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Dynamical Inelasticity and High-Energy p-p Scattering
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A recently proposed method for calculating partial-wave inelasticity dynamically is applied to the high-
energy p-p scattering. The two nucleons are considered spinless. Their left-hand-cut contribution is calcu-
lated by making a 8-function approximation of the absorptive part in the crossed channel. Partial waves
with l(l, are taken to be completely imaginary and those with l &l, are considered to be given by the Born
term. Certain interesting features of the present model are discussed.

I. INTRODUCTION

A METHOD for calculating partial-wave inelas-
ticity p& ——e 'I ", where 8&is the phase shift, has

has been proposed recently. ' The basic assumption of
the method is that above the inelastic threshold a large
number of reaction channels open so that the partial-
wave amplitude is essentially imaginary in the inelastic
region. Correspondingly, Reb&= m-, where e is an
integer, above the inelastic threshold. In this paper, we

apply the above method to high-energy p-p scatter-
ing. '—4 The problem of explaining P-P scattering at high
energies has been considered by many authors. ' "We
assume that the two protons are spinless and that their
left-hand-cut contribution is given by a 6-function
approximation of the absorptive part in the ÃX channel.
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Partial waves with orbital angular momentum /&1, are
taken to be imaginary (i.e., they are diffraction
scattered), and those with /)i, are considered to be
given by the Born term and therefore are real.

In Sec. II the present model is formulated. In Sec. III
the results of calculation are given. In Sec. IV certain
features of the model are discussed and compared with
other models.

II. FORMULATION OF THE MODEL

We first recall here some of the basic equations which
are needed for calculating the inelasticity g& dynami-
cally. The physical partial-wave amplitude is given by

A ~
——(e""—1)/2ip = (ri~e" a' s' —1)/2ip & (1)

where p= $v/(v+1)]'i' and v is the square of the c.m.
energy. '4 A function 0& is defined in the following way:

v'+'t' " Iml((v')dv'

. v«+rls(v~ —v)
(2)

where v; is the inelastic threshold. If now a new partial-
wave amplitude a& is constructed by writing

1+2ipa( ——e
—""L1+2ipA rj,

then a~ can be expressed as

ar ——(e" ~ —1)/2ip, where cr~ ——3~—er. (4)

Since Imb& ——Imo&, n& is real throughout the physical
region (v)0) and a&, therefore, always obeys elastic
unitarity. For v) v, , we can write 8&

——Dr+i Im8&, so
ths, t from Eq. (2),

A((v) 1 " Im8((v')dv'
=—I'

vt+1(s ~ vii+1/s(vI v)

Equation (5) can be inverted by using the following
boundary conditions':

(i) Imb((v)=0 at v=v;,
(ii) I m&3( )v/v+' 'ivanishes when v —+co,

(iii) 8~( )v/+v' 'ibehaves as a constant when v —+ 0.

Condition (i) follows from the fact that at the inelastic
threshold only the elastic channel is open and no

'4 The proton mass is taken as unity. Also, c=A=1.
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made, say,
A, (s,t') =~qf (t' m—,2), (17)

)0
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Fio. 1. The normalized differential elastic cross section I is
plotted against the invariant momentum transfer —t for p0 ——11
GeV/c. The experimental points are: o Foley et al. ,' Q Diddens
et al. ,

2 Cocconi et al.4

From Eq. (13) we have

(p p.)1/2pl/2

Impel (v) = — I'

(p p.)1/2 pl/2

P

Reb, (p')dv'

„v'"'(v' —v;) '"(v' —v)

n/(v') d v'

(14)
peal/2(pi p.)1/2(pi p)

Instead of Eq. (6), Eq. (14) can now be used to calculate
Impel (v).

To obtain 62/(v), let us first consider a, fixed energy
dispersion relation:

«= (e'* ' 1)/22t/—= /p. (19)

Equating Eq. (19) with aP, we thus obtain

n/(v) = Py/v'/'(v+1)'/')Q/(1+mop/2v). (20)

Equation (20) is essentially the asymptotic value of n&

Inserting Eq. (20) into Eq. (14) and making the
approximation that Re8/=npr and n=0 (i.e., the real
parts of the phase shifts vanish asymptotically), we

obtain
(p p.)1/2pl/2

Im5/(p) =

Q/(1+mp'/2v')d v'

(21)
. v'(v'+1)"'(v'- v/)'"(v' —v)

then Eq. (16) gives the following Born amplitude

A P(p) = (y/v)Q/(1+mo2/2v) l even,
=0 l odd. (18)

We can take, as an approximation, Eq. (18) to be also
the Born term of the purely elastic amplitude a&, that
is, we are approximating the left-hand-cut contribution
of az by that of Az.

At high energy (v large) the amplitude al, which
obeys elastic unitarity throughout the physical region,
can be considered to approach its Born term, " uz

=(y/v)Q/(1+mp'/2p). Again, for large v, the phase
shift az can be considered small so that

1
A(s, cose)=— To calculate the differential cross section we have

7

p~ $ —3 %' 4@2 I —I assumed that all partial waves up to l &3, are completely
imaginary, i.e.,

Here, s=4(v+1) =square of c.m. energy, t= —2v

X(1—cose), u= —2v(1+cosg), and 0=c.m. scattering
angle; 2p, is the mass of the lowest intermediate state in
t and u channels. In Eq. (15), A, (s,t') is related through
crossing symmetry to the absorptive part in the t
channel, where t' is the square of c.m. energy and s is the
momentum transfer. Similarly, A„(s,u') is related to
the absorptive part in the n channel, where I' is the
square of c.m. energy and s is the momentum transfer.
Since the amplitude A (s, cos8) will be an even function
of cose for identical spinless particles, therefore, by
interchanging t and u in Eq. (15), we get A ( 6t')s

=A (s,t'). The invariant partial-wave amplitude which
we obtain now from Eq. (15) is

1

A 1(v) =— d coseE/(cost/)A (s, cose)
2 -1

A 1
——i(1—)//)/2)p for 1&1,. (22)

For /&l, the partial waves are approximated by the
corresponding Born term, i.e.,

z=az
= (y/v)Q/(1+mp'/2p) for 1)l, and l even. (23)

If we write the differential cross section as

d~/de= ~y(0) ~',
then

2 00

f(0) = P (21+1)P/(cose)A/(v)
(p+1)'/' l=o 2 "
4 za (1—

n/)
i P (21+1)P/(cose)

s z=o 2, ~ ~ ~ 2p

+ g (21+1)P/(cost/)A P . (25)
z=z~+2 ~ ~ ~

I:1+(—1)')
A, (s,t')Qi(1+—dC (16).

2p277P 4' 2'In potential scattering, this is known to be true; see, for
example, R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,

If a simple b-function approximation for A ( t6')sis 766 (t962).
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FIG. 2. Im bg as a function of / and the impact parameter b.
The crosses indicate the calculated values. The dashed curve
represents Inib(b) as given by Serber (Ref. 5).

It is to be noticed that the amplitude f(8) has a real part
coming from the partial waves with /& 3,. The real part
can be exactly calculated by using Eq. (23) and the
formula

l=n+2, n+4 ~ ~ ~

(21+1)Pi(x)ei(s)

for e even. This formula is obtained by using Heine's
expansion for (s—x) ' and Christoffel's second summa-

tion formula. "
III. RESULTS OF CALCULATIOHS

There are four parameters in the present model,
namely, mo, v;, p, and l,. The imaginary parts of the
phase shifts have been calculated numerically from
Eq. (21) using the Brown University IBM 7070
computer. It has been found that for reasonable values
of mo and u;, 7 is negative. This means that the force
or the left-hand-cut contribution is repulsive. Calcula-
tion of Imb~ shows that with increasing / it decreases.
This is physically expected, since partial waves with
large 3 are not as strongly absorbed as those with small
l. We have also found that after a certain value of l,

"Higher Transcendental Functions, edited by A. Eredlyi
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1,
p. 102.

which we call l„ Immi as calculated from Eq. (21) be-
comes negative. This implies that for l)l the partial
waves have to be purely elastic. The results of our calcu-
lation for p-p scattering at proton incident momentum
p,=11 GeV/c are given in Figs. 1 and 2. The values of
the parameters are' ma=02' p 1 25 p 15 and
l =30. In I'ig. 1, we have plotted the normalized cross
section X against the momentum transfer —t. The cross
section X is defined by X=(do/dQ), /(ko. r/47r)',
where O.p is taken as 40 mb. Some of the experimental
results' 4 are included for the purpose of comparison. "
It will be seen that the calculated angular distribution
has a diGraction peak, a sharp fall with increasing
momentum transfer and a Battening of the cross section
at large momentum transfer. These are the character-
istic features of high-energy p-p scattering for given
incident momentum. However, the theoretical cross
sections are larger by two orders of magnitude than the
experimental cross sections for wide angle scattering. '
Our calculated values for o,i, O.i,t, and 0,&/o.~,t are
respectively 11.26 mb, 36.76 mb, and 0.306; these are
to be compared with the corresponding experimental
values 11 mb, 40 mb, and 0.28, respectively. ' Of the
total 11.26-mb elastic cross section, the amount con-
tributed by the real part of the amplitude is only 0.08
mb. We Gnd the ratio of the real part to the imaginary
part of the amplitude in the forward direction to be
—0.250. This is in agreement both in sign and in
magnitude with the experimental results. ' " The
imaginary part of the amplitude is found to be positive
throughout the whole momentum-transfer region, while
the real part is observed to change sign a number of
times. The oscillatory character of the angular distribu-
tion at large —t is due to these changes of sign of the
real part. In Fig. 2 Immi is plotted against l and also
against the impact parameter b=(l+-', )/k. For the
purpose of comparison, Imb(b) as given by Serberts is
also plotted. We have also calculated the angular dis-
tribution for ps ——16 GeV/c. It is found to be very
similar in magnitude to that for ps

——11 GeV/c. On
the other hand, experimentally' the wide-angle cross
sections for 16 GeV/c are smaller by a factor of 10 than
those for 11 GeV/c. This indicates that the present
model is inadequate to explain the strong energy de-
pendence of high-energy p-p scattering.

~8 Our value of X in the forward direction is &1, because the
experimental total cross section 0.z is larger than the calculated
total cross section.
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IV. DISCUSSIOH

One important point the present model illustrates is
that physically meaningful inelasticities can be calcu-
lated from the left-hand-cut contribution. " It is
interesting to compare this with the eikonal approxima-
tion where inelasticities are obtained by using purely
imaginary potential. " The model indicates that the
scattering amplitude is not purely imaginary (we recall
that Immi becomes negative after a certain value of /),
but has a real part. The real part can be appreciable for
all values of —t. It has both the right sign and the right
magnitude in the forward direction. The theoretically
predicted angular distribution has the qualitative
features of the experimentally observed distribution,
namely, a forward diffraction peak, a sharp fall, and a
levelling off at wide angles. However the present model
is very inadequate to explain the strong energy depend-
ence of high-energy p-p scattering. ' This probably
shows that the approximation made to obtain the left-
hand cut contribution, viz. , replacing the absorptive
part in crossed-channel by a 8 function, is too simple-
minded. It will be interesting to see the effect of
improved left-hand-cut contributions. The fact that
2 ~~ in the present model is the same as the erst Born ap-
proximation of an energy-dependent repulsive Yukawa
potential, may indicate that at high energies the force is

perhaps dominantly repulsive.
It is instructive to compare the present model with

various other models which have been suggested to
explain high-energy p-p scattering. In the diffraction
scattering models, ' " the scattering amplitude is con-
sidered purely imaginary. The partial-wave inelasticities
are calculated by assuming certain potential or by using
some other phenomenological description. '4 In the
statistical model, ""one only attempts to explain the
wide angle scattering by assuming this to be due to the
decay of a compound system. The small angle scattering
is considered due to peripheral processes and therefore,
beyond the scope of this model. In nonlocal field-

theoretic model, "one simply calculates the scattering
amplitude corresponding to some Feynman diagrams
and modi6es them by suitable form factors. The scatter-
ing amplitude is completely real in this model and as
such the diffraction region is regarded outside the scope

'2 In contrast, in Ref. 1 it was found that the usual one-pole and
two-pole approximations of the left-hand cut do not give physically
acceptable inelasticities at high energy."R.Omnes, Phys. Rev. 137, 3653 (1965) has shown how an
imaginary optical potential can be found which, when used in
eikonal approximation, its a given scattering amplitude at high
energy.

'40ptical-model calculation with a real part of the potential
has also been done. See Ref. 6.

of the model. In Regge pole models, " one tries to
explain the diffraction region in terms of the dominance
of a few Regge poles. In the large momentum transfer
region, contributions from many Regge poles and also
from Regge cuts are thought to be important and
therefore, cannot be described in a simple manner.

In conclusion, we would like to emphasize the
dynamical nature of the present model and to point out
that in a model of this type, one has to explain in a
uni6ed manner the small-angle as well as the wide-
angle scattering.

The author wishes to thank Professor D. Feldman
and Dr. K. Kang for their interest.

lVote added ie proof. The following two remarks are
worth making:

(i) In the context of this paper, by v, large what has
been meant is that, above the value v, , we can physically
expect a large number of inelastic channels to be open;
partial waves with small l can then be thought of as
diffraction scattered and should be essentially imagi-
nary (i.e., Reb&=0) above v„. The value v, = 1.5m'
(m=nucleon mass) corresponds to s= 10m' and c.m.
energy 3 GeV. This is appreciably high above the p-p
elastic threshold and we can expect a large number of
inelastic channels open at this energy.

(ii) 1mb&(v) as given by Eq. (21) has not been shown
to be consistent with condition (12). In fact, it is not.
The reason is that Im8&(v) as given by (21) is an approxi-
mate result, while (12) will only be satisfied by the
exact result. Now, derivation of Eq. (21) is based on the
following two approximations:

(a) Reb((v)=0 for v) v;,

(b) n&(v) is given by Eq. (20) .

Arguments for the first approximation are given in our
previous remark. As for (b) this approximation is based
on two arguments: first, for v large ni(v) is expected to
be small, and second, n~(v) is expected to approach its
Born term nP (v). Thus, we can consider Eq. (21) to be
a reasonable approximation. However, if condition (12)
is not satisfied, then the function 8~(v)/(v —v )'~'v'~' cor-
responding to Eq. (21) does not have the right threshold
behavior. What this means is that Eq. (21) cannot be
considered reasonable when we are using it near
threshold, but it is a sensible approximation when we are
at high energy. For po ——11 GeV/c, v= 5.38m' and we are
in a region where it should be valid. It is worth noting
that if we want to calculate Im8&(v) at low energy, we
should use Eq. (7) in preference to Eq. (13), since the
former manifestly preserves threshold behavior.


