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values. The agreement of the relative scale of the present
work with those of the three previous workers is, there-
fore, another indication of the internal consistency of
the results of the present work.

A perplexing point is the disagreement of the Griffiths
and Osherovich results with those of this experiment.
Among the results of other workers presented in Table
I, only those of GriKths and Osherovich were obtained
by direct lifetime measurements. It is seen, however,
that the values of these two workers are much larger
than the corresponding values of the present work.
Upon examination of the descriptions of their experi-
ments, a point of variance with the present experiment
is noted: The minimum lifetimes measured with both
the Griffiths and Osherovich experimental setups were
much greater than the minimum lifetime measured here
(Griffith, 39 nsec, and Qsherovich, " 33 nsec, as com-
pared with the present work, 5 nsec). Thus, it seems
possible that the disagreement in the direct lifetime

measurements could arise from the inability of the
Griffiths and Osherovich experimental setups to meas-
ure short enough lifetimes. However, since relevant
experimental details of the two previous experiments
are unpublished, the discrepancies remain basically
unresolved.
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Pote added in proof. Since this manuscript was sub-
mitted, delayed-coincidence determinations by Bennett
et al."of the lifetimes of several 2p (Paschen notation)
levels in Ne x have come to the attention of the author.
The mean lives in nanoseconds given by these workers
are as follows: 2pi, 15&1;2ps, 19+2; 2p4, 19&1;and
2pe, 29&12.

"A. L. Osherovich and I. G. Savich, Opt. i Spektroskopiya 4, s'W. R. Bennett, Jr. , P. J. Kindlmann, and G. N. Mercer,
715 (1958). Appl. Opt. Suppl. 2, 34 (1965).
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Charged particles moving under the inQuence of randomly time-varying electromagnetic Gelds may be
expected to experience a net acceleration. This process is analyzed for the special case of nonrelativistic
motion in a static uniform magnetic Geld and time-varying electric Geld. Acceleration parallel and transverse
to the magnetic Geld are considered separately. In the weak-Geld approximation, the motion may be de-
scribed by a Fokker-Planck equation. The coeKcients of this equation are expressible in terms of the cor-
relation functions for the electric fields. In certain cases, the coefficients may be expressed in terms of the
energy spectrum of the field. The Fokker-Planck equation derived for motion along the magnetic field is
dosely related to an equation of the quasilinear theory of plasma instability. One may also show that the
equation is closely related to the phenomenon of Landau damping. Longitudinal acceleration is effected by
waves with phase velocities slightly greater than the particle velocity. A similar statement is true for trans-
verse acceleration, except that the "resonant" waves are in addition shifted by the particle gyrofrequency.
In the absence of any other effects (such as "loading" of the accelerating 6eld by the accelerated particles),
the transverse energy distribution tends to a Maxwellian form with a temperature which increases linearly
with time. The same is true for longitudinal acceleration if the spectrum of the electric Geld is Rat over the
range of phase velocities of interest. The equations related to transverse acceleration show that the high-
energy electrons observed in the transition region outside the earth's magnetosphere may have been accel-
erated by quite weak random or quasirandom electric Gelds.

I. INTRODUCTION

~ 'HERE is good reason to try to understand the
mechanisms by which charged particles may be

accelerated in random electromagnetic fields. Labora-
tory experiments have shown that electrons may be
accelerated to high energy by the electric field generated

*Work sponsored by the National Aeronautic and Space
Administration under Grant NsG-703.

by a beam-plasma instability. "Spacecraft experiments
have shown that high-energy electrons are produced in
the transition region between the magnetosphere and
the bow shock. ' ' It has been proposed by Bernstein,

' L.D. Smullin and W. D. Getty, Phys. Rev. Letters 9, 3 (1962).
2 I.Alexef'f, R. V. Neidigh, W. F. Peed, E.D. Shipley, and E. G.

Harris, Phys. Rev. Letters 10, 273 (1963).
3 C. Y. Fan, G. Gloekler, and J.A. Simpson, Phys. Rev. Letters

13, 149 (1964).
4 K. A. Anderson, H. K. Harris, and R. J. Paoli, Am. Geophys.

Union Trans. 45, 605 (1964) (abstract).



STOCHASTI C ACCELERATION

Fredericks, and Scarf' that this region is unstable to the
growth of ion acoustic waves and that the oscillatory
electric fields so generated are responsible for the ob-
served high-energy electrons. ' The acceleration of
charged particles in solar Rares~' and other violent
astronomical events gives further weight to the problem
of particle acceleration.

Stix' and Fredericks, Scarf, and Bernstein" have con-
sidered cyclotron acceleration of electrons in "quasi-
random" electric fields —the field being assumed to be
coherent for a given length of time and then to suffer a
random change in phase. This article will treat what is
basically the same problem —namely, the acceleration
of charged particles in a magnetic field by random elec-
tric fields —except that we shall regard the Quctuations
in electric field as a stationary random process to be
described by appropriate correlation functions. We shall
find that, if we make a "weak-field" approximation, it
is possible to describe the acceleration process in terms
of the second-order correlation functions only. Hence
it is often possible to relate the process to the energy
spectrum of the field.

In order to simplify the present calculations, we con-
sider the acceleration of particles to nonrelativistic
energies. We assume, furthermore, that the magnetic
field is uniform, and that the electric field may be
regarded as steady and homogeneous in the statistical
sense. A further approximation of the present treatment
is that the gyroradius is assumed to be small compared
with the transverse scale for variations of electric field.

If the above approximations are accepted, the trans-
verse motion will have no e6ect on the longitudinal
motion so that one may consider longitudinal accelera-
tion (parallel to the magnetic field) without reference to
the transverse acceleration. We shall also consider trans-
verse acceleration independently of longitudinal acceler-
ation, but this requires separate justification. One reason
for making such a separation is that longitudinal ac-
celeration is effected by low-frequency electric fields
whereas the transverse acceleration is effected by electric
fields with frequencies comparable to the gyrofrequency.

II. ACCELERATION PARALLEL TO
MAGNETIC FIELD

We wish to consider the behavior of a distribution of
charged particles in a uniform magnetic field, moving
under the inhuence of random electric fields. We ignore
the effect of collisions. If the collective behavior of the

particles may be neglected (that is, if we neglect the
reaction of the motion of the charged particles on the
electric and magnetic fields), we may discuss the be-
havior of the distribution by considering a "test" parti-
cle. Since the distribution is homogeneous and since we
are now neglecting motion transverse to the magnetic
field, the particles may be appropriately described by
the velocity distribution function f(v, t) where v is the
component of velocity parallel to the magnetic field. If
it can be shown that the change in the velocity dv in an
interval of time LU is such that (Av) and ((Av)') contain
contributions linear in ht, whereas all higher products
have expectation values which vary as a higher power
of At, the time development of the distribution function
may be described by the I'okker-Planck equation" "

We shall find that such a description is indeed possible
in the "weak-field" limit, in which it is possible to assign
a time interval which is long compared with the co-
herence time of the electric field but short compared
with the time scale for change of the distribution
function.

If the s coordinate is chosen to be parallel to the
magnetic field, the equation of motion may be written as

(2.2)

We regard the electric field as being weak and accord-
ingly carry out a perturbation analysis in powers of the
strength of the electric field. Thus we write the tra-
jectory equation as

s=s +i t+Z'(t)+Z" (r)+ (2.3)

(2.5)

where so, vo are the position and velocity of the particle
at time t =0; Z'(/) is the perturbation of the orbit which
is linear in the electric field, etc. Thus we assign the
initial conditions

Zi(0) Zii(0) . =Zi(0) Zii(0) . . . 0 (2 4

On substituting (2.3) into (2.2), we obtain a sequence
of equations, of which the first two are as follows:

5 W. Bernstein, R. W. Fredericks, and F. L. Scarf, J. Geophys.
Res. 69, 1201 (1964).

6 F. L. Scarf, W. Bernstein, and R. W. Fredericks, J. Geophys.
Res. 70, 9 (1965).

~ W. R. Weber, AAS NASA Symp. Phys. Solar Flares, NASA
SP-50, 215 {1964).' J. M. Malville, AAS NASA Symp. Phys. Solar Flares, NASA
SP-50, 257 (1964).

T. H. Stix, Phys. Fluids 7, 1690 (1964)."R.W. Fredericks, F. L. Scarf, and W. Bernstein, J. Geophys.
Res. 70, 21 (1965).

gZ"= Z'E. ..(so+not, r) . —
m

(2.6)

"S.Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
~ P. A. Sturrock J. Math. Phys. 1 405 (1960).

A suKx following a comma indicates a partial derivative.
V/e assume that the "expectation value" or "average



p. A. s TU R ROCK

be approximated byvanishes,value f the electric fie
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(2.1) in the form

(2.26)

conditions
X+1(Ae i—Qt+Aketot) —0

Y —-', i(Ae '"' —A*e'ot) =0 (3.6)

where D(v), the coeKcient of diffusion in velocity
space, " is given by

gf
2

D= v — dkS„(k,vk) .
m2

(2.27)

2

D=gv' — dkW„(k, vk) .
m2

(2.28)

III. CYCLOTRON (TRANSVERSE)
ACCELERATION

Particle acceleration may be e6ected also by electric
6elds directed transverse to the magnetic 6eld. In this
case, one would expect that the most important con-
tribution to acceleration comes from that part of the
electric 6eld spectrum which is resonant with the cyclo-
tron motion of the particle. We now consider this ac-
celeration mechanism ("cyclotron" acceleration), by
calculation analogous to that of the preceding section.

For present purposes, we concentrate on the equations
of motion for the transverse degrees of freedom

d g—0—=—E, ,
dt' dt m

dg g
+Q = E„, ——

dt' dt m

where 0 is the gyrofrequency

This may be re-expressed in terms of the energy spec-
trum as

so that the velocity components are expressible as

v, = —~iiQ(Ae '"'—A*e'"')

v =—-'Q(Ae —'"'+A*e'"') (3.7)

On substituting (3.7) into (3.1) and using (3.6), we
find that

and

X= (c/B)E„, Y= —(c/B)E„

A =i(c/B)e'"'(E,+iE„).

(3.8)

(3.9)

((Ax)'/At) = 2v (c'/B') dkS, (k,vk),

(Axdy/LU) = 27r(c'/—B') dkS, „(k,vk), (3.10)

((Ay)'/At) = 2v (c'/B') dkS„„(k,vk) .

The same procedure may be applied to Eq. (3.9), and
we obtain the Fokker-Planck coeKcient governing diffu-
sion in the "plane" defined by the complex variable A:

(i &A i'/&~)

Equations (3.8) lead to coefficients for spatial diffu-
sion. On making the now familiar assumptions, and on
noting that the arguments of E, E„are to be taken as
s+vt, f, since we are ignoring correlation between the
longitudinal motion and transverse motion, we obtain
the following formulas:

Q = qB/rrtc. (3 2) =2 ( t/rBc') dk[S„(k, vk+Q) iS„(k, vk—+Q)

x=X+-,'(Ae tot+A*etot)

y
—Y 1i(Ae tQt A tteiQt—)

(3.3)

If q is negative, one may preferably reverse the signs
attached to 0 in the above equations so that 0 remains
positive.

We represent the solution of Eqs. (3.1) by equations

+iS,„(k, vk+Q)+S„„(k, vk+Q)7. (3.11)

The above equations simplify in the special case that
the electric ield is symmetrical (in the statistical sense)
about the direction of the magnetic field. The total
energy density of the transverse electric 6eld,

which are equivalent to

x=X+r cos(Qt+n),

y= Y—r sin(Qt+n),

where

(3.12)

(3.4)
may then be analyzed as

1
Wiv (E,'+E„')———

Sx

A =re' . (3 5)
dk do) W( (ak), (3.13)

If the electric 6eld vanishes, X, V, and 3 are all con-
stants. If the electric 6eld is nonzero, X, I', and A are
all functions of time, upon which we may impose the

1
W, (k,co) = S(k,td) = S„„(k,td) . — —

4x 4x
(3.14)
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If we make the further assumption that right-hand and
left-hand circular polarization has equal statistical
weight, S,„and S„vanish, so that Eqs. (3.10) and
(3.11) become

((Ax)'/At) = ((Ay)'/At) =8s'(c'/8') dkW&(k, sk),

(~x~y/~t) =0,

at) = 16~'(c'/a') akW, (k, vk+n).

(3.15)

(3.16)

Hence we find that

w=-', mn'~ A ('. (3.17)

where
(aw/at) = F(s), ((Aw)'/At) = 2wF(v), (3.18)

g2

F(s)=8s'— dkWi(k, uk+0) .
m

(3.19)

We see from (3.18) that the Fokker-Planck equation for
the distribution function F(w, n, t) of the transverse
energy x becomes

It may be more convenient to express the transverse
acceleration in terms of the transverse energy instead of
the complex altitude A. These quantities are related by

8
BWa/Bt = ds—'ms'

83
(4.4)

This equation is identical with that occurring in the
quasilinear theories, except that the group velocity
occurs in Eq. (4.3). However, in the theories referred to,
assumptions are made which imply that the group
velocity is small.

One of the interesting aspects of the comparison be-
tween our derivation of (2.26) and the corresponding
formula of quasilinear theory is that a certain step in
the latter derivation fe.g. , Eq. (17) of Ref. 15] hinges
upon the assumption that the waves of interest are
weakly unstable. No such assumption is made in the
present derivation.

It is perhaps worth pointing out that Eq. (2.25) is
related to the physical mechanism of Landau damping. "
It shows that, if the phase velocities of waves are
grouped about a particular value, particles going slightly
faster than the waves will be decelerated. Hence, the
faster particles must give up energy to the waves
whereas the slower particles gain energy from the waves.
This is the mechanism which was proposed by Dawson'~
as a physical explanation of Landau damping.

One may in fact relate the equations of Sec. II to the
formula for Landau damping of plasma oscillations. If
one considers a beam of electrons described by a dis-
tribution function f(s, t), the rate of gain of energy by
the beam is given by

IV. DISCUSSION

(3.20)
which, by (2.26) and (2.28), may be rewritten as

g2

BWa/Bt= —8s'— dv fv dkW~~(k, sk). (4.5)

so that the energy density is expressible as

Wii(k, (o) = U&i(k)5(co —Q(k)).

Equation (2.28) then becomes

U&&(k)

(4.2)

(4.3)

"A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl.
Fusion Suppl. 2, 465 (1962).

'4 W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 2, 1049
(1962).

5 S. E.Bodner and E.A. Frieman, Propagation und Instabilities
in P/asmas, edited by W. I. Futterman (Stanford University
Press, Stanford, California, 1963), p. 37.

The principal result of Sec. II is Eq. (2.26) which
shows that the effect of a random electric field on a
distribution of charged particles may be represented by
a diffusion equation. This result is closely related to one
of the equations of the quasilinear theory of instabilities
in plasmas. " " In order to compare the formulas, we

may assume that the electric field is composed of waves
satisfying a dispersion relation

(4 1)

This may be re-expressed as

gf
2

BWg/ctt = —8s'—
m

dkd(o f'(~/k) Wii(k, co) . (4.6)
k/kf

8W~/Bt = 2(BW i i
~—/Bt) . (4.7)

Since our equations hold for any distribution of wave
energy among wave number and frequency, consistent
only with the dispersion relation for the wave species,
we may infer that the superposition principle (equiva-
lent to the procedure of linearization based on the

' L. D. Landau, J. Phys. (USSR) 10, 25 (1946)."J.Dawson, Phys. Fluids 4, 869 (1961).

The energy acquired by the "beam" (namely, the group
of electrons with velocities close to the phase velocity
of the wave) must be balanced by a loss of energy from
the plasma oscillations. The energy of the plasma oscil-
lations is divided equally between electric field and
kinetic energy of the plasma electrons. From this we
infer that
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"small-amplitude" assumption) leads to

(8/Bt) W„(k,o)) =2y(k, ra) W„(k,co),

where

(4 8)

distribution

where

(4.13)

(4.14)

(4.9)

2'= (mD/k)t. (4.11)

That is, the distribution is Maxwellian with a tempera-
ture which increases linearly with time. One would
expect that a distribution which is initially sharply
peaked about zero energy will tend asymptotically to
the form (4.10).

In the course of Sec. III, we have derived formulas for
spatial diffusion coefficients. These could be incorpo-
rated into a Fokker-Planck equation which allows for
spatial variations. If, for instance, only the effects
represented by Eqs. (3.10) were to be considered, the
appropriate equation would be

These equations represent a slight generalization of
formulas derived by Spitzer" for the same basic problem.

We now consider Eq. (3.20), representing our principal
result for transverse stochastic acceleration. We 6nd
that this equation leads asymptotically to a Maxwellian

' L. Spitzer, Phys. Fluids 3, 659 (1960).

This is the familiar formula for the coefficient of Landau
damping of plasma oscillations.

Our method of deriving the Landau-damping co-
efficient for plasma oscillations suggests that formulas
derived for stochastic acceleration may be used to
estimate Landau damping of complex wave species.

One may obtain a simple solution of the Eq. (2.26) in
the special case that the spectrum of the electric field
fluctuations is such that the diffusion coeKcient D(v) is
constant over the range of particle velocities of interest.
(That is, the wave spectrum is, in a sense, that of
"white noise. ") A particular solution of (2.26) is then.

f(v, t) = (m/2vrkT)'~'e & "I " i, (4.10)

where

since I' does not depend on m.
As an example of the application of this theory, we

may inquire into the possibility that high-energy elec-
trons, observed in the "bow-shock" region between the
magnetosphere and the undisturbed solar wind, have
been accelerated by the cyclotron stochastic mechanism
discussed in Sec. III. We suppose that an electron is
accelerated from an initial energy of 1 eV (corresponding
to a supposed solar-wind temperature of about 10 000')
to a final energy of 30 keV. If this acceleration takes
place while an electron is traversing a region of thickness
approximately Rz, the radius of the earth, the time
available for this acceleration is approximately 10 sec,
assuming that the longitudinal energy is not greatly
affected by the transverse acceleration process. Hence,
using (4.14), we find that I'=4&&10 ' erg sec '. Hence
we find, from (3.19), that the electric field energy per
unit (radian) bandwidth is 2&&10 "erg cm—' sec. If the
electric 6eld energy is in effect distributed over a band
of width comparable with the gyrofrequency of an elec-
tron, the total energy density will be 5"&~=2)& 10 "erg
cm ', since the gyrofrequency 0= 10' sec—' for a typical
magnetic field strength of Sy, i.e., 5&10 5 G. This
energy density corresponds to an electric 6eld of about
6&&10 ' esu or about 20 ti V/crn. Hence we see that the
observed acceleration can be achieved by quite weak
electric 6elds.

In pursuing the problem of stochastic acceleration, it
will be most important to consider the "loading" of the
driving electric field by the currents set up by the ac-
celerated particles. In order to close this problem, it
would be necessary also to investigate the mechanism
for generation of the electric 6elds. This may be due to
instabilities, as suggested by Scarf, Bernstein, and
I'redericks' and by Stix.' Hence an extension of the
theory given in this article will be closely related to the
quasilinear theory of plasma instabilities.

Nevertheless, it seems to be worthwhile to pursue
problems such as that of stochastic acceleration without
reference to a particular mechanism for generation of
the fluctuating electric fields. Since acceleration, when it
occurs, may accelerate particles to relativistic energies,
there is need to extend the present treatment to the
relativistic regime. This will be undertaken in a later
article.


