)

where the thermal speed is given by ns' ——KT/rrs, and
v, is a phenomenological collision frequency for ion-
electron encounters (it is well known that electron-
electron collisions tend to contribute negligibly to
electron-wave damping). As shown in the Appendix,
strong electromagnetic Gelds contribute nonlinear
electric currents of the form jNL=eNL. EE, which in
turn act as driving sources for the density Quctuations;
thus the nonlinear form of Eq. (1) becomes

ap/at+V-j= V. (oNL.-EE). —(4)

"Examples of the pitfalls involved in quantum derivations of
related nonlinear plasma phenomena are given by H. Cheng and
Y. C. Lee, Phys. Rev. Letters 14, 426 (1965); and D. F. DuBois,
ibid. 14, 818 (1965).
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2. OPTICAL PUMPING OF ELECTRON
DENSITY FLUCTUATIONS

Consider a fully ionized plasma with discrete electrons
of charge density —po+p(x, t) and current density
j(x,t), immersed in a uniform neutralizing background
of positive ions having charge density po. Close to
Maxwellian equilibrium the electron Quctuations, in
the presence of a self-consistent electric field E, are
governed by the macroscopic equations
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6& =MvP+3k vp zMv (6)

The fifth term corresponds to second harmonic genera-
tion in that waves of form exp( —i&uvt) give rise to
waves of form exp( —2uovt). For simplicity, this term
shall be neglected in the ensuing analysis.

The sixth term of Eq. (5) refers to the coupling
of transverse electromagnetic waves to longitudinal
density Quctuations in the presence of a density
gradient. As an example, consider the perturbation
problem where p= ps+ p&, with l»(x, t) I(( I p&&(x) I,
under the inQuence of a uniform, external electric
Geld E exp( icvt) —If the .second harmonic and nonlinear-
optical terms are temporarily ignored one can write
down the wave equation

$8'/r)t'+v r)/Bt+(o P—3 ssV' jp&'~

= —(e/m) Vpt'& E exp( —ia&t), (7)

which has the Fourier transform solution

pl ~(k&&u)= (ie(k E)/moPe{k &v))p& ~(k), (8)

where the longitudinal dielectric constant e is given by

e(k,co) =1—(co„PjoP) (1+3vo'k'/~„P)+iv. /~. (9)

Assuming that the unperturbed density p& ' corresponds
to a perfectly random distribution of X charges, one
gets, near the plasma resonance oP=~vP+3ksvo', the
Quctuation spectrum

(i p~" (k,co) i') =Re'(k E)'/m'o'(v /o))' (10)

a result derived by Berk" in his kinetic-theory treat-
ment of optical pumping near the plasma frequency'„&.
This mechanism will also be neglected in the ensuing
analysis, although it could be included in a more

complete analysis dealing with an inhomogeneous or
bounded plasma.

The remaining plasma wave equation may be
expressed as

Upon combining Eqs. (2) through (4) one gets the
plasma wave equation

r)'p/r)ts+ v,r)p/r)t+cov Pp 3vo—'Pp+ (47re/m) p'

+(e/m)Vp E=—(a/at)V (nNL. EE), (5)

where ovP=4rrepp/m.
It is of interest to pause for a moment in order

to examine the properties of this equation. The first
four terms describe a simple harmonic plasma wave
exp(ik x—i~t) with the usual Bohm-Gross dispersion
relation

turn and energy between optical phonons and photons):

k= ks ky
&

cd=los —co] .
If the two electromagnetic waves have the same
polarization and propagate parallel to the plasma waves,
so that the momentum-matching relation becomes
scalar: k=ks —k&, it follows from Eq. (11) that the
optically-pumped electron density Quctuations are
given by

p(k, (u) =k~NLSi'Es/o e(k,c0), (13)

where the nonlinear conductivity is obtained from the
free-electron theory presented in the Appendix, namely,

&NL(M=M2 Ml) =pse'/m'CQ)1%2 (14)

and the dielectric constant e is found from Eq. (9).
Near the plasma resonance, &o=arv=L~ P+3k'v'j'"
the density fluctuation spectrum becomes (letting
m= p/e)

( ~
e(k Mv) ~

)/ep=k Ey Es /256m'asm &ages'(v, /co„)' (15)

which agrees with Eq. (6) of the work of Kroll, Ron, and
Rostoker, " who investigated the optical pumping of
plasma fluctuations by two tuned laser beams (i.e.,
cps —&vr=arv) from a kinetic-theory viewpoint. Hence,
the present macroscopic model turns out to be equiv-
alent to a Vlasov-equation treatment.

3. AMPLIFICATION OF RAMAN-SCATTERED
LIGHT WAVES

In the previous section it was shown that electron
density Quctuations can be driven by two light waves
tuned to the frequency co„of the Quctuations. Now, as
has been pointed out by Rosen, '4 the presence of
density Quctuations constitutes a periodically varying
dielectric which can scatter incident electromagnetic
waves parametrically. As a result, the scattered light
waves suffer a frequency shift of amount ~~. The
scattered waves can now interact with the incident
waves to further drive the density Quctuations, and in
this manner optical energy can regeneratively produce
an amplified Rarnan light wave. Such a process is
sometimes referred to as Raman laser action in analogy
to the stimulated emission mechanism taking place
within the ruby laser light source itself.

A. Brillouin Wave Equation

To begin the analysis, one may consider the plasma
as a medium with the transverse dielectric constant

$8 /r)t +v 8/@+co P 3vp V jp-
=—(it/itt)V (eNL. EsE, ') (11) ss (k,a&) = 1—&uvP/oP+iur„Pv, /oF, (16)

for the case of two electromagnetic waves E= Er+Es,
where Er exp(ik~ x—icort) and Es~exp(iks x—i&est).

Suppose the frequencies and wave vectors are perfectly
matched (corresponding to the conservation of momen-

~ H. Berk, Phys. Fluids 7, 91/ (1964).

the parametric generalization of which is

eT(k&M) = ep+eg)+zes ~ (17)

'3N. M. Kroll, A. Ron, and N. Rostoker, Phys. Rev. Letters
13, 83 (1964).

'4 P. Roseu, Phys. Fluids 3, 416 (1960).
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where pp
——1 ~„—P/aP, pz —— —4zre/m~', and pz=ar„Pv, /~'.

This provides the additional coupling between electro-
magnetic waves and density Quctuations, and is entirely
consistent with the preceding discussion. The Brillouin
wave equation" for propagation through such a medium
1S

pV'pz 1 pj'

v'8+v~ E =——(.,E),
c' at'

(18)

in which the Maxwell curl equations have been com-
bined with the divergence equation in the absence of
free charge:

V' (prE)=Vpr E+prV' E=O.

To keep things simple, as at the end of the last
section, assume that all light waves have their polariza-
tions parallel to each other and perpendicular to that
of the longitudinal plasma waves. This causes the
second term of Eq. (18) to drop out; however, the
plasma waves and light waves remain coupled para-
metrically by the right-hand term. For the case of
strong laser fields and forward scattering, one obtains
from Eq. (18) the Raman-scattered wave equation

L~'+ (k P)'+z(~ '/~') ppjE. (~.)
(~'/—~') pzE~(»)~*(~.), (19)

in which the incident laser wave is taken as

Er,-exp(ikz, x—ical.t),

the Raman wave is taken as E, exp(ik, x—i~,t), and

the linear wave vector is kg=re, r p(~,)$'~'/c. Once again

perfect momentum matching has been assumed, namely,

Gg~ = |Are,—M~. (20)

As a consistency check, notice that since for optical
frequencies and laboratory plasmas ~1., or,&)~„&, one

may write Eq. (20) in the form

k„=k, kl, = (ppz~ /c) (o—r,—uJ) = (1/c)co~. (21)

-', (zzXD')'(cv, g/») I/zznsc'& 1, (25)

in which the approximate relation v,/cu„(zzXn') ' has
been used, and where the average laser power Aux has
been defined as I=c~Er, )'/2zr.

To get an idea of the magnitude of the threshold
power involved for ruby light ( 7000 A), one may
evaluate Eq. (25) for a few gaseous plasmas:

(a) Pinch discharge: zz = 10"cm ', T= 10' 'K,
I= 10' MW/cm',

the homogeneous algebraic equations in E,* and p

L
—k.'+ (kP)' —2zk.P~,jE.*

—(1/c')~.'I p~lE~*z =0, (23a)

—((u,k„/3 pp')(r N LEIEs*

+L k z+(k P)z+2ik~Pn~fp=0, (23b)

where the optical attenuation coefficient is a, =pp„Pz, /
2',k,'c', the plasma-wave attenuation coefficient is
a~=~„v,/6vpzk~p, and the linear-plasma-wave propaga-
tion vector is given by (kg)'= (~~' —cu~P)/3vp'. In
laboratory plasmas the optical attenuation is very
small, whereas the plasma wave attenuation. is very
large. For example, in a pinch discharge with co=10"
cm ' and T= 10' 'K it turns out. for ruby light ( 7000
A) that n,/k, P 10 ", n„/k„P 10', and a,/a„10 ".
Consequently the coefficient of p in Eq. (23b) may be
approximated by 2ik~'n~.

The resulting secular determinant may be written
down in terms of k, =kg+A~, where A~ is the nonlinear
correction to the scattered-wave propagation vector.
From the quadratic formula one obtains the nontrivial
root

dx=zo, —zen, co,'~ p,
~

~EI, ) ~N, /12kgppPc'a, . (24)

Positive gain corresponds to the case where the non-
linear growth exceeds the optical losses, or when 6«0.
Writing Eq. (24) in more convenient form, one arrives
at the Raman laser action threshold condition"

(22)k„hg) =up/c((1,

In other words, the three coupled waves propagate in

unison: pp~/k~=~, /k, =&sr/kl, c Now, Eq. ——(21.) also

implies that

(b) Q machine:

(c) Ionosphere:

e= 10"cm ', T= 10' 'K,
I=- 10' MW/cm'

~&=10'cm ', T=10''K,
I= 10 kW/cm'.

where Xn ——np/~~ is the plasma Debye length. But it is

well known from the theory of plasma oscillations that
k~X~(&1 is consistent with the Bohm-Gross dispersion

relation, Eq. (6). Using the same type of reasoning one

may show that backward scattering is kinematically

impossible, because this requires plasma wavelengths

comparable to optical wavelengths.

The results are discussed further in the final section of
this paper.

Before concluding the present section it is of interest
to compare the classical calculation of stimulated gain
Eq. (24) with the quantum-mechanical result. In a
quite recent article'6 Goldman and DuBois have

p. Coupled-Mode Analysis

The plasma wave equation (11) and the Brillouin
electromagnetic wave equation (19) may now be
solved by means of the coupled-mode analysis described

in Bloembergen's book. ' Fourier transformation yields

~' This result is not altered substantially by sbght momentum
mismatches, provided that b,k=kl, —k„«k„holds. For pinch
discharges this amounts to Ak«10 cm ', which does not seem a
particularly stringent matching condition.

'6M. V. Goldman and D. F. DuBois, Phys. Fluids S, 1404
(1965).This article appeared after the present work was submitted
for publication.
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extended the work of Hellwarth'4 to the case of a
classical plasma in the following way. The gain per
centimeter of scattered light along the incident beam is

g, = (eIc'/1s T) ((a„(/cur, ') (2m) sd'a/d(udQ,

where d'o/d&odQ is the differential cross section for the
Raman scattering process. If one utilizes the incoherent
scattering cross section for thermally excited electron
density Quctuations, namely,

d'tr/dGodn= (7r) '(e'/mc')'(Is Xn)'(p ) '

one finds for the stimulated gain, upon use of Eq. (22),
the expression

g./&i= s (~.~/~i)'(~~/") I/~mc',

in agreement with our Eq. (24) for the case of small n, .

4. DISCUSSION OF TECHNICAL LIMITATIONS

It has just been shown that positive gain can be
achieved in a gaseous plasma for laser power levels of
not unreasonable magnitude; however, it is known7 that
Raman cross sections are proport. ional to the optical
absorption coefficient a„as may be veriied from Eq.
(24). Now, n, (a~/cur)', which decreases rapidly with
decreasing electron density so that it may be expected
that lower power thresholds are associated with quite
small magnitudes for net gain. Ordinarily, if such a weak
process were contained in a Fabry-Perot optical cavity,
the low gain per traversal of the plasma would be
compensated by the large number of traversals suffered
by a light wave before it managed to penetrate the
highly rejecting walls. For the present situation, an
optical cavity of extremely high Q would be needed.
Unfortunately, the Q is always spoiled by the finite
duration ( 20 nsec) of the pulse from a ruby laser
operating in the giant pulse mode.

To illustrate these difficulties, consider the problem
of Raman laser-action buildup from the thermal
background of electron density Quctuations. Simple
statistical arguments, based upon the fact that the
noise power is —, cKT times the number of longitudinal
modes which contribute to scattering into a cone of
small apex angle in the forward direction, lead one to
estimate required gains of around 30 nepers for build-up
from thermal noise to megawatt levels. During a
20-nsec giant pulse the laser beam covers a path length
l of 600 cm; hence for a pinch discharge the gain
expression

&st cs,/I(MW/cms)/10~~30 (26)

indicates a required power level of I 10' MW/cm'.
Such enormous powers lie far outside the present state
of laser technology.

To observe the stimulated Raman effect in a plasma
one would have to employ dense, thermonuclear,
laser-produced plasmas such as have been envisaged by

APPENDIX: NONLINEAR CONDUCTIVITY
OF A FREE-ELECTRON GAS

The nonlinear optics of a gas of noninteracting
electrons has been treated by Bloembergens by means
of the equation of motion

mv = eE+ (e/c) v && B, (A1)

where, for a plane-polarized electromagnetic wave, one
has E= (E,O,O), B= (O,E,O). The corresponding scalar
equations are

(A2)

nsj'=0,
mr', = (e/c)*'E.

(A3)

(A4)

Assuming harmonic time dependence and using
successive approximations, one arrives at the nonlinear
electric current for two harmonic light waves E= R(coq)
+ E((us):

j,((u„)=lee((u, =(us —a)&)

= (nes/m'c) (1/~„cvq —1/co„cps)EsE~
= (Se /m CM1M2)E2E1

Hence, the nonlinear conductivity is

0NL y +2 1j +& / ~ &123/ 2

(A5)

(A6)

which was used in Secs. 2 and 3.
Now, from Eq. (A2) the linear current is j,(cs)

=ieesE(co)/m~, so that the ratio of nonlinear to linear
effects is

JN L//J r, eE/mccoy E/E (A7)

For ruby light the successive-approximation scheme
breaks down whenever E E*=3)&10" V/cm. The
corresponding critical electric field strength for solids
is 10' V/cm; accordingly, one is tempted to estimate
that, the plasma nonlinear coupling is weaker than that
of solids by a factor of 3)&10 ' in electric Geld strength
and by a factor j.0 ' in power level.

'~ J. M. Dawson, Phys. Fluids 7, 981 (1964).' R. G. Meyerand and A. F. Haught, Phys. Rev. Letters 13,
7 (1964).

Dawson, '' and Meyerand and Haught. "If the ordered
kinetic energy of a dense, laser-heated droplet of plasma
could be converted into random kinetic energy, perhaps
by expansion against a strong magnetic field, the
parameters e= 10'0 cm ' and T= 10' 'K might conceiv-
ably be produced. The corresponding pump power
required to cause buildup from thermal noise would
become I 10' MW/cm', a figure only two orders of
magnitude higher than currently achieved power
levels. "

ACKNOWLEDGMENTS

Several helpful discussions with Dr. Eugene B.Turner
and Ronald C. Phillips are gratefully acknowledged.


