Accurate Analytical Self-Consistent-Field Functions for Atoms. VIII. The Ground States of K+, K, and Ca

MIROSLAV SYNEK AND ALBERT E. RAINIS Department of Physics, DePaul University, Chicago, Illinois

AND

CLEMENS C. J. ROOTHAAN

Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois (Received 16 August 1965)

Self-consistent-field calculations by the expansion method were carried out for the ground states of K+, K. and Ca. The merit of this calculation is in its accuracy. Compared with solutions of the Hartree-Fock equations by the numerical-integration technique, the wave functions are considered accurate to three decimal places. The deviations from the nodal condition for the radial functions do not exceed 0.00006. The cusp condition is exactly satisfied.

INTRODUCTION

HE self-consistent-field (SCF) expansion method¹⁻⁸ has been applied in a series⁴⁻⁹ of accurate calculations of atomic wave functions. This paper reports accurate calculations for the $3s^23p^6$, 1S state of K⁺, the $4s^1$, 2S state of K, and the $4s^2$, 1S state of Ca.

RESULTS AND DISCUSSION

The results are presented in Tables I-V.¹⁰ The cusp values are not presented since the cusp conditions6 were kept identically satisfied.

We assume that the radial functions $P_{i\lambda}(r)$ represent the Hartree-Fock values to three decimal places.

A numerical SCF calculation with exchange on K+ was carried out by Hartree and Hartree. 11 Their numerical orbitals agree with ours practically to three decimal

A numerical SCF tabulation without exchange and without a full self-consistency for the 4s orbital of K was published by Gibbons and Bartlett. 12 Their numerical tabulation disagrees with ours in the second decimal place, particularly in the outermost nodal region of the 4s orbital.

A numerical SCF calculation with exchange on the 4s orbital of Ca was carried out by Hartree and Hartree.¹³ Their calculation represents the solution of the Hartree-Fock equation without allowance for the perturbation of the core by the two 4s electrons. Our 4s orbital agrees with theirs to two decimal places; the difference is always smaller than 0.003.

The comparison of the total energies with other calculations14-17 is given in Table III. The "numerical"

Table I. Optimized exponents ζ of the basis functions for K^+ , K, and Ca.

Atom and state Basis function	$\frac{\mathrm{K}^{+}}{3s^{2}3p^{6},^{1}S}$	K 3p ⁶ 4s, ² S	Ca 3p ⁶ 4s², ¹S
1s	19.0000	19,0000	20.0000
3s	20.8678	20.8678	22.0757
3s	14.3322	14.4292	15.1048
3s	9.4704	9.3273	9.9852
3s	6.7489	6.4998	7.2167
3s	3.7102		
		3.5585	3.7902
3s	2.5312	2.3276	2.5921
3 <i>s</i>	1.9378		
4s		1.0600	1.4168
4s		0.6427	0.8587
2p	9.5000	9.5000	10.0000
4p	16.4887	16.4012	17.3718
$egin{array}{c} 4p \ 4p \end{array}$	9.9617	9.9612	10.4808
$\overline{4}_{\mathbf{b}}^{\mathbf{r}}$	7.1782	7.2089	7.5803
$\vec{4p}$	4.5314	4.5414	
$\overset{4p}{4p}$			4.7717
±ν.	2.8419	2.8380	2.9791
4p	1.9132	1.8571	1.8414

A166, 450 (1938).

174 141

C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
 C. C. J. Roothaan and P. S. Bagus, in Methods in Computa-^a C. C. J. Roothaan and P. S. Bagus, in Methods in Computational Physics, edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc., New York, 1963), Vol. 2.

^a C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).

^b E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).

^c C. G. J. Roothaan and P. S. Kelley, Phys. Rev. 131, 1177.

⁶C. C. J. Roothaan and P. S. Kelley, Phys. Rev. **131**, 1177 (1963); **133**, 11 (E) (1964).

⁷ M. Synek, Phys. Rev. **131**, 1572 (1963).

⁸C. C. J. Roothaan and M. Synek, Phys. Rev. 133, A1263

<sup>(1964).

&</sup>lt;sup>9</sup> H. D. Cohen, Z. Sibincic, and J. P. Olive (private communication).

¹⁰ The numerical tabulations of the radial wave functions $P_{i\lambda}(r)$ are presented to five decimal places in Tables VI-VIII. These tables are deposited as Document No. 8593 with the American Documentation Institute, Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. A copy may be secured by citing the Document number and by remitting \$1.25 for photoprints, or \$1.25 for 35-mm microfilm. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, Library of Congress.

11 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

¹² J. J. Gibbons and J. H. Bartlett, Phys. Rev. 47, 692 (1935). J. J. Gibbons and J. H. Bartlett, Phys. Rev. 47, 692 (1935).
 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
 A164, 167 (1937).
 E. Clementi, J. Chem. Phys. 38, 1001 (1963).
 P. S. Bagus (private communication).
 E. Clementi, J. Chem. Phys. 41, 295 (1964).
 E. C. Snow, J. M. Canfield, and J. T. Waber, Phys. Rev. 135, A969 (1964).

Table II. Eigenvectors of coefficients $C_{i\lambda p}$ for K^+ , K, and Ca.

1s	Atom and state	K ⁺ 3s ² 3p ⁶	K 3 p ⁶ 4s	$\begin{array}{c} \text{Ca} \\ 3p^64s^2 \end{array}$
1s 0.97567 0.97567 0.97667 3s 0.02829 0.02821 0.0264 3s 0.00089 0.00981 0.0108 3s -0.00056 -0.00035 -0.0015 3s -0.00002 -0.00006 -0.0002 3s -0.00008 -0.00001 0.0000 3s -0.00008 -0.00001 0.0000 4s 0.00000 -0.00001 0.0000 4s 0.00000 -0.00001 0.0000 4s 0.00000 -0.00000 0.00000 4s 0.00000 -0.00000 0.00000 3s -0.00388 -0.00564 -0.0033 3s 0.19047 0.19350 0.1957 3s 0.28478 0.23889 0.2699 3s 0.0365 0.00244 -0.0002 4s -0.00104 -0.0002 -0.00244 -0.0002 4s 0.0015 0.00114 0.0004 0.0002 3s 0.0015	Basis			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s	0.97567 0.02829	$0.97567 \\ 0.02821$	0.97661 0.02649
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s	$-0.00056 \\ 0.00024$	-0.00035 0.00019	$ \begin{array}{r} 0.01082 \\ -0.00156 \\ 0.00079 \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s	-0.00008	-0.00001	-0.00026 0.00009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.00000	-0.00002 0.00001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>s</i>	-0.28014 -0.00388	$-0.28011 \\ -0.00564$	-0.28337 -0.00393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s	0.60998 0.28478	0.65701 0.23889	0.61705 0.26999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s	0.00365	0.00244	-0.00020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.	0.00015	-0.00006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s	0.09231 0.00105	$0.09234 \\ 0.00114$	0.09776 0.00047 -0.06932
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s	-0.22222 -0.21218	$-0.25236 \\ -0.18181$	$-0.24719 \\ -0.20077 \\ 0.69274$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>s</i>	0.55604		0.46905 -0.00214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4s	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3s		-0.00108 0.01618	-0.02334 -0.00027 0.01745
3s 4s 0.62615 0.5360	3s 3s		$0.05417 \\ -0.18274$	0.05696 0.05770 -0.21100
48 0.45075 0.505.	3s 4s		0.62615	0.53663
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2p 0.66464	2p	$\frac{2p}{0.67864}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{4p}{4p}$	$0.01348 \\ 0.24205$	$0.01384 \\ 0.24004$	0.01300 0.24112 0.15826
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{4\hat{p}}{4p}$	0.00335 0.00136	0.00468 0.00085	0.00258 0.00087 -0.00027
$3p \qquad 3p \qquad$	2 <i>p</i>	-0.20310	$^{3p}_{-0.20257}$	3p - 0.22114
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} 4p \ 4p \ 4p \end{array}$	-0.00334 -0.06499 -0.01192	-0.06417 -0.01336	-0.00299 -0.07118 0.00489
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$^{4p}_{4p}$	0.53118	0.54150	$0.46767 \\ 0.55774 \\ 0.07060$

Table III. Calculated total energies E and comparison with other calculations.

Atom or		Cal	culated total ener Other calc	
ion	State	This work	Analytical	Numerical
K ⁺ K Ca	3s ² 3p ⁶ , ¹ S 3p ⁶ 4s, ² S 3p ⁶ 4s ² , ¹ S	-599.01753 -599.16467 -676.75811	-599.01711a,b -599.16447° -676.75801°	 -596.5710 ^d -674.0165 ^d

a See Ref. 14. (We consider the value -559.01711 printed in Ref. 14 as a * See Ref. 14. (We consider the value —599.01752 with a completely different basis set (without the cusp condition restriction).

• See Ref. 16.

d These are estimates based on numerical SCF results (see Ref. 17).

Table IV. Orbital energies ϵ .

	$\frac{\mathrm{K}^{+}}{3s^{2}3p^{6}, {}^{1}S}$	$\frac{\mathrm{K}}{3p^64s, ^2S}$	$^{\text{Ca}}_{3p^64s^2, ^1S}$
1 <i>s</i>	-133.75238	-133.53342	-149.36368
2s	-14.70817	-14.49034	-16.82272
3s	-1.96384	-1.74912	-2.24531
4s		-0.14738	-0.19552
2 <i>p</i>	-11.73828	-11.51968	-13.62925
3 p	-1.17056	-0.95479	-1.34065

Table V. Virial theorem. (Values of E_p/E_k .)

Atom or ion	State	E_p/E_k
K+	3s ² 3p ⁶ , ¹ S	-2.0000252
K	$3p^{6}4s$, ${}^{2}S$	-2.0000285
Ca	$3p^{6}4s^{2}$, ${}^{1}S$	-2.0000329

SCF energies in this table are actually based upon the Hartree-Fock numerical SCF calculations using the Slater's approximation.¹⁷

The total experimental energies for K+, K, and Ca are not available. To obtain a comparison with experiment¹⁸ we calculated in a usual way¹⁹ the correlation energy difference between K^+ and K; this value is -0.01238atomic units.

ACKNOWLEDGMENTS

The authors appreciate the cooperation of the staff of the Computation Center at The University of Chicago. The authors also appreciate the technical assistance of Max Striegl of DePaul University.

C. E. Moore, Natl. Bur. Std. (U. S.) Circ. 467, 1949.
 See Ref. 8, Table IV.