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Meson Exchange Effects on the Electromagnetic Structure of the Deuteron
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In a recent paper, Adler and Drell reported. on a calculated effect of the pal- mesonic exchange current on the
electromagnetic interactions of the deuteron. The present paper describes more fully the method of calcula-
tion used and discusses the confrontation of the results with more recent large-angle elastic electron-deuteron
scattering experiments. The most striking aspect is that at 9' values of 6, '/, and 8 (iermi) ' the recent data
are in excellent agreement with the present theory, but the magnetic scattering does not agree with the pre-
dictions of the older and well-studied impulse approximation.

INTRODUCTION

'HERE are a number of reasons for studying the
electromagnetic structure of the deuteron in

detail. The two that we are concerned with in this paper
are:

(1) The static charge, quadrupole moment, and mag
netic moment are both calculable and experimentally
measurable, which allows us to test rather directly our
theoretical understanding of the deuteron. '

(2) Given a model of the deuteron, such as the non-
relativistic wave functions we will use in this paper, one
can calculate expressions for elastic electron-deuteron
(e-d) scattering in terms of the nucleon form factors
and the deuteron structure. The neutron form factor
then can be extracted from elastic e-d scattering meas-
urements. ' Since the simplest target containing neu-
trons is deuterium, this is therefore probably the most
direct way to investigate neutron structure. (See
Refs. 3 and 4 however for a discussion of inelastic e-d

scattering. )

We will show here that mesonic exchange currents
appear to be capable of explaining a small but dis-
turbing 2% discrepancy between experimental and
previous theoretical values of the deuteron magnetic
moment, and can remove a rather large discrepancy
between recent experimental data and theory on elastic
e-4 magnetic or back-scattering. ' The effect on forward
or charge scattering and on the analysis of neutron
structure appears to be quite small. Thus the over-all
effect of including the exchange currents we discuss is
to ameliorate several difFiculties connected with the
deuteron magnetic structure while introducing no new
ones.

Lastly, we would like to emphasize that the mesonic
exchange effects discussed here constitute one par-
ticularly simple type of relativistic effect. Additional
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relativistic corrections to the current operator~ ' can
also be expected to play an interesting role, especially
in connection with the neutron charge structure; purely
kinematical corrections are believed to be small. ~

I. A REVIEW OF THE IMPULSE
APPROXIMATION

A number of authors have studied the impulse ap-
proximation for the elastic scattering of relativistic
electrons from deuterons using a nonrelativistic wave
function to describe the deuteron structure. ' ~'0 The
basis of the impulse approximation is that one assumes
that the electron interacts with the individual nucleons
in the deuteron, and that the interaction can be accu-
rately described using free nucleon form factors. The
theoretical treatments are in substantial agreement:
the only points not totally agreed upon are rather small
kinematical relativistic corrections' and the most ap-
propriate frame in which to describe the deuteron by a
nonrelativistic wave function —the laboratory frame of
the target deuteron or the Breit frame. However, since
a nonrelativistic wave function is used to describe the
deuteron structure, we do not believe that agreement on
these minor points is in principle important and we will

therefore consider the impulse approximation, in terms
of a nonrelativistic deuteron. wave function, as basically
understood.

Recent attempts to treat the deuteron using a rela-
tivistic wave function or dispersion relations with ap-
proximate unitarity"" constitute an important and

very interesting alternative approach to the problem.
Unfortunately quantitative understanding of the dis-
persion relation approach is still somewhat lacking as a
result of the large number of relevant diagrams. Thus,
little is really known about intrinsically relativistic
"corrections, " if indeed the difference between rela-
tivistic results and nonrelativistic results can be con-
sidered as corrections. Thus, in this paper we will limit
ourselves to a description of the deuteron in terms of a

7 R. J. Adler, thesis, Stanford University, 1965 (unpublished).
' H. F. Jones, Nuovo Cimento 26, 4622 (1962).
s R. J. Adler and E. F. Erickson, Nuovo Cimento (to be pub-

lished).I V. Z. Jankus, Phys. Rev. 102, 1586 (1956).
"J.abuttal, Nuovo Cimento 29, 841 (1963)."F.Gross, Phys. Rev. 134, 8405 (1964).
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where the factor A~ can be identified as the deuteron
four-vector electromagnetic current. This current con-
tains 3 form factors and is given to order q' by

A'= Xit N Gird G—qe (S]s/g8) )(1+q'/4M&') jX

A'= X,t—f(i/2Me)e' "q"a (s)"Gseef&;,
(1.2)

FIG. 1. Impulse approximation graph.

wave function. In another paper in preparation' we
discuss, following Cutl~osky" and Jones, ' a plausible
phenomenological modification of the standard non-
relativistic wave function results to include relativistic
effects.

The exchange current that we discuss in the next
section can therefore be considered as one of a number
of relativistic effects which should be understood before
the over-all elastic e-d scattering problem can be con-
sidered understood.

The impulse approximation (i.a.) involves the study
of a p-ray interacting with the individual nucleons in
the deuteron, and we can picture the situation dia-
grammatically as in Fig. 1.We have used a calculational
method analogous to the familiar Feynman graphic
technique of quantum electrodynamics with the follow-

ing assumptions and approximations:

(1) The effect of binding in the deuteron is taken
account of by using a deuteron bound-state wave func-
tion for the incoming and outgoing neutron and proton
in place of Dirac plane-wave spinors. The same will be
done when we consider exchange currents in the next
section. Incidentally, one may treat the deuteron center-
of-mass coordinates completely relativistically and the
nonrelativistic nature of the wave function only enters
when the relative neutron-proton coordinates are
considered.

(2) As a result of using a nonrelativistic deuteron
vrave function we have chosen to use Pauli spinors.

(3) The bound-nucleon electromagnetic form factors
are assumed to be the same as the free-nucleon form
factors.

(4) The target deuteron is assumed to be at rest in
the lab frame, where it is described by a nonrelativistic
wave function. (As noted above, it is difficult to say
whether the lab frame or the Breit frame is more ap-
propriate. ) We also assume that the dueteron recoil
momentum is quite small compared to its mass, i.e.,
low momentum transfer. Only second-order terms in the
momentum transfer q are retained in the cross section.

The result of our impulse approximation analysis is
an S-matrix element of the form,

5'. .= ie (m Me/keke Qe ) (277)
(1 1)

X&4(Q'+k' —Q—)kAj„(1 /)q,

"R.E. Cutkosky, in 1960 Annual Conference on High Energy
Physics (Interscience Publishers, Inc. , New York, 1960).

Gz.=Gas (ee'+ie')j o(qy/2)dy,

2w (I—w/& 8)j s(qy/2)dy,

G3fg= Gllf S L(&'—-'.w') jo(qy/2) (1.4)

+w/&2(N'+w'/&2)j s(qy/2) jdy

+lG«w'Li o(qy/2)+i (qy/2) 3~y

These expressions contain q which means j tl
~

and should
be considered reliable only for q((M&, in particular,
small corrections to these quantities such as obtained in
Ref. (7) are not considered sufficiently reliable to
include here.

I.et us lastly note that in the limit of zero momentum
transfer, the deuteron form factors in (1.3) correspond
to the static electric and magnetic moments of the
deuteron as follows:

Gaa (0) = 1, (charge)

G~e(0)=i.= (i e+i.) sI"~(l .+l . z), — —
ma netic moment (1.5)( g )

6Gon(q')-
lim =Q. (quadrupole moment)

W2q'

"V. Glazer and B. Jaksic, Nuovo Ciinento 5, 1197 (1957).

where the notation follows Refs. (5) and (7): the x are
pairs of Pauli spinors in the triplet state, S~2 is the tensor
operator familiar from nuclear physics, and a.~q~" is the
isoscalar Pauli spin matrix, o.„"+o-~", and repeated
indices are summed over. Since the deuteron has spin 1,
it can only have 3 independent form factors so the
current (1.2) must actually be general if the functions
G~d, G@d, and G~g are considered arbitrary. '4 The cross
section which results from the current (1.2) is

do ted0

dQ EdQ st, ii

2 g'

L2 tan'(0/2)+1]Gsre' . (1.3)
3 Mg'

In the special case of the impulse approximation, the
deuteron G functions appearing in (1.2) can be explicitly
written in terms of the two nucleon isoscalar form
factors Ggs and G~B and integrals over the deuteron
S and D radial wave functions, u and ze, as' ' follows,
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The theoretical expression for the magnetic moment is
derived from (1.4) and is model-independent except for
P'~, the percent of D wave in the deuteron, which we
tak.e to be"

w'dy =0.07.
STEM

With this value of P~, the value of p~ is 0.840 whereas
the experimental value is 0.857. This small discrepancy
is nevertheless considered rather serious since one must
reduce PD to 0.04 to remove it, in conflict with much
analysis of rc-p scattering data. ' We will show in the next
section that it may be explainable in terms of mesonic
exchange effects, and that this explanation is consistent
with recent large angle e-d scattering experiments at
large q' values.

II. THE 6~ EXCHANGE CURRENT

The results of the impulse approximation which we
discussed in Sec. I have been found to be reasonably
consistent and useful for the purpose of extracting the
neutron form factors from elastic e-d scattering measure-
ments at low q' values; however several difficulties do
occur. Specifically these are:

(1) The scattering data indicate that the neutron
electric form factor G&„ is very small and consistent
with zero up to q'—10 (fermi) '," whereas the well-
established neutron-electron interaction (as discussed

by Foldy'r) indicates that Gz„has a positive slope of
about 0.02 (fermi)+' at q'=0. Taken together these
results imply a surprisingly rapid curvature of Gz„at
small q'. '

(2) The theoretical value of the deuteron magnetic
moment as discussed in section I (0.840 nm) differs from
the experimental value (0.857 nm) by about 2%.' ' This
seemingly small discrepancy is disturbing because the
magnetic moment is a static quantity and is model-
independent except for P~, the amount of D wave
admixture.

(3) Recent large-angle (or magnetic) e-d scattering
experiments seem to be in rather poor agreement with
the predictions of the impulse approximation. In fact
at q' above 6 (fermi) s there appears to be a, factor of
two discrepancy in the preliminary results of Buchanan
et al.' We will discuss these difficulties in detail in the
next section: they constitute a motivation to study non-

impulse contributions to elastic e-d scattering.

Let us limit ourselves at the start to the simplest and
lightest "exchange currents. "By exchange currents we
will mean, in this paper, those processes which do not
involve the interaction of the p ray with the individual

"R. Wilson, The flrlcleoe ENcleon Iat-eracfcoe (Oxford Uni-
versity Press, New York, 1964).' D. Benaksas, D. J. Drickey, and D. Frerejacque, Phys. Rev.
Letters 13, 353 (1964).' L. L. Foldy, Rev. Mod. Phys. 30. 471 (1958).

FIG. 2. General exchange current graph.

dressed neutron or proton, but with the two-nucleon
system. For simplicity we will consider only single pions
or pionic resonances being exchanged by the neutron
and proton as pictured on the right of Fig. 2.

It has already been pointed out by several authors,
recently by Gourdin, " that the lightest pionic system
which can occur in Fig. 2 is not 2 but 3 pions. Indeed no
even number of pions can occur. The argument leading
to this conclusion is simple and for completeness we will

repeat it here. In Fig. 2 we see that the pionic system
must have isospin I=O since the deuteron enters and
emerges from the interaction with I=O. Thus the
G parity of the pionic system is

G=.'-»C=C. (2 1)

so n must be odd and therefore at least 3. One thus
arrives at the result that the lightest and simplest
exchange diagram is that of Fig. 3, as also discussed by
Qi oul dlIl.

To estimate the contribution of Fig. 3 we have
assumed that the 2-pion system which lands on one
nucleon can be approximated by the p-resonances' Thus
we investigate the last diagram in Fig. 3.

This exchange current has the attractive and im-

portant virtue that the pry coupling can be directly
observed experimentally in high-energy 2-pion periph-
eral photoproduction as well as in the direct measure-
ment of the decay width for p -+ s+p. The decay width
of p into s.+y is at present provisionally estimated to be
about 0.5 MeV."This value is inferred from the energy

Fm, 3. pm' exchange current graph.

re M. Gourdin, Nuovo Cimento 28, 2097 (1963)."J.J. Sakurai, Ineuriunce PrinczPles und E/ementury Particles
(Princeton University Press, Princeton, New Jersey, 1964).

I) This assumption is also made by Y. Fujii and M, Kawagachi,
Progr. Theoret. Phys. (Kyoto) 26, 519 (1961).

"S.Berman and S. Drell, Phys. Rev. 133, 3791 (1964),

Any pionic system is an eigenstate of G parity, '9 in
general G= (—1)", and it must join to the p ray which
has C= —1. Thus from (2.1)

(2.2)
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k"=(s' I )

p,",

T = MOMENTUM q
POL AR I Z AT IO N 8

m = MOMENTUM P

p = MOMENTUM I

POLARIZATION X

X =TRIPLET PAULI
2 NUCLEON

= (Q' Q ) WAVE FUNCTION

a—1, b/a 4.—7. (2-pole fit) . (2 6)

The remaining vertex in Fig. 3, the p~y vertex itself,
has the general unique and gauge invariant form

fit, the values of u and b tend to be about twice the
above values4:

Fro. 4. Feynman diagram for pm exchange current.
2;= (g p „/2me)e p„sF ep„(r)rr/()x');

ge r'/4ir —1/50, (2.7)

dependence of forward p' photoproduction from hy-
drogen in the 2- to 3-BeV energy region, which indicates
that di6raction production is not the whole story. With
neglect of final-state absorption corrections (which
would increase the coupling strength) this estimate is
arrived at by assigning the energy-dependent part of the

p photoproduction amplitude to a one-pion exchange
graph. Thus we do not invent a new process. We are
invoking one which is already believed to exist,""and
computing its role in the e-d cross section.

'Ihe p7r-d over-all vertex in Fig. 3 will be the product
of a ~-N and a p-N vertex. For the ~-N vertex we use
the usual nonrelativistic reduction of the pseudoscalar
meson-nucleon vertex, "

(iG/2M) Xgt ((r y) X,+0(P'); G'/4z. —14, (2.3)

where p is the 3-momentum transfer to the nucleon"
and the g are nucleon Pauli spinors. The restriction to
small momentum transfers explicit in (2.3) will be
satisfied in the case of the deuteron since, as can be
seen intuitively, the momentum-space wave function
has a width of the order of —,

' (fermi) '«M, and we will

restrict our analysis to external momentum transfers
of lql«M.

Ihe p-N vertex will be assumed to have the same form
as the general p-N vertex but with "point" coupling
constants a=Gzv(0) = z, b=Gsry(0) =2.35. This is
equivalent to assuming that the p-resonance propagator
nearly dominates the q' dependence of the nucleon
isovector form factor. The nonrelativistic limit of this
interaction vertex is then a four vector "current" with
components given by'

XjtI"X;=aX~tX;, (0th component)

Xg'I'X; = Xgt((a (P'/2M) b(i/2M) sr "Pa—"jX, .

(space component) (2.4)

where I" is the sum of the nucleon three-momenta
before and after interaction, and the l& is the three-
momentum transfer to the nucleon. The constants a
and b in (2.4) are simply related to the static values of
the nucleon isovector form factors by'

a~F (0) =0 5, b/a=G44v (0)/Fiv(0) =4.7. (2.5)

If the q dependence is considered to occur from a 2-pole

» J. J. Szymanski et a/. , Bull. Am. Phys. Soc. 9, 408 (1964).

where the absolute value of the dimensionless constant
gp p corresponds to a decay width of -', MeV as estimated
in Ref. 21, e p, q is the antisymmetric pseudotensor of
rank 4, and p and x are the rho and pion field amplitudes.
In momentum space, the vertex (2.7) takes the simple
form (see Fig. 4)

(g.../m, )e p„se qe) &p', (2.8)

with a possible momentum-dependent form factor,
which we neglect.

Before proceeding to write the Feynman amplitude
let us consider the effect of isotopic spin on our ampli-
tude. The p and ~ systems have I= 1 and are exchanged
between nucleons in an isotopic singlet state, I=O. If
the p~y vertex is assumed isospin invariant, a sum over
the possible isospin states therefore gives a factor of —3.
Otherwise one obtains a factor of —(2)(+1), where X is
a dimensionless parameter which expresses the altered
coupling of charged mesons at the vertex. If we use
SU(3) symmetry with the electromagnetic current con-
sidered as a member of the octet we obtain X =1, which
corresponds to the above value of SU(2) symmetric
coupling and is the value we will adopt.

It is now possible to calculate the 5-matrix element
for the pm exchange picture in Fig. 4. In complete
analogy with quantum electrodynamics" we obtain

S.-='e d'y. d4y. xrt (y.,y-)

X (4tr'Mn/ksks'Qs')'"e-'(' —"'& "
XX,(y„,y„)d4xd4x, + (diagram with

neutron and proton reversed), (2.9)
23 J. Bjorken and S. Drell, Re4t&istic Qeantlm 3Eechanzcs

(McGraw-Hill Book Company, Inc. , New York, 1964).

iG d4p e 4& (ea e)—
X p'(~&': I'~))(„

2M (2a.)4 ps —4N s

d'l e
—"'(&~ )- -~

Q pxy
e e&'e ) ep,q,

(2 )' i' m, —
—d4- —iq (x—~e)-8

X e"L44(k')~„44(k)j
(2s.)' q'
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where we introduce the symbol (o':F&) which indicates
that o-&' acts on the neutron spinor and F& on the proton
spinor. As usual in diagrammatic calculations we sum
over the polarization vectors of the virtual y and p to
obtain the covariant recipe

then easily perf ormed:

So = ie(2or)'5'(Q' —
Q

—
q) d'y

8(2m)o

eaev ~ gav ) ~p~p ~ —
gyp ) (2.10)

iG
q g'(y) ( ':F ) po (y)e"'~' p'

2M
as prescribed by current conservation at the p-nucleon
and y-electron vertices. To put the deuteron wave
functions in manageable form we next introduce
4-dimensional relative and center-of-mass coordinates
for the deuteron

X[(p'—m ') (P—m ')] '(g ~ /m )

X p e"p„qpj.q-'(m'Me/koko'Qo')'»

X.= I'+la, y = F——,'y,
(2.11)

+ (diagram with neutron and
proton reversed) . (2.15)

and assume
X,&=e'&' ~V,&( y),

X'=e "' '(y).

(2.12)

That is, we assume that the deuteron as a whole is
described by a plane wa, ve and the structure by the
time-independent Pauli triplet wave functions q which
are obtained by phenomenological analyses of nucleon-
nucleon interactions as discussed in Ref. (2). With the
above assumptions and substitutions, (2.9) can be
integrated over x, x„Y, and yo.

S;., = —in';, ~j„(1/q')
X = '(m'M /koko'Q ')'"(2 )'S'(Q' —Q

—q),

(2.16)

where A;, & was identified as the electromagnetic cur-
rent and was written explicitly in (1.2). Likewise (2.15)
can be written as

Now only y and z remain as three-dimensional integra-
tion variables. Using (2.15) we can proceed to calculate
the value of the mesonic exchange current.

To extract an exchange clrreet from the S matrix
(2.15) we recall that the impulse approximation S
matrix (1.1) could be written as

S"=»e (2~)'~'(Q' —Q
—q) d'3 pof'(3)

gG I- —i y y/2 - — il y/2e e g
X p(:F)

p' m' —P m' m—
Xo e"P~qjp(1/q')( Mm/k ekp'pQp')"

X po;(y)2 &'(po —4)d'p/(2 )'

+ (diagram with neutron and proton

reversed): j„=a(k')y u(k) . (2.13)

r= p l, q= p+l, —
p = l (q+r), l= -'(q —r) .

(2.14)

The dpp or, equivalently, the drp integral in (2.13) is

Note the occurrence of the factor (2~)bo(Pp lp). This
merely means that "no" energy can be transferred be-
tween the nucleons; it is a result of using the nonrela-
tivistic time-independent wave functions pf~ and q; to
describe the deuteron structure in a non-covariant way
and in reality only limits our analysis to "low" momen-
tum transfer. To further simplify the exchange Smatrix,
we transform to a new four-vector r which is the dif-
ference between p and l

S,.=iBWlj „(1/q'),

p Gg...e~ ~ m'Me q'»
(2~)4~'(Q' —Q

—q),
E64Mmo) Ekpkp'Qp'I

~"=4i d'y vv'(y) ( ':Fe)v '(y)
(2m)'

e"
X o' 'P'Pvqo

(p' —m~') (P—m ')

+ (diagram with neutron and

proton reversed) . (2.17)

It thus becomes obvious that the p7r S matrix (2.15)
leads to an exchange current

h, &= —(h/X)) W&, h/X) = Gg, ~/64—Mmoe, (2.18)

and a total current and S matrix

A&.«+=A;., I"+&,.&, S&.«&= i Sht.«pj „—(q') . (2.19)

Moreover the form of current in (1.2) is general, as
noted, so A, & must have this same form and can thus
only alter the three form factors from the impulse ap-
proximation values by amounts AGzd, AG@&, and AG~&.
Thus our remaining task is to put A, & into the form
(1.2), identify the form-factor corrections, and then
calculate or estimate their magnitude. We therefore
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must perform a bit of algebraic manipulation with the
W& expression in (2.16) in the next section.

W~-2»r'I'eP, q,
~glJPT~I'p7 qg (3.1)

The last line follows from the definition of r, P =
2 (q+ r),

in (2.14). Since rs is very small as discussed in Sec. II
and since the energy transfer is second order,
q2=

~

q~2/4m, we see that the W& terms for )&&&0 should
dominate the exchange current on the basis of order of
magnitude considerations. Thus we will first consider

gT)~&ioklI' 7- n &iokl-07kgl) & & ) (3.2)

III. EVALUATION OF THE MESONIC FORM-
FACTOR CORRECTIONS

To compare our calculation with experiment we wish
to put it in a form where the mesonic form-factor cor-
rections (AG's) become manifest. Since the coupling of
the p to the nucleon is predominantly due to the a term
(of order 1) in F&) (2.4) and not the f) term (of order p),
we first investigate the effect of Fo. %e accordingly
write, very symbolically, the indexed quantities which
appear in (2.17) as

The integral over y in (3.3) then becomes

d'y(( i' &.)'() ']e"'"

0s'e"»d'y (xyte(s)'x, )

&ps)pD

+xi'l {S»(g),e( )9e""d'y ix'
q8 )

yx, j Si2(g)0 ( ) S)2(g)e"»d y ~X, . (3.S)

(g) 3glgm(el ~ em) (el .el)

Tlm(g) (el .em}

Tlm(g) 3glgm elm

(3.6}

and use the easily proven theorems'

{S»(g),e&,)s) =2Ts"(g)e&,)",

S)2(g)o (,)sS)2(g) =4t.»"(g) —&&'"$e(,)",

To explicitly evaluate these we define a tensor T™by

where we now adopt the convention that Latin indices
run from I to 3. The separation —I'0 corresponds to
space terms or magnetic effects—is however another
low q' approximation.

Using the above we will calculate only Fo and mag-
netic current effects in this section. That is we will deal
only with the magnetic form factor correction AG~&.
There do exist AG~~ and AG@d corrections but we have
found that these are small, as expected, and will return
to them later in Sec. IV.

Since Fo is simply aI, the calculation of lV' is rather
simple. For p=i the expression (2.17) becomes

d3T
W'= 4ia d—'y $rpq&&r(, )'i)2;)

(2~)2

psp)sqleikl (3 3)
(p2 m 2) ()2 m 2)

dn Ts"(g)e"»=42 g2(ry/2) T (r),

dQ f)' e"»=42rj &)(ry/2)t')™

Equation (3.5) then becomes

d yLvVte()'v''je' »

= (x~" (.)"x~)
0

(I'——2,w2) j2(ry/2)dy l)™

2w (
—

~

I+—j 2(ry/2)dy T™(r)
&8( V2

= (X)'e(.)"X'){fl(r)&™—f2(r)T' (&)1

(3 7)

(3.8)

where e&,) = (e:I)+(I:e) is isoscalar Pauli spin matrix.
In terms of the radial I and m functions the deuteron
wave function may be written'

1 (I S)22() (
I
-+ x=1 s.+ & )x (&s)

(4)r)'" ky (Q 8)y ( Q 8

where S&2 is the familiar tensor operator and x is a Pair
of Pauli spinors in the triplet state.

It remains now to integrate this over r as indicated in
(3.3).To do this we orient the 2 axis along q. The evalu-

ation is then straightforward and yields

W'= —iae*' 'q'(xg 0.( )"x )

dsr (r.)'&Lfi(r) f2(r)j—
X

' . (3.~)
(22r)2(p2 —m ') (P—ms2)

Comparison of this expression with the expressions
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IV. THE DEUTERON MAGNETIC MOMENT

In this section we will discuss the relation of the
theoretical results of the last section to experiment.

Let us begin with AGsrq(0), which we can associate
with a mesonic contribution to the deuteron's static
magnetic moment. In (3.11) we obtain a form for this
quantity in terms of a one-dimensional weighted
integral over the 5 and D radial wave functions of the
deuteron. To obtain a numerical value we must estimate
the coupling constants in (3.11) and perform the inte-
gration over the I and m functions. For the constants
appearing in (3.11) we have chosen the values

RADIUS IN FERMI

FIG. 5. Deuteron wave functions.

(2.18) and (2.19) then gives the final result

d'r(r. )'

G'/4s. = 14.0, (Ref. 15)

g„,'/4s-= 0.18, (Ref. 21)

e'/4s-= 1/137,
a=-,'or 1, (fit to nucleon isovector

form factor —1 or 2 poles; Ref. 4)

mp ——750 MeV,

m =137 MeV.

(4 1)

X dyE(~' —s~')Jo(ry/2)

v2te(N+—tv/v2)j s(ry/2)), (3 10)

I'= Ggn~vri/16mne

b,Gsrg(0) =
3s.(m,'—m.')

co —( e—mpv e—ts~p
m ' —m ' n' —-'m'

p

3
+I mn' 1+ +

may mp'y' y

3 -g—mph

3 3 s ts~v)
-m. 1+ +

m.y m.'y' y i

X&2tt (~ytt/~2) dy, (3.11)

From (3.10) it is evident that the dependence of AG~d
on q' is not especially great until q'&4m ', since
P'——s (q+~)' and P——s (q —~)s. For this reason and
because AGsrq(0) is the static magnetic moment we will

now set q=0 in (3.10) and simplify that expression.
Indeed for the value q=0 the angular integral is simple
and the v- integral can be easily performed by contour
integration. The result is

The g, , is to be multiplied by —3 in accord with our
discussion of isospin in Sec. II.

For the wave functions we have chosen the results of
Breit and co-workers, '4 and of Partovi. " These two
models represent independent analyses and we expect
them to give us some idea of the model dependence of
our result. The Breit model is obtained from a Yale
potential and the Partovi from a Hamada potential:
both have hard cores of about -', fermi. The wave func-
tions bear a very close resemblance as is evident in
Fig. 5. Using numerical integration" we obtained

AGsrq ——& (0.94 to 1.88) X10 '; Breit model
= & (0.90 to 1.80) X 10 ' Partovi model
=& (1 to 2) X10 ',

5%%uz model dependence. (4.2)

Note that our result involves an arbitrary sign and a
factor of about 2 uncertainty due to the 1 or 2 pole ht to
the nucleon isovector form factor.

Several points should be noted about our numerical
results: (1) the dominant contribution to the numerical
value (4.2) comes from the uw cross term, so we consider
a pure S-wave deuteron model unsuitable for the theo-
retical analysis of exchange currents. (2) The results are
somewhat sensitive to the presence and size of the
nucleon hard core of about -', fermi —which is probably
the best phenomenological description we have of very
short range strong interaction eGects. ' The agreement
to 5% between the different models, however, leads to
confidence in the numerical results. (3) The p meson is

which, despite its bulky appearance, is in convenient
form for numerical evaluation as we shall discuss in the
next section.

4 K.E.Lassilila, M. H. Hull, Jr.,H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

2~ F. Partovi, Ann. Phys. (N. Y.) 27, 79 (1964).
26 E. F. Erickson performed the numerical integration on the

IBM 7090 at Stanford University.
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~Ger s (q') =
2 (2s)'

r4F (r)M (r,qs)dr

8
M(r, q') = +

r'q' ~q~'r'(q'+r'+2m '+2' ')

L (q'+ r'+ 4' p')' —4q'r']

Then the angular integral in (3.10) can be explicitly
done, yielding

Iql IN INVERSE FERMIS

Fxo. 6. AG~s(g') versus q'.

not a sharp state; therefore we investigated the effect
of using a Breit-Wigner spectral function in its propa-
gator as in Ref. 27 but found only a 5% effect, which
cannot be considered significant.

We have already mentioned in Sec. I that the impulse
approximation and elementary quantum mechanics give
a theoretical value for the deuteron magnetic moment
pd

——Gsr„(0) of 0.840 as opposed to the measured value
of 0.857. The small but long standing and disturbing
discrepancy of +0.017 is consistent with the mesonic
contribution (4.2). It is thus an interesting possibility
that this discrepancy is due to meson-exchange effects;
indeed in the next section we will tentatively assume
that this is indeed the case. Better estimates of the con-
stants in (4.1) should determine the feasibility of this
assumption. (Needless to say, one ca,nnot ignore the
possibility that the magnetic moment discrepancy is at
least partially due to relativistic eRects. )

V. BACK SCATTERING: COMPARISON
WITH EXPERIMENT

In the preceding section we discussed a possible
explanation of the disagreement between the measured
value of the deuteron magnetic dipole moment and the
value calculated by elementary methods. However such
a test of a theory involves only one number, which is
clearly an undesirable fact. It is therefore interesting to
consider AGsrd(q') for nonzero q' and see if large angle
scattering conforms to the predictions.

For nonzero q', the expression (3.10) is simple but
tedious to calculate. However for small q' values, one
would expect the denominator in (3.10) to be nearly
constant and thus that EG (q's)r=dAG q(0)sruntil a
value of q' in the region 4m ' or 4m, ' is reached. We
have verified that this is indeed the case as follows.
Define the r dependence in (3.10) as

(( '—', ')j.( y!2)

q'+r'+4m, ' 2) q—
)
r

Xln
q'+r'+4m''+2

~ q~ r

+$(q2+rs+4~ 2)2 4q2r2]

q'+ r'+ 4m. '—2
~ q ~

r
Xln (5.2)

q'+ r'+ 4m '+2
~ q ~

r

2
IO

B(q~) vs Iq~l~

IO

NI~ IO

tO

FIG. 7.Predicted back-
scatter versus. experi-
ment, from Buchanan
et al. , Ref. 6.

5
IO

BENAKSAS ET AL., ref. I6
e BUCHANAN ET AI ref. 6

This expression has been integrated numerically and we
have found that EGsr&(q') is indeed slowly varying out
to q &3 fermi as shown in Fig. 6.

We believe the lessons to be learned from the above
and from Sec. III are:

(1) To realistic accuracy AGsrq(q') —EGsrq(0) for
q(3.

(2) For larger q our analysis fails anyway because of
neglect of higher order terms and the use of a non-
relativistic wave function to describe the deuteron.

(3) We normalize to 1.7X10 ' at q'=0 for obvious
reasons.

(4) The slow variation of Gears(q') is actually de-
pendent only on the assumption of a heavy exchange
current and not especially sensitive to the speci6c
current ch osen.

—&2w(N+-,'w) js(ry/2)]dy (5 1)
» M. W. Kirson, Phys. Rev. 132, &24& (&963)

IO
0

I

Iq~l tF )
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In order to analyze several recent back-scattering
experiments we thus need only the assumption that
AGE&~(q')=1. 7X10 ' and some assumption about the
isoscalar form factors of the nucleons. Buchanan' has
empirically fitted the nucleon form-factor data and
obtained the theoretical prediction shown in Fig. 7. The
function B(q') here represents the angle-dependent part
of the cross section when written as

do ~do
PA(q')+a(q') tan'-', ej.

dQ EdQI M&&gg

(5.3)

This function is clearly easy to compute if the nucleon
form factors are known. The cross-hatched region repre-
sents theoretical uncertainties due to wave function
uncertainty, relativistic corrections, and uncertainty
in the nucleon form factors.

Three sets of data now exist to test the prediction in
Fig. 7. Coldemberg and Schaerf2' have measured G~~
at q' values of 0.26 and 0.41 (fermi) '. Their data agree
quite well with (5.4), but this must be considered as a
consequence of using a correct normalization for G~&(0),
not as a critical check of the theory and we have not
included their points in Fig. 7. The second set of points
at q'=3, 4, and 5 (fermi) ' are those of Benaksas,
Dricky, and Frerejacque, "which appear to be some-
what noncritical and do not clearly favor either curve.
The last and most recent set of points are those of
Buchanan et al. ' at q' = 6, 7 and 8 (fermi) '. In this region
the G~d due to the impulse approximation has dropped
to a value of the order of AG~&, which is roughly a con-
stant: thus the effect of DG~~ is large and noticeable.
From Fig. 7 it appears that the curve inc/ndieg the px
exchange current is strongly favored, despite the rather
large theoretical uncertainty. It should be noted that
the point at g'= 12 is noticeably lower than the exchange
curve. This is to be expected since we do not trust our
results too close to q'=m, '=l4 (fermi) '. (In fact one
may assume a form factor (1+q2/m„') for g, ~, corre-
sponding to an co intermediate state in y —& m+ p. The
result is to lower the exchange curve precisely to coin-
cide with the part at 12.0. This is however too specula-
tive to take very seriously. )

VI. FORWARD SCATTEMNG

For low q' and small-angle electron scattering, the
electric monopole and quadrupole form factors of the
deuteron dominate the e-d cross section (1.3). Indeed
from the cross section (1.3) and the low q' limits (1.5),
we see that the analysis of the neutron form factor via
e-d scattering depends almost entirely on Gz&. However
we noted in Sec. III that the magnetic correction AG~d
is associated with the p-nucleon coupling I'0 while hG~~
and AG@~ are associated with the space components F;
of the p-nucleon coupling, which are an order of magni-

"J.Goldemberg and C. Schaerf, Phys. Rev. Letters 12, 298
(1964).

FIG. 8. Kinematics of p-nucleon
interaction.

I'n

tude smaller than I'0. In this section we will discuss our
estimates of AG~q and AGq~ and their relevance to
forward scattering and the analysis of neutron structure.
Since we expect the corrections to be small we will ignore
terms in ze', which are expected to be doubly small. This
simplifies the algebra considerably and provides what
appears to be an adequate answer to our investigation,
namely that the exchange has very little relevance to
forward scattering at low q'.

To obtain AGgq and AGg@ we must evaluate 8' in
(2.17). As noted previously we need consider only the
space parts of I'„so we obtain, using (2.14),

e&&'s 7

d'y vtr(':I'')e'
(2m)' (p2 —m 2)(P—m ')

Xe""'(q'+ r') r"q' + (diagram with

neutron and proton switched) . (6.1)

The evaluation of this integral is somewhat tedious; it
proceeds as follows. We write the operator I';, which
appears explicitly in (2.4), as

I';= a (P,/2M)+ b (i/2M) e'&'Po'. (6 1')

Then we introduce the deuteron total and relative
momenta, both of which we expect to be small, in a
configuration space representation

Q =p +p„=0, (target at rest)

&=-:(p.—p.),
X;~i (et/By') =i 8, (relative m.omentum operator)

(6.2)

From Fig. 8 and (2.14) we then obtain for the proton
term of (6.1)

I';= (u/2M) (2P„~+I;)+b(i/2M)e'"'I'a'
= (a/2M) (2ia~+-', q;—-', r;)

+b (i/4M) e'" (q" r")o'. (6.3)—
But the presence of r', q' and e""'=e'"' in (6.1) allows
us to drop the q; and r, terms in (6.3), so we need only
consider

I';= (ig/M) g~+ (ib/4M) e'"'(q"—r') o'. (6.4)

The operator (6.4) may now be inserted in (6.1) and
the integral evaluated as we did in Sec. III. Deleting z'
terms we obtain after somewhat lengthy algebra"

(g/~) Ift '—Xgt(EGgg —
AG op(Sge/+8)) X;, (6.5)
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where

2 g
hG~g ——F—

3 Mg'

d'r (r.)'
(27r)'(p' —m ') (P—m ')

[uj'o(ry/2) v~uwj 2(ry/2) jdy

„v2 q'
AGgg ——F—

3 Hid'

2
g—F

3Eg'

d r(r ) [u jo(ry/2) —92uwj2(ry/2) jdy

(2')3 (p~—m.') (P—m, 2)

d'r (r,/ ~ q ~ )[v2uj'o(ry/2)+uwj2(ry/2)]dy q'

(2m)'(p' —m ') (P m—') kg'

(6.6)

d'r (r./ ~ q ~ ) [24w (u'y —u) j2(ry/2)]dy

(2m)'(P —m,.') (P—m ') 'y'

Here
Gg p ~78F=

16m pe

Gg.-v&F=
16m pe

dlI =—
dy

(6.7)

numerical value is

AQ=lim [6bG z(q2)/%2q'j~2X10 3 fermi. (6.10)
q—+Q

To obtain a useful result from (6.6) we first compare
it with (3.10) and obtain

AGgg ——,
' (b/a) (q'/HID') 2 Gibed —(6X10—')q'/Mp. (6.8)

Since we investigated AG~~~ in Sec. III the above
expression is all we need to discuss AGgq.

For the evaluation of AGoq we must expand (6.6) in
powers of

~ q~ inside the integral, then perform contour
integrals around second-order poles. Even then the
results must ultimately be gotten from numerical inte-
gration. The details may be found in Ref. (7), but we
will here quote only the result

AGog ——(5X10 ')q'/Md'. (6.9)

In (6.8) and (6.9) we have the end result of the
numerical evaluations necessary to compare theory and
experiment. Erickson has investigated the relevance of
our estimates to experiment and finds that (6.8) and
(6.9) significantly affect forward scattering only for

~q~ &3.7 (fermi) ', but m,=3.7 (fermi) ' and we clearly
cannot trust our low q results in this range.

Lastly let us note that DGgq gives rise to a quadrupole
moment correction according to (1.5). Indeed the

This is about 1%%u& of the measured value and is too small
to be relevant to the comparison of theory and experi-
ment at present; the theoretical value of Q is unfortu-
nately more dependent on the inner structure of the
deuteron than p~.

VII. CONCLUSIONS

The confrontation of our theoretical results with
experiment, as discussed in Secs. IV and V, leads to
optimism that the pz exchange current explains both
the magnetic moment anomaly in the deuteron and
recent e-d back-scattering results. Since we found very
little eGect on forward scattering in Sec. VI, however,
the relevance to the standard analysis of the neutron
form factor via forward e-d scattering appears to be
negligible.
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