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The mathematical derivation of the general mass formula of SV4 is given. The derivation is preceded by
a survey of the mathematical aspects of the group SU4 and its representations. The possible elementary-
particle symmetry schemes based on the Lie algebra of SU4, most of which have already been proposed, are
classihed and systematically discussed. The extension of SV4 to SVS by inclusion of ordinary spin is dis-
cussed and shown to rule out two of the three classes of models. Finally, a simple SUS model is sketched.

I. INTRODUCTION

"UNLIKE the search for the SU3 symmetry scheme'
which was motivated by the desire to unify two

well-established quantities, isospin and strangeness, or
hypercharge, investigation of consequences of a possible
even higher unitary symmetry is purely speculative. It
is as if one would have looked for SU3 at the time when
only nucleons and pions were known, i.e., when all
known baryons and all known mesons had the same
hypercharge (or strangeness; the distinction here is
meaningless because of the superselection rule due to
the conservation of baryon number). It must be added
that only one (or maybe two) observed facts, which we
discuss below, suggest that SU3 is not yet the end of the
story.

Nevertheless, since we do not understand either iso-

spin, or hypercharge, or SU3, or what it means that a
symmetry is sometimes broken, it seems perfectly
legitimate to speculate further.

The increase in rank from 1 to 2 in generalizing SU2
to SU3 suggests the direction in which one might
proceed, namely the rank-3 groups. Of the three com-
pact simple groups of rank 3, SU4—A 3=D3 recommends
itself. Firstly, it is the one with the smallest dimension;
it has only 15 group parameters as compared to 21
for 83 and C3, and therefore it is the most cautious
speculation. Secondly, nature's predilection for the
unitary groups displayed now twice may be of deeper
signi6cance and it is therefore surely worthwhile to
catch this hint and to stay in line (in the line of the
groups SU„, that is). Thirdly, the reduction of SU4
with respect to SUB is certainly more natural than the
same reduction of Bs Or and Cs=sps. Sinc—e—it is
particularly striking that SU3 seems to be broken in
the simplest way possible from the mathematical point
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of view, this too might be taken as a clue. That we do
not consider semisimple groups, i.e., direct products, is
clear; the second factor not connected to SU3 would
have to be chosen entirely ad hoc.

In the following we present (in Sec. III) the deriva-
tion of the general mass formula' of SU4 after erst
reviewing the mathematical aspects of the group SU4
and its representations (Sec. II). The various possible
elementary-particle symmetry schemes based on the
Lie algebra of SU4, most of which have already been
proposed, ' are classified and systematically discussed
in Sec. IU.

Finally, in Sec. V, we brieRy discuss the inclusion of
ordinary spin, which leads us from SU4QXSUs to SUs
and we sketch a simple model.

II. MATHEMATICAL PRELIMINARIES

A. SU4 and Its Irreducible Representations

The elements of the group' SU4 depend upon 15
parameters. Its rank is 3, that is, 3 members of the Lie
algebra can be diagonalized simultaneously or what is
the same, maximal toroids (the manifold generated by
3 members of the Lie algebra and linear combinations)
are of dimension 3. Physically this means that there is
another quantum number besides I3 and I' which will

be conserved to the extent that the SU4 symmetry is
valid. The irreducible representations are labelled ac-
cordingly by three non-negative integers' (At, As,As),
h.;=0, 1, 2, - . The dimension of the representation
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(At, As,As) is then' '

D(A.) = r s (At+1) (As+1)(As+1) (At+As+2) (As+As+2)
X (At+As+As+3) . (1)

The unit representation is (0,0,0), and the 3 funda-
mental representations from which all other ones can be
built up are (1,0,0), (0,1,0), and (0,0,1) as indicated in
Table I. The adjoint (regular) representation is (1,0,1)
and is of dimension 15. The characters of these repre-
sentations have been constructed by Wigner in his
celebrated paper. ~ Wigner however was interested in
the group as viewed as 06 rather than as SV4 and his
presentation of the weight diagrams therefore shows
the reduction with respect to 04(=De) rather than with
respect to SU3. However, it is easy to obtain the de-
sired reduction starting from Wigner's work. .

The representations of SU4 fall into one of 4 classes
according to whether4 ~

C=At+2As+3As (2)

has the value 0, 1, 2, or 3 (mod 4). These four classes
form the cyclic group of order 4 with respect to forma-
tion of the direct product. Class 0 (C=0) is the neutral
element, etc. The complex conjugate of each representa-
tion belonging to class 1 will belong to class 3. These
representations are simply connected and have four
elements in the center. Representations of class 2
faithfully represent the group of rotations in a 6-dimen-
sional Euclidean space 0s SU4/Zs. s They are doubly
connected and have two elements in the center. I'inally,
the representations of class 0 have only the identity in
the center and are quadruply connected. They faithfully
represent the adjoint group, SU4/Z4. The representa-
tion (At, As, As) is the complex conjugate of the repre-
sentation (As,As, At). The representations (Ar, As, Ar) are
real and belong to either class 0 or class 2. There are
no symplectic representations. The representations are
conveniently listed in a 3-dimensional lattice (Cartan-
Stiefel diagram ) which is shown in Fig. 1.

TAmz. z I. Fundamental representations of SU4.

Repre-
sentation

(1,0,0)
(0,1,0)
(0,0,1)

Dimen-
sions

Weight
diagram

tetrahedron
octahedron
tetrahedron

Roots

complex
real
complex

H. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc. , New York, 1950).

E. P. Wigner, Phys. Rev. 51, 106 (1937).
"This fact has been known for a long time; it was already

implicit in the work of Weyl and Stiefel. The quantity C (see also
Appendix A) has been called "plurality type" by C. R. Hagen
and A. J. Macfarlane, J. Math. Phys. 5, 1335 (1964), where
earlier references can be found. However, we feel it more appro-
priate to speak of "classes" of representations (in the sense of
equivalence classes or cosets).' We denote by Z„ the discrete group composed of the n roots
1I/n

FIG. 1. SU4 Cartan-Stiefel diagram.

In view of the above classification of the representa-
tions one must distinguish between three di6erent sym-
rnetry groups: SU4/Z4, SU4/Z&, and SU4.

(i) SU4/Z4. Only representations of class 0 are used.
(ii) SU4/Zs. Representations of class 0 and class 2

occur. .
(iii) SU4. All representations are used. '

This distinction is the analog of the well-known dis-
tinction between SUs/Zs (eightfold way) and SUs
(Sakata model); however, since 4 is not a prime number,
more than two possibilities occur. Nevertheless, it is
clear that the algebra above does not completely deter-
mine the model. The various possibilities will be dis-
cussed below.

B. Decomyosition of Reyresentations of SU4
into Reyresentations of SU3

If we want to take into account the effects due to
interactions which do not respect the full SU4 sym-
metry, but preserve only SV3, we must decompose the
representations of SU4 into representations of SV3. This
decomposition is the exact analog of the (Y,I) content
of a SU3 multiplet, and it can be obtained using the

In this case it is not the same whether the baryons transform
as a representation of class 1 or class 3.
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well-known branching rule of Weyl. ' Here we want
to translate this rule and to express the decomposition
of the character into our geometrical language. It then
says: in the Cartan-Stiefel diagram (and in the weight
diagram as well) one axis, which we call X, is dis-
tinguished. The SU4 weight diagrams then are decom-
posed ("sliced" ) into sheets perpendicular to this axis
X, and the weights on every sheet form one or several
weight diagrams, i.e., representations of SU3. Clearly
X represents the new quantum number occurring in the
SU4 theory, and plays there the same role as the hyper-
charge does in SU3.

We consider, as usual, 4 a 4-dimensional Euclidean
sps, ce referred to an orthonormal basis e; (s=1 4)
with coordinates f,. The nonzero roots of SU4 are the
vectors e;;=e, —e;—(1&s, j&4), contained in the hyper-
planes P;f,=O. We take as roots of the SUs subgroup
the vectors e;;(1&i,j&3) so that the X axis will be in
the direction of the vector (et4+es4+es4); in order to
fix the scale, we decide to take for the X coordinate
the value

We can now state the desired branching rule, together
with the value of X for the different SU3 multiplets.

Theorem. The SU4 representation (A.t,hs, hs) decom-
poses into the SUs representations ()tt,ks) in the follow-
ing way. Starting from every point on the line )j,t+Xs
=42 in the SUB tartan-Stiefel diagram, draw on the
lattice a parallelogram with edges of length A~ and A3
along the axes P~ and X2, respectively. All representa-
tions belonging to any lattice point of one of those
(As+1) parallelograms are contained in (At,As, As). It is
then clear that the number of SV3 representations con-
tained in (At,hs, As) is (A t+1) (As+1) (As+1).

Furthermore, if the SUs representation (Xt,hs) lies
in the parallelogram starting at the point (Xt', ) s') the
value of its X coordinate is given by

X(~1y)~2) (~1 ~2) s (~1 ~2 ) 4 (+1 As) ~ (3)

The proof of this theorem is elementary, but involves
some tedious geometrical considerations; it is therefore
postponed to Appendix A.

For the applications, we want to obtain the complete
decomposition together with the spatial position of the
SU3 multiplets in the weight diagram. This is possible
at once, if we perform the graphical construction sug-
gested by the theorem (see Appendix A); we merely
reproduce the (A.s+1) parallelograrns its the reverse order
and "&interlaced" in the following way: first the upper
one, starting at (As, O); then the second one, starting
at (As—1, 1), is to be drawn one step above, so that the
lattice line containing this point (As —1, 1) falls onto
the second line of the erst parallelogram; then the
third parallelogram comes two steps above the erst
one, and so on. The resulting figure contains all the SU3
multiplets, each on its proper plane X=constant. This
construction can be seen better on an example. Figure
2 shows the complete decomposition of the representa-
tion (3,1,2), of dimension 540.

According to this rule, the adjoint representation of
SU4, the 15, will reduce into the SUs representations
3+1+8+3, as shown in Fig. 3. The decompositions of
the low-dimensional representations are listed in Tables
II—IV. The decomposition of the representations which
are conjugate to those listed in the tables are simply
obtained by changing the sign of X and conjugating

———X= 3/y

TABLE II. Branching of the class 0 (A&+2A2+3A3
—=0)

representations of SV4 into representations of SU3.

g-"- f/4

X=-5/y

Repre- Dimen-
sentation sion SU3 decomposition

(hr, ks,hs) D(&) X=2 X=1 X=O X= —1 X= —2 X= —3

t5'
A'=-&3/g

FIG. 2. Branching of the representation (3,1,2) —=L13/4, -'„
——;,—11/4g of SU4, of dimension 340: (a) the parallelograms
in the SU3 Cartan-Stiefel diagram; (b) the "interlaced"
parallelograms.

(0,0,0) 1
(1,0,1)
(0,2,0) 20
(4,0,0) 35
(2,1,0) 45

(2,0,2) 84

1
3 1, 8 3
6 8 6

15 10 6
15' 8, 10 3, 6

6 3, 15' 1, 8, 27 3, 15'
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TAI3LE III. Branching of the class 1 (A&+2A3+3A3=1) representations of SU4 into representations of SU3.

Repre-
sentation
(Ag, A3,A3)

Dimen-
sion

D(A) X=9/4
SU~ decomposition

X=1/4 X= —3/4 X= —7/4 X=—11/4 X= —15/4

(i,o,o)
(0,1,1)
(0,0,3}
(2,0,1)
(5,0,0)
(1,2,0)
(3,1,0)

4
20'
20"
36
56
60
84/

3
3
6

21
15'
24

3
3, 6
6

3, 15'
15

6, 15'
15, 15'

1
8

10
1, 8
10

8, 10
8, 10

3
6
6

3, 6

the SU3 multiplets, and therefore are not listed sepa-
rately. Also, the class 3 representations are just those
conjugate to the class 1 representation, as noted above,
and a,re not repeated in the tables.

Finally a word must be said about the unique labeling
of states within a particular SU4 multiplet. Because of
the appearance of multiple weights, one requires the
Casimir operators of subgroups as in the case of SU3, in
addition to I3, Y, and X in order to uniquely specify the
states. We choose rs, i.e., the Casimir-Racah operator
C~ of the isospin subgroup, and the two Casimir-
Racah operators C2 and C3 of the SU3 subgroup con-
taining I3 and Y. One can verify that all the six opera-
tors X, F, I3, I', (,, C3 commute with each other.
Furthermore, from the decomposition explained above
one sees that they are a complete set of commuting
observables in the space of the internal degrees of
freedom.

C. Kronecker Products of Irreducible
Representations of 8U4

The Kronecker product of two irreducible representa-
tions of SU4 can be reduced to a, sum of irreducible
representations using the standard techniques. " The
product of an arbitrary representation (At,A3,A3) with

another representation can be obtained directly or
deduced from products of (At, A3,A3) with the three
fundamental represents. tions (1,0,0), (0,1,0), and (0,0,1).
These latter products, which can be easily obtained

geometrica, lly, ' are the following:

(A„A„A,)Qx(1,0,0)
= (At+ 1, As, A3)Q+ (At —1, As+1, A3)

Q+(A„A,—1, A, +1)Q+(A„A„A,—1) (4a)

(A„A„A,)Qx(0, 1,0)
(Alp A2+11 A3)Q+(Alp A2 11 A3)Q+(At+1) A21 A3 1)
Q+(Ar —1, As, As+1)Q+(At+1, As —1, As+1)

Q+(At —1, As+1, A3—1) (4b)
(A r,A3,A3)QX (0,0,1)

= (At, As, A.3+1)Q+ (A g, As+1, As —1)
Q+(A&+1, A,—1, A,)Q+(A,—1, A„A,). (4c)

In Eqs. (4) it is to be understood that terms on the
right-hand side for which any of the integers are nega-
tive are to be omitted.

For convenience we have listed the reductions of the
Kronecker products of several of the low-dimensional
representa, tions in Table V.

III. SU4 MASS FORMULA

It is an empirical fact (that is not understood) that
the mass splittings within an SU3 multiplet to a good
approximation can be represented as matrix elements
of an operator which transforms like I'=0, SU2 singlet
component of the 8-dimensional representation of SUB,

Repre- Dimen-
sentation sion
(A] yA2pA2) j9 (A.) X= 2

SU3 decomposition
X=-'2 X=—~ X= —$ X= —-'

TanLz IV. Branching of the class 2 (A&+2A, +3A3=—2}
representations of SU4 into representations of SUB.

Pro. 3. Branching of the ad-
joint representation 15 of SU4
into the SU3 representations
3QjlQjSQj3.

(O, i,0)
(2,0,0)
(0,3,0)
(i, i, i)
(3,0, i)

6
10
50
64
70

10
8

10

3
6

15'

3, 6, 15'

6, 24

3
3

15'

3, 6, 15'

3, 15'

1
10
8

1, 8

' D. Speiser, in Group Theoretical Concepts end Methods in
E/emeltary Par3icle Physics (Istanbul Summer School, 1962),
edited by F. Giirsey (Gordon and Breach Science Publishers, Inc. ,
New York, 1964);Helv. Phys. Acta 38, 73 (1965);J. J. de Swart,
Rev. Mod. Phys. 35, 916 (1963).
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ThaLz V. Reductions of the Kronecker products of
some low-dimensional representations of SU4.

44=1Q+lS
44=6Q+10
46 =4Q+20'
4810=20'Qj20"
4844 =4Q+20'Q+20'Q+20"
44434=1Q+15Q+15Q+15Q+20Q+20Q+35Q+45 Q+45Q+45
415= 4Q+20'Q+36

151S =1Q+15Q+15Q+20Q+4SQ+45Q+84
1520=15Q+20Q+45Q+45Q+17S
15@20 =4Q+20 Q+20 Q+20"Q+36Q+60Q+140
1535=35Q+45Q+189Q+. 256
15(g&64= 6Q+10Q+ luQ+50Q+64Q+64Q+64

Q+ 70Q+ 70Q+ 126Q+ 126Q+ 256
1570= 10Q+64Q+70Q+70Q+ 126Q+140Q+270Q+300
20320 =1Q+1SQ+20Q+84Q+ 105Q+175

i.e., the adjoint (regular) representation of SUs. It is
then a natural erst guess to assume that the SV4 sym-
metry will be broken in an analogous manner. That is,
that the SU4 mass splittings transform like the X=O,
SUs singlet component of the 15-dimensional (adjoint)
representation of SU4. Under this assumption it is a
straightforward mathematical problem to obtain the
SV4 mass formula which is the analog of Okubo's SV3
mass formula "(Of.course, the physical basis of such a
mass formula remains as obscure as ever. ) More gen-
erally, one might entertain the weaker assumption that
the SV4 mass splittings transform like the X=O, SV~
singlet component of other representations of SU4.
Components with this covariance property occur only
in the representations (A,O,A) which are all real and
belong to cia,ss 0. They include the 1, 15, 84, etc. There
is no reason to exclude these possibilities a priori. We
shall consider here only the "obvious" generalization of
the SU3 case and presume that the mass splittings
within the SU4 multiplets can be represented by the
matrix elements of an operator which transforms like a
component of the 15-dimensional (adjoint) representa-
tion of SU4. To include the mass splittings within the
SV3 multiplets as well as between different SV3 multi-
plets we must consider all the X= Y=O, SU2 singlet
components of the 15. There are two such components
and assuming the symmetry-breaking interactions con-
serve X, F', and I it is sufficient to consider only these
two operators.

The components of the 15 are represented by a
tensor P„"having one upper and one lower index. These
indices range from 1 to 4 and their contraction vanishes.

"S. Ok&rbo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962);
M. Gell-Mann, Ref. 1. This mass sum rule is perfectly general:
in the reduction SU~+1 —+SU~, the adjoint representation of
SU&+& is decomposed as Adj&'+'& -+ Adj«&Q+1«&Q+D~»Q+D«&,
where D&') is the elementary representation /=—I'1,Q- Q) of SU&,
L)(') its conjugate. Then, if the symmetry breaking term belongs
to Adj('+'), we have the mass sum rule:

VIIr&s&+Dios&= ( +11) Emrs&+( t 1)M„s;a&—

In other words, the 15 is represented by a traceless
4&(4 matrix. The diagonal elements all have X=V
=Is——0 and two of them, it s' and &t 4, are SUs (isospin)
singlets while the third independent element (it s'—itr')
transforms like the I3=0 component of an isospin
vector. Consequently, the mass splittings must trans-
form like a superposition of the matrix elements of it ss

and g»' if the electromagnetic splittings are neglected.
The electromagnetic splittings, which can be taken to
transform like»tr', can easily be included simply by
applying the results obtained below for its' and it,4 to
the component Pt' as will be discussed later.

Let us first consider the general form of any tensor
T„". VVe can express the matrix elements of T„" in
terms of the generators of SU4 which we denote by P„".
These satisfy the following:

LF PF v)=F vS P—F PS

p «4 —pv

(Sa)

(Sb)

(Sc)

Is= s(ft—fs),fs-
X= f4—

(7a)

(7b)

(7c)

Here the hypercharge I'= fs is not —quite the same as
the usual hypercharge, insofar as the direction of I'
does not lie in the plane X=O. Actually, Y= F'+sX is
parallel to the plane X=0 and therefore orthogonal to
the direction of X. It will also prove quite useful to
introduce the Casimir operators C~, C2, and C3 of the
V3 subgroup whose multiplets lie in planes orthogonal
to the direction of the new quantum number X. These
are conveniently taken to be

C1——P'

Cg= Ii,7F,',
(,"s

—F,sF Fs&'+F sFsrF'. (8b)

(Sc)

The most general form of T„"can be shown by the same
argument as Okubo's" to be

T "=at& "+bF "+.c(F F "+F "F —-'8 "F PF )
+d(F PF aF v+.F vF PF a+.F aF rF P

vF YF aF P+F PF vF a+F vF aF P

+F„aF pFp~ s8 rF rF pFpa) ({j)

where it is to be understood that Eq. (6) stands between
states of a given irreducible representation of SU4. The
symmetric combinations of generators have been chosen

merely to simplify the calculation. To write Eq. (6) in
terms of the more familiar quantum numbers Q, Is,
and X we make the identifications of these quantum
numbers with the eigenvalues f of the diagonal com-
ponents F a(n= 1, 2, 3, or 4) as follows (these are
precisely the f„used in Sec. II 8):
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where i, j, and k are summed from 1 to 3. More ex-
plicitly, for a U3 submultiplet" (—', (2l&+F2+X),
3(X2—X~+X), —3P q+2X2 —X)) which corresponds to
the SU~ multiplet (X~,X2) that lies in the plane f4 ———X,
one finds

Cg=+X,

C2= -', Cg'+-', () p+XgXg+X2'+3Xg+3X2),

(9a)

(9b)

C3= (2j9) p g
—X2) (2Xg+X2+3) (Xg+2X2+3)

—2CgC2+ (4/9) Cp. (9c)

It is now a straightforward but tedious matter to
show that

(F4,F„') ', Fp F——=PC/—C2+-', C2 (10)

F P(F4~ Fp4)/F4~(F p4 F P)

+Fp4(F4P FP) 3F„v(FPF P)

= —Cy'+3CgC2 —C3—3CgC2+2Cg+~C3. (11)

Here C are the Casimir operators of U4 which are
defined by simply extending the summations from 1 to
4 in Eqs. (8). Since the C„are just constants for any
SU4 multiplet they do not contribute to the mass
splittings and can be dropped. The most general form
of the matrix element of T44 in a given irreducible repre-
sentation of SU4 is then of the form

Cg'=0,

Cg' ——Xp+XgXg+ Xp+3Xg+3X2 )

(14a)

(14b)
and

Cg'= p, ~
—'A2) (24+X2+3) (X~+2X~+3) . (14c)

The mass formula can alternatively be derived from
the preceding theorem in a quite simple way. ' First we
write down the following ansatz which contains all
terms up to the third order:

T44.'4 The latter are given explicitly by Eq. (12) from
which the analogous formula for T3' can be obtained by
simply permuting the variables. That is, one merely
interchanges X and I' and reinterprets the Casimir
operators C2 and C3 as referring to U3 multiplets which
lie in planes orthogonal to the direction of I' rather
than X. The general mass formula for an arbitrary
representation of SU4 is then'

M =MD+Mr '*&X+Mg'*'(C2"—X')
+Ma &*& (C3&'& —3XCw &*'+X')
+~&(w) ++~2(w) (C&(w) p2)

+~~(w)(C3(w) 3yC (w)+@3) (]3)

where the superscripts on the Casimir operators indi-
cate the appropriate Ua subgroup. Actually, Eq. (13)
also holds if the U3 Casimir operators C„are replaced,
respectively, by the simpler SU3 Casimir operators C '.
For the SU3 representations (X~,X2) the operators C '

have the values

T4' a+bX+c(C——2 X')+d(C3 —3XC2+X')—, (12) ~=&+fX+,(C,'y~X~) yd (C,'ypXC, '+&X3) (13)

where C2 and C3 refer to the U3 multiplets orthogonal
to the direction of X. The parameters a, b, c, and d are
undetermined constants which depend on the particular
SU4 multiplet.

Not all of the terms in Eq. (12) are independent for
certain representations of SU4. For any representation
of SU4 the number of independent terms in the matrix
element of an operator that transforms like a component
of the 15 is just the number of times the 15 appears in
the product of the representation with its complete
conjugate. This number is given by the following
theorem:

The Kronecker product (1,0,1)Qx(A~,A2, A3) contains
the representation (A&,A2,A3) precisely as many times
as the number of integers A.~, A2, and A.3 which are
nonzero. This can be proved by computing explicitly
the direct product with help of formulas (4), or by the
geometrical method as indicated in Appendix B.

To obtain the general SU4 mass formula" we simply
superpose the splittings which transform like T3' and

"U3 multiplets are designated by their highest weight vector
(fl, f2, f3) where )1=fl —f2~&0, 'A2= f2—fa&~0."We neglect here cross terms of the form XY, etc. With these
terms added the mass formula would contain too many param-
eters, and would be useless (except in very peculiar cases). The
same thing occurs in the SU3 theory with simultaneous Y and Q
breaking. See, for example, M. Gourdin, Ergeb. Exakt. Naturw.
36, 1 {1964),

Since the preceding theorem shows that the repre-
sentation (A,O,O) will be split into equally spaced
representations of SU3, we can insert the values for
C2', C3', and X=X&—4A. into this formula and require
that all nonlinear terms in P j vanish. Then the constants
n, P, and y are determined to be those of Eq. (12).

In applying the SU4 mass formula care must be
taken since eigenstates of C~&*' and C3(" are not neces-
sarily eigenstates of C2(» and C3(». For example, in
the center (X= V=IS——0) of the 15 let gq'* a,nd $8 '
be, respectively, the SU3 singlet and octet components
with respect to the SU3 subgroup whose multiplets
are orthogonal to the direction of X. Then the linear
combination

Pz(w) = ~Pz(~) 2~gP8(~)

lt, (w) =rp (*)+2~pit,z(~)

are, respectively, the SU3 singlet and octet components
with respect to the SU3 subgroup whose multiplets are
orthogonal to the direction of V. This gives singlet-
octet mixing in a definite manner, as well as a transition
moment, and shows that the physical particles, i.e., the
eigenstates of the mass operator, are not pure eigen-

"It would seem more physical to break the symmetry along X
and F = Y+-',X, which is the "true" hypercharge. But this would
give a much less symmetrical formula and in faqt p,mounts to
Q.e same,



ANTOINE, SPEISER, AND OAKES

states of either of the Casimir operators. The degree
of mixing is determined by diagonalizing the mass
matrix and is dependent upon the phenomenological
parameters appearing in the mass formula LEq. (13)j.

Before proceeding to discuss some specific models
based on SU4 symmetry, we conclude this section with
some general remarks about the SU4 mass formula.

(i) For the tetrahedral and octahedral representa-
tions of SU4, which are denoted by (A,O,O) or (O,O,A),
and (O,A,O), respectively, the mass formula, has only
linear terms, i.e., M=Me+M, X+M„I', as a conse-
quence of the above theorem. Lln fact, it is easy to see
that

(A,O, O)Qx(O, O,A) = (A, O,A)Q+(A.—1, 0, g—1)
Q+" Q+(0,0,0).7 (17)

These are then completely analogous to the equally
spaced triangular representations of SUs. (They are
the only representations of SU4 which have exactly
one SU3 multiplet on each X plane; this is obvious
from the above branching rule. )

(ii) Since the TCI' theorem excludes terms which
are diferent for particle and antiparticle there can be
no linear terms in the mass formula for bosons. There-
fore the masses of bosons belonging to an SU4 repre-
sentation of the form (O,A, O) would not be split except
in higher order.

(iii) If we consider only split tings along one direction,
say I, then the orthogonal SU3 multiplets are split
apart but there are no splittings with these SU3 sub-
multiplets. For the 15 which contains the SUs sub-

multiplets 3 with X=+1,1 and 8 with X=0, and 3 with
X=—1 we have the mass sum rule (where the symbols
can denote the masses or the squared masses, depending
on the model).

3Ms+3Ms= 43IIt+2Ms

which is the direct generalization of the Gell-Mann-
Okubo octet mass formula of SU3."It can happen that
no sum rule exists, for example in the case of the 20'

(1,1,0) (see Table III) where the four masses are linear
combinations of four independent parameters. (Only
three of them are independent in the case of the 15.)

(iv) The electromagnetic mass splittings can easily
be taken into account in models in which either the
electromagnetic current or the electromagnetic mass
splitting has the transformation properties of the
tensor component X'»'. The form of the matrix elements
of Tt,' is obtained from Eq. (12) by replacing X by—Q and using the Casimir operators of the SUs sub-
group orthogonal to Q. In the case of assuming the
electromagnetic current transforms like T»' all of the
higher order terms in Q, Cs—Q', and Cs+3QCs —Q'
must be adjoined to the mass formula, as well, since the
mass splittings are of second order in the current. Note
however that this breaking term is the most natural
one from the mathematical point of view, but by no

means the only one possible; this will be discussed
elsewhere.

—,'+ baryons:
—',+ baryon

resonances:

0 meson s:
1 ITlesons:

X(939), A (1115),Z (1195), (1317);

Xsts*(1238), Ft*(1385),
tts*(1530), Qp(1675);

x (137), g(548), E(496);
p(750), a)(783), p(1020), K*(891).

As remarked above, there are three distinct symmetry
groups to be considered, namely, SU4/Z, , SU4/Z, , and
SU4, which are distinguished by the classes of repre-
sentation they use. Most of the possible models which
we now discuss have already been proposed. '

Case (i): SU4/Z4

Symmetry schemes based on the group SU4/Z4 use
only the class 0 representations and are the most
straightforward extension of the eightfold way of SU3.
The bosons must belong to one of the real representa-
tions, and as can be seen from Table II the simplest
choices are the 15 and the 20 for both pseudoscalar and
vector mesons. We eliminate the 20, since, as noted
above, there is no mass splitting among bosons in the
20 except in higher order. (Note also that if the vector
rnesons are gauge particles they necesssarily belong to
the 15.) In this scheme the 1 mesons can decay
strongly into two 0 mesons since the 15 is contained
in the product 15Qxl5 as indicated in Table V.

Table II shows the smallest representations for the
—,'+ baryons are 15 and 20, while the s+ baryon reso-
nances could belong to the 35. However, these assign-
ments are untenable if the mesons are to be in the 15
since neither 15Qx15 nor lSQx20 contains the 35 as can
be seen from Table V. However, both 15QxlS and
15Qx20 do contain the 45, making it the most rea, sonable
choice for the ~3+ resonances. We note that the most
straightforward generalization of the eightfold way
would be the following multiplet assignments:

0 mesons: 15
1 mesons: 15
~s+ baryons: 15
—,'+ resonances: 45

With these assignments several questions naturally
arise:

'"" A. H. Rosenfe1d et at. , Rev. Mod. Phys. 36, 977 (1964).

IV. POSSIBLE SU4 SYMMETRY SCHEMES

Let us now systematically discuss the classification
of the known elementary particles &n the various sym-
metry schemes that can be based on the SU4 algebra.
We restrict ourselves to the following particles whose
quantum numbers are established":
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(a) Where is the ninth X=O pseudoscalar meson?
Presumably the 960-MeV ex' resonance" is to be
identified with this state.

(b) Where is the octet of X=O -', + resonances in the
45? The only candidates" seem to be the I'i~(1660) and
the t~s*(1810).

(c) Where is the ninth is+ baryonin the 15? The only
candidate, " I's*(1405), seems to have the wrong parity.

(d) Why have none of the
~
X

~

= 1 states been found?
Such particles should be produced in pairs in pp anni-
hilation, for example. A rough application of the mass
sum rule (18) (with squared masses) in the case of the
pseudoscalar mesons, taking for M~ 960 MeV and for
M8 a mean mass of the SU3 octet gives %3=M~ 850
MeV. Such a low value of the mass would perhaps have
already permitted the detection of a pair of those
particles. At any rate this is a critical point of the SU4
theory and it gives a possibility of experimental tests.

Case (ii): SU4/Ss

As noted above the class 2 representations do not
contain self-conjugate particles so the bosons must still
be assigned to a class 0 representation, the simplest
one being the 15. The —',+ baryons can go in either the

64, the 70, or the 70 while the ss+ resonances can go in
the 50 or the 70. If the —',+ baryons are assigned to the
64, then the ss+ resonances cannot belong to the 70 or

7Q but can belong to the 50 in which case X=——,
' for

both the baryons and their resonances.
Evidently, any of these schemes involves unattrac-

tively large multiplets.

Case (iii): SUi

In schemes based on the full group SU4 the mesons
still can be assigned to the 15. The —',+ baryons can go
in the 20', 20', 36, 36, 60, 60, etc. , while the q+ reso-
nances can belong to the 20", 56, 60, 84', etc
Choosing the simplest assignments 20' or 20' for the
—',+ baryons leads to 20" or 6Q, respectively for the ss+

resonances. I.et us consider the former choice in detail,
since it is the most attractive one, for several reasons.
First, it gives the most economical generalization of
SU&, namely:

0 mesons: 15
1 rnesons: 15
—',+ baryons: 20'
ss+ resonances: 20".

With these assignments, the only new particle whose
production is not inhibited by X conservation (imply-
ing pair production) is the ninth pseudoscalar meson,
which has probably been found. [remark (a) above].

With regard to the masses, the only trouble comes
from the mesons, where the jX~ =1 triplets in the 15
could have a low mass Laround 850 MeV, as indicated
in Case (i)]. For the st+ baryons in the 20', there is no

mass sum rule, while for the -',+ resonances in the 20"
we have an equal spacing rule (see Sec. III); as in both
cases, the "ordinary" particles have X= ~, which is the
highest value in the supermultiplet, all the other par-
ticles could be very heavy, and thus have escaped. de-
tection, without contradicting a first-order mass
formula.

Another aspect of the models based on the full SU4
is that these are the only ones which can include the
quark modeiis of SUs (whatever the charge of the
quarks). The quarks being by definition the funda-
mental objects, it is natural to consider four of them,
with spin--,', belonging to the fundamental representa-
tion 4 (of class 1). As a consequence the mesons must
be contained in

4Qx4= 1Q+15 (cia,ss 0),
while the baryons and the resonances go into

4Qx4Qx4 =4Q+20'Q+20'Q+20" (class 3).

Clearly this implies the use of the full SU4 (for the
physical particles!) and gives precisely the above assign-
ment. It should be noted that it is not possible to build
an SU4jZ4 model with quarks, because a bound state
of four spin-~ quarks can only be a boson.

The same situation occurs—independently of the
quark hypothesis —when one tries to generalize the
current SU6 modeP' by combining SU4 with ordinary
spin in a SUs scheme: only the models starting from
the full SU4 can contain both bosons and. fermions, the
other ones contain only bosons. This is discussed in the
following section.

iVote added in proof We emph. asize the importance of
the new quantum number which distinguishes bosons
of class 0 and bosons of class 2. This new quantum num-
ber is real and is an eigenvalue of a Hermitian operator,
therefore it is an observable. Its value is +1 for bosons
of class 0, —1 for bosons of class 2. The latter therefore
can be produced only in pairs

V. INCLUSION OF ORDINARY SPIN:
EMBEDDING OF SU4 INTO SU8

It has been proposed recently, '~ with some success,
to enlarge the eightfold-way scheme by combining it
with the ordinary spin: the direct product SUsQXSUs
is then embedded into a group SUs. (We consider here
the static case only. ) This extension has met so far
neither full experimental confirmation nor theoretical
justification, but at any rate it must be taken at least as
a strong indication. Now, SU4 seems to be a reasonable
symmetry group for elementary particle physics. There-

"M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig
(unpublished)."F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); A. Pais, iNd. 13, 175 (1964); B. Sakita, Phys. Rev. 136,
31756 (1964);F. Giirsey, A. Pais, and L. A. Radicati, Phys. Rev.
Letters 13, 299 (1964).
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fore, it is very natural to generalize still further the
idea of spin-unitary spin independence and to embed
the direct product SU4QxSUs into SUs. It has been
shown by two of us' that this procedure has two
attractive virtues. I'irst it is possible to find a very
economical choice of representations which preserves all
the results of SUs and thus automatically gives several
experimental verifications; second, this procedure pro-
vides an a priori Ckscrimination between the three types of
SU4 schemes: the embedding is physically admissible in
the case of the full SU4, but not in the case of SU4/Zs
or SU4/Z4, because the resulting representations wouM
contain only bosons.

Let us begin with the second point; it is merely an
application to the case SUi„—+ SU„QxSUs of the branch-
ing rules for simple Lie groups given by Khippman. "
Let us label an irreducible representation {m}sof SUs
by a Weyl partition {m&,ms, . m&) consisting of k

non-negative, nonincreasing integers. We define then
the quantity Lcompare Eq. (2)j

C(m) =Q m;.

C(m') =c(m") . (21)

This representation can be reduced into irreducible
constituents according to

({m')„QX{m"})s„——gQ+C ~ ~ {m)s„,

where, for every ns in the decomposition,

C(m) =C(m') =C(m") .

Furthermore, the restriction of {m}s„to the subgroup
SU„QxSUs is given by

({m)s ) x ~ 2 0+C ' "({m'}Qx{m"}s)
fnfmr1

' J.-P. Antoine and D. Speiser, University of Louvain, 1965
(unpublished}."M. Whippman, University of Pennsylvania report, 1964
(unpublished) .

Note that the value of C(m) is not unique, as the
Weyl partition is not: all the partitions {mr+a, ms+a,
~ ms+a}, where a is any positive integer, define the
same representation of SVI„so that all the possible
values of C(m) differ by an integer multiple of k.
Clearly the class of the representation {m)s is given by'

C=)it+2)is+ . +(h —1))ts i=—C(m) modk (20)

C=0, 1, 2

where )t, =m,—m;+i are the affine coordinates (compo-
nents of the highest weight) used throughout this paper.

Whippman. 's rule now says: let {m'}„and {m")s be
irreducible representations of SU„and SV2, respec-
tively. Then the direct product {m')„Qx{m")sinduces
a representation into SU~ provided

with the same coefFicients C ".These are tabulated
by Coleman"

Applying this rule to the case n= 3 (SUs~ SUsQxSUs)
and using (20), we find the following reduction scheme:

(C) s ~ (C')sOX(C") ~

with
(C') s

—= (C) s mod 3, (C') s
——0, 1, 2

(C")s= (C), mod 2, (C')&——0, 1

(0) ~ (0)Qx(0), (1)~ (1)Qx(1), (2) ~ (2)Qx(0),

(3) ~ (0)Ox(1), (4) ~ (1)Ox(0), (5) ~ (2)Ox(1).

Remembering that class 0 of SV~ means integer spin,
class 1 half-integer spin, we see that class-0 representa-
tions of SUs (i.e., faithful representations of SUs/Zs)
can contain both bosons and fermions in a SU6 scheme.
This is precisely the case in the current model. "Note
that the same is true for any odd value of m.

On the other hand, for m=4, we get

(o) -d (4) (0)OX (0),
(1) and (5) ~ (1)Qx (1),
(2) and (6) ~ (2)Qx (0),
(3) and P) (3)Qx(1).

So that a model based on SU4/Z4 (class 0 only) or
SU,/Zs (class 0 and class 2) can contain only bosons;
ferrnions can be put in representations of class 1 or 3
only. The same property holds for any ever value of e.

We conclude that if we want to combine a SU4
internal symmetry group with SU2 into a SV8 scheme,
we are forced to use the full SV4 and thus the full SU8.
bosons will be assigned to even classes and fermioos
to odd classes.

We now proceed to the first point and consider a
specific model which preserves the results of SU6. We
start from the simplest assignment in SV4 given in
Sec. IV and obtain the following scheme:

(a) For the mesons Both 0 .and 1 mesons go in the
15 of SU, , whereas they have been assigned together
to the adjoint representation of SUs, the 35. These two
requirements can be combined if we choose the adjoint
representation 63 of SUs. (No other choice is possible
if the vector mesons are viewed as gauge particles. )
Indeed the latter representation reduces in the follow-

ing ways:

SU,QxSUs. 63~ (15,3)Q+(15,1)Q+(1,3),
SUs. 63 —+ 35Q+ 2X6Q+ 2X6Q+ 4X1.

Table II shows that the X=O part of this representa-
tion contains a vector nonet, a pseudoscalar nonet and
a vector SU3 singlet. Thus we have three vector mesons
with I=0, V=O: two SU, singlets [one in (15,3), the
other one in (1,3)j and a member of a SUs octet fin
(15,3)].Two of them can be identified with the oi(783)

"A. I. Coleman, Vppsala Vniversity, 1963 (unpublished).
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and the p(1020); for the third one, the only candidate
known so far is the (still dubious) ICErr resonance"
E(1415), for which the indications are J o=1 ('?)
and I=0('?). In fact, owing to the successive breakings
SU4 —+ SU3 —+ SU2, the physical states are mixtures of
these three pure SU4 states, and nothing can be said
about the masses, since we have a two-step mixing:
first, two SUs singlets (which can already mix) and a
member of an octet, this step corresponding to the X
breaking of SU4, then the usual octet-singlet mixing,
which corresponds to the Y breaking of SU3. Since we
have no idea of the relative strength of these two effects,
we cannot make any prediction of the masses. However,
these remarks lead us to a further possibility: the
existence of three degenerate vector mesons could per-
haps explain the curious discrepancy between pseudo-
scalar and. vector mesons in SUs (note that SUs gives
another explanation" ); for the pseudoscalar mesons,
the octet mass formula works quite well, indicating no
appreciable mixing of the rt with any singlet Las the
X(960)j, whereas it works very badly for the vector
mesons, indicating a large p-P mixing. Is it not possible
that the presence of a third vector meson, as suggested
by the present scheme, could be responsible for that
situation? It could indeed introduce a supplementary
large mixing effect (of the order of the SU4 —+SUs
breaking), whereas the singlet-octet mixing would be
smaller in both cases (of the order of the SUs-+SUs
breaking).

(b) For the rs+ baryons and the s+ resonances. The
simplest SU4 assignment here is 20' for the —',+ baryons
and 20" for the -',+ resonances (see Sec. IV). On the
other hand, both of them are assigned to the SUs 56
representation I (3,0,0,0,0) in the ); coordinatesf. The
simplest SU8 solution is now to put all of them in the
120 representation (3,0,0,0,0,0,0,0), whose reductions
are the following:

SU QxSU: 120 (20",4)Q+(20',2),
SUs. 120~ 56 Q+ 2X21 Q+ 3X6 Q+ &Xl.

In this case, no new SU4 supermultiplet is introduced
and the "ordinary" baryons and resonances (which here
have X= 4) just saturate the 56 representation" of
SU6. We have already shown in Sec. IV that this
assignment is compatible with a first-order SU4 mass
formula, if we suppose that all the particles with X&4
are very heavy. Furthermore, one has in SU8

120Qx120= 1Q+63Q+1232Q+13104,

so that the baryon-baryon-meson coupling is unique,
as was the case in SU6, all the consequences of this fact
P'/D ratio (generalized), form factors ratio, etc.) thus
remain valid here.

"This resonance is already quoted in Ref. 15, under the name
Ebs (1410); the indicated values of the quantum numbers come
from the review talk of D. C. Colley at the Birmingham Confer-
ence on Elementary Particles, April 1965.

(c) For the negative parity boryonic resononces .In
order to be complete, we consider these resonances too;
Pais," and Gyuk and. Tuan" have proposed to assign
them to the representations 20 and 70 of SUs. This
leads us in SUs to the representations 56 (0,0,1,0,0,0,0)
and 168(1,1,0,0,0,0,0), respectively, with the reductions:

SU,QxSUs. 56 ~ (4)4)Q+(20',2)

168 —+ (20',4)Q+ (20",2)Q+(20', 2)Q+ (4,2)

SUs.. 56 —+ 20Q+ 2X15Q+ 6

168 —+70Q+2X (15+21)Q+4X6Q+ 2X1.

This implies several assignments in SU4, but here also
the "ordinary" particles have the Inaximum value
X= 4 and saturate the 20 and the 70 of SUs, so that
nothing new is introduced by SUS as far as these
particles are concerned.

Pote added in proof In .this model a/I classes of the
governing groups (SU4, SUs) are used. This of course
would also be the case in SU3 and SU6 if quarks will

be found, but then one has the new multiplicative quan-
tum number e (=1't') of a very unattractive character
(non-Hermitian operator). It would seem likely that
this e too might become in turn an additive quantum
number which leads 6nally to a large group:

e ~ X~SU4(—+ SUs)

exactly as we had:

associate production —& I' ~SUs(—+ SUs),
charge symmetry ~ (Is) —& SU& (~ SU4) .

VI. SUMMARY

We have presented the most important mathematical
aspects of the group SU4 and derived the mass formula
for an arbitrary SU4 multiplet under the assumption
that the mass splitting transforms like a component of
the 15-dimensional adjoint representation. A systematic
discussion of the various possible symmetry schemes
was given and some of their defects were noted. In
particular, we have given two reasons why a model
based on the full SU4 should be the most reasonable
one, namely the possibility of containing a quark-model
of SU3 and the possibility of including the ordinary
spin to give an SU8 scheme, and we have sketched a
simple model. It should be emphasized however that
we have considered the group-theoretical point of view
only: No dynamical considerations have been included. ;
our purpose was mainly mathematical, since the physics
behind. the whole SU4 theory is still too speculative.
The basic ingredient, namely the existence of particles
that carry the new quantum number X, evidently is
the crucial question to be answerd experimentally. As
is well known, "to make rabbit stew one must erst
catch a rabbit. "

~ L P. Gyuk and S.F.Tuan, Phys. Rev. Letters 14, 121 (1965).
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1Vote added in proof. After completion of this work we
learned that the problem of the extension SU4 —+ SU8
was studied independently, but with different motiva-
tions and aims, by Gruber and Vitale" and by Iwao. '4

We thank Professor Vitale and Professor Iwao for hav-
ing kindly sent to us an unpublished report of their work. rnz,
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APPENDIX A

In this Appendig, we want to prove the theorem of
Sec. IIB which gives the reduction SU4 —+ SU3.

The first part of the theorem is merely the transcrip-
tion of Weyl's branching rule. ' The latter, adapted to
SU'4 (instead of U4), can be formulated as follows: Let
an irreducible representation of SU4 be labeled by the
Cartesian components of its highest weight (xi xs x3 $4),
with

to,

&O, A~+A~ J

r~&, a~+a~p

A;=x,—x~i (i= 1, 2, 3), positive integers. (A1)

%hen restricted to SU3, this representation is decom-
posed into all the representations of SU3 whose highest
weight (yi,ys,ys) satisfies the relation:

x&r& y&&rx2&ry2&r x3&ry3r&x4. (A2)

In this relation, the y s may take all values such that

)t;=y;—y~i (i=1, 2) is a positive integer.

Then, by definition

X(Xi,4)=—y4 ——yi+ys+ys. (A3)

Now for each fixed value of ys, say ys=xs+q, with
0~& q&&ms —xs ——As t (As+1) values), one has, independ-
ently of each other,

«r&y, &r x
so that:

As q&)ti yl ys&A1+As —
q L(Ai+1) values)

and
yar&x

so that:

q~~ 4 ys ys ~&As+q f(As+ 1) values).

In the tartan-Stiefel diagram of SU3, these inequalities
dedne a parallelogram with edges of length A~, A3

~ B. Gruber and B.Vitale, Nuovo Cimeno 5?, 1805 (1965), and
to be published."S.Iwao, Ann. Phys. (N. Y.) (to be published).

FIG. 4. The general aspect of a decomposition SU4 —+SU3.
The (g+1)th parallelogram starts at the point (As —g, g), which
has X=XO.

X .=—y4
———,'(A, +2As+3As),

Xmin= yi= s (3Ai+2As+As) ~

(A4)

X, (X; ) corresponds to the weight $yi, y»ys, y&)

parallel to the axes Xi, Xs, respectively (see Fig. 4). This
proves the first part of the theorem.

For proving the second part, we use again the co-
ordinates y;, and we remark that, by (A3):

(i) a step in the )ti direction Ly„y„y,)~ Py, +1,y, , y3)
increases X by f. ;

(ii) a step in the)ts direction, Lyt, ys, ys) ~Lyi, y„y,—1)
decreases X by 1;

(iii) a step horizontally, Lyi, yst, ys) ~Lyi+1, y„y,—1)
does not change X;

(iv) a step downwards, Lyi, ys, ys) —+ Pyi, ys+1, ys)
increases X by 1. From this it follows that in each
parallelogram the horizontal lines have constant X and
are ordered with X sncreasing by unit steps upwards,
while the left-hand corners of the successive parallelo-
grams are ordered with X increasing by unit steps
downwards (Fig. 4). Consequently, all the representa-
tions will be ordered with X increasing by unit steps
upwards if we draw the parallelograms in the reverse
order, in such a way that two points with the same value
of X fall on the same horizontal line. This is the "inter-
lacing" described in the text. Furthermore, the extreme
values of X are
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([y4,ys, ys,yi]) which gives the representation (Ai, A&)

((hs, i4)), obtained for q=hs (q=0) (see Fig. 4). These
considerations allow us to compute the value of X,
for any representation (Xi,)ts), in the parallelogram
starting at ()tl', Xs') —= (As—q, q); this gives successively

x()t„)~,)=x(~,—q, q)+ ()~,—)~,')—(~,—),'),
x(~,—q, q) =x(~„0)+q,

X(i4,0)=X(As,As)+As
=—s (3h.l+ 2h g+As)+ As,

and thus

x(x„),)= (x,—x,)——;(x,'—),')——;(i1,—x,).
As an example of the whole construction, Fig. 2 gives
the decomposition of (3,1,2).

APPENDIX 3
This Appendix contains a geometrical proof of the

theorem on Kronecker products stated in Sec.III.Such a
proof has been given by Ginibre, "for any simple group,
but it becomes much simpler if we use the language of
Ref. 4.

We shall limit ourself to the case Al( SUl+l), the
other cases would be analogous. We have to prove that
the Kronecker product

where g z means the sum on all the permutations of the

(3+1) coordinates. Putting these expressions into (82),
we get

x.d"XD' '= (EP P[1,0," o, —1))[y yl+l)
+Zyl ''' yl+l)

It remains to evaluate the number of times that X~ ~'~

occurs in the right-hand side. The second term just
gives l times XD&".The 6rst term can give another X~('&

whenever

(P[1,0, ,0, —1])[y.. ~ .yl~l] =P'[yl, ~ ~,yl+i],

when I" is some permutation of the coordinates. This
term must be added if I" is even and subtracted if I"
is odd. We have thus

a ' ''+1'' '+1''')I yl'''y~"''y&'''yl+l)
= [y ' ' 'yd=1' ' ' y +1' ' 'ywi)
=P Lyl' ' 'yl l).

If we take the upper sign, the last equality implies

y,+1)y l, i.e., y; l—y, &1
or

D,s;QXD =Q,Q+D; (81) y&+»yI, —1, i.e., y&
—yI,+&&1

of the adjoiot representation D,d; of A& by a given
representation. D(Al, hs, Al) contains (i—m) times D
itself, where m is the number of vanishing A s. The
decomposition of the direct product (81) is given as"

x,s;XD l'& =p,Q+X;&", (82)

where X,q; is the character of D,s;, and XD&" (X ") is
the dominant vector of the characteristic of D (D;).
Now, in Cartesian coordinates [(1+1)—dimensional

space), we have'

XD [yl ys' ' 'yl+1]
with

l+1
Z y'=o

y,—y;+i=A;+1~&1,A; integer.

x,g;=Q P[1,0, 0, —1]+i[0, ~,0],

"J.Ginibre, J. Math. Phys. 4, 720 (1963).

which is impossible in both cases. We take now the
lower sign, first with k) i+1. We have then

or
y~»y; —1, i.e., y;—y~& &1

y&+1)ys i, i.e., yj i—y&&1

which is impossible too. Thus the only possible con-
tribution comes from k= i+1:

[yl ' ' ' y —1, yet+ 1, ' ' 'yl~l) =P [yl

which implies

1 e.)

y,—1&yet+1,
1 &~ y,—y~i= A;+1&2,

Since there are m indices i with A;=0, there will be m

terms X~&'&, each of them with a minus sign, as I"
is a single transposition. This proves the theorem.


