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The degree of charge-independence violation for the low-energy nucleon-nucleon system is studied on the
basis of a semiphenomenological meson theory. The difference between the singlet n-p and n-n scattering
lengths induced by the rr+-~' and o+-p' (tom) electromagnetic mass splittings is investigated for the one-pion-,
two-pion-, and p-exchange potentials. A charge-independent boundary condition is used to replace the short-
range behavior. It is found that approximately 60% of the measured diBerence between the scattering
lengths can be accounted for by the one-pion and two-pion potentials with charge-independent pseudoscalar
coupling. The calculated results are sensitive to parameters of the p-exchange potential, such as Am and

coupling constants, which are not well known. The dependence of the scattering lengths on these parameters
is found. Finally, we note that a negative Ant, or a change of the order of 2% in the boundary condition or in
the ratio of charged to neutral coupling constants, can account for the discrepancy that remains after pion
electromagnetic mass splittings are included.

I. INTRODUCTION

ECENT measurements of the e-e scattering length'
indicate that charge symmetry, but not exact

charge independence, is valid for the low-energy two-
nucleon system. The "best" values for the scattering
lengths c and effective ranges r of this system are' —4

g„„=—16.4+1.9 F, (1)
(singlet) — 23 679~0 028 F (1b)

a„„=—7.815%0.008 F
(=—17 F for nuclear part), (1c)

(singlet) 2.5 1~0.11 F, (1d)

r» = 2.795&0.025 F (=r„„). (1e)

The difference in the n-n and n-p scattering lengths
in the singlet spin state appears to be quite large. How-

ever, it only requires a small difference in the nuclear
potentials to account for this difference because the
scattering lengths are all large compared to the range of
nuclear forces. Although no direct Coulomb forces are
present in a comparison of the n-n and n-p systems,
other (indirect) electromagnetic effects do influence the
nuclear S matrix or potential. '

Among these are the
difference in the neutron and proton electromagnetic
form factors, ' but a primary one is the mass difference
between the charged and neutral pions and other rnesons

responsible for the nucleon-nucleon force.
In this paper, we examine how much of the difference

between the n nand n-p si-nglet state scattering lengths
can be understood on the basis of the electromagnetic

+ Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT(45-1)-1388, Program B.

~ R. P. Haddock, R. M. Salter, M. Zeller, J. B. Czirr, and D.
R. Nygren, Phys. Rev. Letters 14, 318 (1965);J. W. Ryan, Phys.
Rev. 130, 1554 (1963).' H. P. Noyes, Phys. Rev. 130, 2025 (1963).

~H. P. Noyes, Phys. Rev. Letters 12, 171 (1964); M. L.
Gursky and L. Heller, Phys. Rev. 136, 81693 (1964).

4 J. M. Blatt and J. D. Jackson, Rev. Mod. Phys. 22, 77 (1950).
~ See, e.g., R. E. Schneider and R. M. Thaler, Phys. Rev. 137,

B874 (1965).
'Nucleon Structure, Proceedings of the International Conference

at Stanford, 1963, edited by R. Hofstadter and L. I. Schiff (Stan-
ford University Press, Stanford, California, 1964).

mass differences of the pions and p mesons. The effect
of the mass difference on the one-pion and one-p-ex-

change potentials were investigated by Heller, Signell,
and Yoder, and others. ~ Heller et al. also made an
estimate of the electromagnetic mass splitting effect
for two pion exchange, but no detailed investigation was

carried out by them. More detailed considerations of the
~+-x' mass difference for the two-pion-exchange po-
tential were carried out by Lin. ' However, he did not
assume charge symmetry and used a different procedure
than we do to evaluate the effect of the pion-mass

splitting on the fourth-order potential. Ke study the
effect of the m+-~' mass difference on the two-pion-

exchange potential in detail, and also consider the
effects of single-pion and p exchange.

If the interaction Hamiltonian Le.g. , H tv=(4sr)'t'
Xgj'Pys~ PPdsr t is assumed to be charge-independ. ent,
then the only difference between the n-n and n-p scatter-
ing lengths occurs from direct (e.g. , M„—Mo) and in-

direct electromagnetic effects. In the latter category, we

expect the inequality of the physical masses of the
neutral and charged mesons to be most important. In
this paper we consider the potentials which arise from

one-pion, two-pion and p exchange. The boundary con-
dition model of Feshbach, Lomon, and Tubis" (F.L.T.)
is employed to specify the two pion exchange potential
and. to replace the unknown short-range Lr& (2m ) '$
behavior. We assume charge symmetry since it appears
to be valid experimentally. '~ Although our formulation
allows for an inequality of the coupling constants of
neutral ge and charged g+ mesons to nucleons (the actual
coupling constant for charged mesons to nucleons is then
2't'g+), our main concern is the mass effect. For this

purpose we first assume g+= go and a charge-independent

' L. Heller, P. Signell, and N. R. voder, Phys. Rev. Letters 13,
577 (1964).

R. J. Blin-Stoyle and C. Yalgin, Phys. Letters 15, 258 (1965);
H. Goldberg (unpublished).

D. L. Lin, Nucl. Phys. 60, 192 (1964).
"H. Feshbach, E. Lomon, and A. Tubis, Phys. Rev. Letters

6, 635 (1961);H. Feshbach and E. Lomon, Conjures International
de Physique NNcleaire (Centre National de la Recherche Scien-
tifique, Paris, 1964), V'ol. II, p. 189.
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(a) (c)

In a nonrelativistic approximation we obtain for the
contributions of Figs. 1(a) and 1(b)
V&4) (r) = (1/2i7r'ts p') rs'r, '(rr, V) (tr, ~ V')

XL«,'«,'(tro V)(trk V')
««—(~o V')(~o V) jl;, , (3a)

where i and j are summed from 1 to 3, and

( tt &) 4 cod'kd3k'e'(z. r+&"r )

I' =G'(i)G'( j) I

—
l

too(o)o ks p.s)(o)s k's p.s)

(3b)

We have used a standard trick to aid in the calcula-
tion of the integral. If we let (k+k') r go to k r+k' r'

in the following expression,

FzG. 1. Feynman-graph contributions to the two-pion exchange
potential, TPEP. The various 6gures are: (a), (b) standard
graphs; (c) two-pair type terms; (d) typical one-pair terms; (e)
ladder diagram.

boundary condition. The latter is adjusted to give the
I-ts scattering length; the «t psca-ttering length is then

computed with the same boundary condition. Later, we

investigate how much of the additional violation of
charge independence is required at the boundary or for
the coupling constants to bring the «t-p singlet scattering
length in complete agreement with measurement. Effects
of varying the parameters of the p potential (i.e.,
«I,+—m, o and coupling constant) are also considered.

II. THEORY

The one-pion exchange potential (OPEP) is well

known. If p+, 2'i"g+ and p, p gp are the masses and pseudo-
scalar coupling constants of the charged (positive or
negative) and neutral pions, respectively, then the
nonrelativistic second-order potentials in the 'Sp state
are (see also Refs. 5 and 7)

V»&') = V t') = go'(tto/27«1)'e "'"/r—

)/ tt l ' e '" t'&+') (p,+'l ' e+" (2)
+21

(2M) i r &g,') otto) r

In Eq. (2), cV is the mass of theneutron or proton; their
mass difference is neglected because its eftect on the
scattering lengths is much smaller than the one we are
investigating.

The fourth-order nucleon-nucleon potential (TPEP)
has contributions from the Feynman diagrams shown in

Fig. f.

(tr k)(e k')e't"+ ' 'f(k k')d'pd'k'

we can transform it into operator form:

—O&. V) ( ~ V')f&.
"&"'+"''"&j(k k') d%d'k'

where it is understood that we must let r' go to r, the
distance between the nucleons, after the calculation.
Furthermore G(1)= G(2) —=G~ is the fourth-order pseudo-
scalar coupling constant relevant for m+-S while

G(3)—=Gp is the fourth-order pseudoscalar coupling con-
stant of m'-N. That is, in order to be consistent with the
work of F.L.T., we allow for a small difference in the
pion-nucleon coupling constants which appear in the
second-order and fourth-order potentials. This has
almost no eBect on our results.

Making the approximation that
l
tt,'—ttt'l &14 MeV'

is small compared to the important contribution of
k' (=tt'), we get

I = iw'G'(i)G'( j)(t o/2~)'(«+ «'/««')

&&(11OLt («+")j+&OLt;(«+r') j),
where E„(ttr) is a modified Bessel function of order r."
If OD and 0& are given by

0 =(~. v)(~. v')(~, .v)(~, v'),
oo= —(~. V)(~'&')(~p &')(~o &),

then the terms represented by Figs. 1(a) and 1(b) are

V„„'"= V. '"= ODf op+Or(lop+41++),

V '"=0 (Io —4I+o+4I++)+0 (Io.+41+,)
Carrying out the prescribed operations, we obtain

'"=Go'(t o/2~)'t o(s l S.oU«(t «)+~. troU. ( o«)j
+(G+/Go)'(t+/t o)'LU. (t+ )+'S U (tt+ )+'" -U.(t+r)]), -(5 )

V, 'e) = Go'(tuo/2M) 'tto(-'L1 —2 (G~/Go) 'jl S.k Ur(ttor)+ tr. .tr p U.()uor)]

+ (G+/Go) PU (ttor)+ OSeb&UT(ttor)+ so' 'let&U (tto«) j
+s(t+/t o)'l:2(G+/Go)' —(G+/Go)'jLS. oU«(t+r)+~. ~OU. (t+r)j

(tt+/)Ltp) l (G+/Gp) (G+/Gp) ])U,(tt+r)+ OS, oU«(tt+r)-+err, rr)&U, (tt+r) j), (5b)

' G. N. Watson, Theory of Besset Fst«)etzons (Cambridge University Press, Cambridge, 1944), pp. 'Ig, 172.
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where the U's are the ones derived by Taketani, Machida,
and Ohnuma" (T.M.O.):

TABLE I. Parameters used in the
boundary-condition model.

8-(23 3q (23 1
&.(x) = ——

I +—I&i(»)+I —+- &o(»)
x2) &4xo

8-(15
U ( )=——

I
+—IE,(2x)+—Eo(2 )

x'i x'

gp' ——14.400,
Gp' ——17.255,
r; =0.7011 F,

X =0.89148,

g=0.0555,
pp ——135.01 MeV,
p+= 139.59 MeV,
3f=939 MeV.

8 3 2 3
&'.(x) =— —+—Ki(2x)+—It o(2x)

x' x' x'

and S,o ——3(22, r)(eo. r)/r2 —(ea ob)
The same potential for n22, 22p and pp is found from

the one and two pair terms Lsee Figs. 1(c) and 1(d)j.
' 2P-K&(d'or) Eo(d'or)

Vi.ae.,=Go'I —I—
(2M) or (@or)2 (iiior)

e par (—9)

The ladder term, Fig. 1(e), being smaller by an order
of magnitude than V„„(4)or V„(4) was taken to be that
given by F.L.T."Mass-difference effects are neglected
for this term and we obtain for the 'Sp state

(V2 pair) = T 7. . 7'T' 7" 7" 7'7'
5Vi pair)

where

d'k d'k i("'+k )'
V,,(2)—

07&CO& COi GO&

(22r) 2

—

I W, Kt(2ii2,2)+P,E i(2y, r) j,
2r2

C'"= —X'M'/22r'po' C&"= —XM/42r'po'

Oir =~i +Pa'
p

V. .(1) d3$.d3$.~i(ks+ki) r

where $ is the "ladder parameter. "
The various parameters involved in the derived

potent~~is (for g+
——g,, G+——G,) have been determined

ECi'i V;;&'i) 2M) by F.L.T. by 6tting scattering data up to sizeable
energies ( 350 Mev). They used a boundary condition
(logarithmic derivative of the wave function) at a
radius r;„ to treat short-range effects. The mass differ-
ence between neutral and charged pions was taken into
account in an "average" manner by using pp for the
p-p and p+ for the n ppotential. W-e have used the
parameters of F.L.T., except for charge-dependent
effects. The parameters for our calculation are sum-
marized in Table I. If we let g+

——gp G+= Gp and p+= pp&

the above potentials reduce to those of F.L.T. If, in
addition, we also let ),=)=0, we obtain the T.M.O.

k potential. "
Finally we have the charge-dependent potential

~ 3 produced by the exchange of the vector p meson which

1 1 in the 'Sp state is given by'3

tX
Mi GO& CO&' CO~ Mi CO~

= —2I;I,(4~/r) ',
I,= ——'2orp;(1+1/p, 2)e p".

Then for N22, 22P, and PP we have

( po 12 2X2

V2 pair= GO I I PO
(2M) or

(1+2g )2 (m
2- e mor—

2 kM r

(1+2g )' m, o)2 e
V," = ——,'gp' Ap—

M)

(1+2g„)2(222+ ' e ~"
(10a)

Ei(2it2or) (p+) ' (G+) ' Ei(2p+r)&&, +2l —
I I

—
I

where X is the "pair suppression" parameter, "and

po ' 1+po&)
'
e—2ppr

2M (@or)')

(G+)' ~+)' 1+~+&)2
+2I —

I

—I—
4 G,) p,) (g+r) ' &

(8)

"M. Taketani, S. Machida, and S. Qhnuma, Progr. Theoret.
Phys. (Kyoto) 6, 638 (1951);7, 45 (1952).

.4+——3 p
——1. (10b)

"This potential differs from that used by the authors of Refs.
7 and 8. colin-Stoyle and Valgin apparently have the opposite sign
for the quantity (1+2g,} which arises from a spin-spin interac-
tion. Belier, Signell, and Voder have found an error in their p-
exchange potential (private communication from P. Signell}.' W. M. Cottingham and R. Vinh Mau, Phys. Rev. 130, 735
(i963};R. S. McKean, Jr., ibid. 125, 1399 (1962}.Qur potential
differs from that of McKean, whose anomalous magnetic moment
term has an error in sign.

where, to zeroth order in (222/M)2 and (p/222)2 Lp is the
momentum of either nucleon] we have in agreement
with McKean' and Cottingham and Vinh Mau'
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It is possible to include higher order effects in (m/M)'
in the static potential, although the uniqueness of the
results can be questioned. In fact, the expansion param-
eter is quite large (=0.65). The most reasonable pro-
cedure is to consider the 5 matrix obtained from one
p exchange as an analytic function of the variables s
and t (squares of the total energy and momentum
transfer, respectively). In the limit s ~ 0, and finite t
one then obtains to order (m/3E)'

A+, p= 1+m+,p'/235'+g„(m+ pt/M') . (10c)

This agrees with the potential obtained by Bryan,
Dismukes, and Ramsay" and by Kong. "

In Eqs. (10) g„ is the nucleon isovector gyromagnetic
ratio, rip (g+) is the 1V-pp (X-p~) coupling constant,
mp (m+) is the mass of the pp (p+). Since the mass
difference between the pp and the p+ is not known
experimentally, we allow this to vary somewhat. The
SU6 prediction, with parameters that fit the ~r+-m' mass
difference is m, +-m, o=1 MeV. The coupling constant
g, is obtained from the anomalous magnetic moment
of the nucleon; it and the p' mass are taken to be" ""
g = 1.85 and tÃp=5. 4pp, where pp is the mass of the
neutral pion. An accurate determination of the p-E
coupling constant q has not yet occurred. The generally
accepted values based on internal symmetry argu-
ments" are qp'=g+. '=1.3—2. In the remainder of this
work we always take gp' ——q+' —=q' and most of our
calculations are performed for q'=1.668.

III. RESULTS

The results of the previous calculation are summarized
in Tables II and III and in Figs. 2 and 3. The values of
the e-p singlet state scattering lengths listed in Table II
were obtained as follows. The dirnensionless logarithmic
derivative B,

r dN
8=——

0 Gf r—g,.

where N(r) is the radial wave function, was adjusted at
r;„=0.7011 F to give the experimental n Nscatter-ing
length, Eq. (1a). Pseudoscalar coupling was assumed.
The n, pscattering length was-then computed with the
same boundary condition and with g+= gp, G+= Gp. The
second row in the table lists the ratio of gy/gp=G~/Gp
still needed to bring a„„to the value given in Eq. (1b).

"R.H. Bryan, C. R. Dismukes, and W. Ramsay, Nucl. Phys.
45, 353 (1963);D. Y. Wong, ibid. 55, 212 (1964)."E.Pickup, D. K.. Robinson, and E. O. Salant, Phys. Rev.
Letters 7, 192 (1961);D. D. Carmony and R. T. Van de Walle,
ibid. 8, 73 (1962)."S. Bergia, A. Stranghellini, S. Fubini, and C. Villi, Phys. Rev.
Letters 6, 367 (1961).' J.J.Sakurai, in Selec/ed Topics on Elementary Particle Physics,
edited by M. Conversi (Academic Press Inc. , New York, 1963),
pp. 50—53. Note added in proof. The squared coupling constant g'
should be 4 of that given above. We thank Dr. R. Bryan for
pointing this out. Our conclusions are essentially unaltered by
this change.

TABLE II. Neutron-proton scattering-length predictions for
pseudoscalar coupling. The first row lists the predicted n-p scat-
tering lengths for. a charge-independent coupling and the second
one the ratio of (g+/gp) = (Q+/Gp) required to 6t the experimental
scattering length. We take q+' ——q02= 1.668, r; =0.7011,a„„=—16.4
F, Am=2 MeV, and A+ ——A0 ——1.

u„„(I')
g+/go=6+/6o

OPEP

—19.9
1.0094

OPEP+TPEP
—20.80

0,9953

OPEP+TPEP
+Vp

—18.27
0.9832

TABLE III. Neutron-proton scattering-length predictions for
pseudovector coupling. The listing is the same as for Table II,
except that f and F replace g and G.

OPEP OPEP+TPEP
—12.6

1.043
—123

1.029

OPEP+TPEP
+Vp

—32.35
1.017

9 This differs from the value given in Ref. 7 because the two-
pion exchange potential was included there but without a sr+-7r'
mass different:e.

The first column of the table is with a value of 8
adjusted to fit a„„with OPEP alone, " the second
column with OPEP and TPEP and the last one includes

p exchanges as well, with m,+—m, p
—=An&=2 MeV,

q'=1.668 and A+ ——Ap=1. It should be noted that a
change of the order of 2'Po from unity in the ratio of

g+/gp =G+/Gp is needed to bring a„~ to the experi-
mentally determined value. In Table III the same results
as Table II are presented for pseudovector coupling
with f~ (or F~) alld. fp (or Fp) related to g+ (or G~) and

gp (or Gp) by f =+(p+/2M)g+ a,nd f =p(p p/2M)g ,pbut
otherwise with the same potentials. A charge-independ-
ent coupling f+=fp, F+=Fp thus implies that ppgp= pyg
and p, pGp ——p+G+. In this case, the calculated scattering
lengths are more sensitive to the potential. For OPEP
alone, a„„)a„„,whereas for OPEP+TPEP or together
with the p potential, a„„(a„„.This sensitivity is due to
the last term in Eq. (5b), which is zero for a charge-
independent pseudoscalar coupling, but yields an ap-
preciable negative contribution to the I-p potential for
a charge-independent pseudovector coupling. However,
the change (f+ fp)/f p req—uired to bring a„„in line with
experiment is approximately equal but opposite in sign
to that for the pseudoscalar coupling.

Instead of varying g+/gp, one may ask how much
charge dependence of the shorter range potential
(r(r; ) is necessary to bring agreement between the
calculated and measured values of a „.For this purpose
we set g+/gp= G+/Gp=. 1 in the pseudoscalar theory and
compute the value of 8 required to fit the ri-p scattering
length. With the above parameters for the p-potential,
we find that 8„„/8„„=0.98 (a 2% change of the
boundary condition) is required to fit the experimental
S —8
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Lastly, we already pointed out that dm is unknown
and that p' is poorly determined. The effect of changing
Am is shown in Fig. 2 with q = 1.668 and A+, Ao given
in Eq. (10b) for curve I and in Eq. (10c) for curve II.
In agreement with Heller, Signell, and Yoder, 7 we find
that hm must be negative (nz, o—m, +=4 MeV for I, and
5.2 MeV for II) to fit the experimental e-P scattering
length in the 'So state. This result appears to be rela-
tively insensitive to variations in r; . For r;„——0.35 F,
d IIs= —3.8 MeV (rather than —4 MeV for r;„=0.7 F)
fits the experimental a„„for curve I.The eBect of vary-
ing p' is shown in Fig. 3 for Am= —2 MeV. By extrap-
olation we find that agreement with experiment
requires g') 4.

IV. CONCLUSIONS

The mass differences between neutral and charged
mesons are able to account for a large fraction, or
possibly all, of the difference between the measured
n nand tr-p-scattering lengths. The electromagnetic
mass splittings of the m+-x' yield approximately 60%
of the difference if we use an OPEP and TPEP with a
boundary condition at 0.7011 F. The addition of a
p potential with Am&0 raises the calculated a „, and
thus makes agreement with experiment worse. Ke find

"20.7

- 20.9

2l. l

- 2I.3

2l.5

-2I,7
0

I I I I I I I I

0.2 0.4 0.6 0.8 I.O I.2 I,4 l.6 l.8

l5 I I ~ ~ ~ 'I

FiG. 3. Variation of the calculated a„„with q2. The other param-
eters are the same as for Fig. 2, except that Am= —2 MeV.

17—

- l9—

tI
cr. -21—
C

O

-23-

that a negative dm& —4 MeV is required to fit experi-
ment if the square of the charge-independent p-nucleon
coupling constant, g', is 1.668. On', the other hand with
Am= —2 MeV, a value of q') 4 is necessary to give
a„„=—23.68 F if u„„=—16.4 F.

The above conclusions assume charge-independent
couplings and boundary conditions. Roughly a 2%
change in the ratio of the charged to neutral pion-
nucleon coupling constant or in the boundary condition
can give agreement with experiment if Am=+2 MeV
and g'= 1.668.

In order to make firmer theoretical statements con-
cerning the origin of the discrepancy between a„„and
a„„,it will be necessary to know the parameters of the
theory more accurately and to have a better theoretical
framework for low energy scattering.

-25—

„27 I I I I

8 6 -4 -2 0
hm(M ev)

FrG. 2. Effect of the p+-p mass difference Am on a„„with
a charge-independent coupling, q~ = 1.668, and r; =0.7011 F.
Curves I and II correspond to the p potential, Eq. (10a), with
parameters given by Eqs. (10b) and (10c), respectively.

ACKNOWLEDGMENTS

We are grateful to Dr. B. Czirr for discussions of his
experimental results, to Dr. E. Lomon for sending us
details of the boundary condition model Qts, to Dr.
W. Thirring for a discussion of 5U6 electromag-
netic-mass-splitting predictions, and to Dr. P. Signell
for calling our attention to other work on the 0 potential.
We also wish to thank the Pacific Northwest Computer
Center for some free computer time.


