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Using the N/D technique, T'=%, § P- and S-wave phase shifts are calculated. The T=4% P- and S- wave
phase shifts are also calculated in the Khuri-Regge representation. For the purpose of comparison with ex-
periments, we use our phase shifts to calculate the angular distributionsin the reaction K=p — K™,

1. INTRODUCTION

URING recent years, a large number of dynamic
calculations for strong-interaction phase shifts
have been done. For this purpose one usually employs
the well-known N/D formalism; where the N and D
functions have the usual left- and right-hand cuts, re-
spectively. The left-hand discontinuity (which is di-
rectly related to the forces responsible for scattering) is
assumed to arise mainly due to one-particle exchange
diagrams. The phase shifts can then be easily calculated
from the resulting unitarized partial-wave amplitude.

In the present work, we have calculated the S- and
P-wave T'=% and § Kr phase shifts. In Sec. 2, the N/D
equations are solved in the well-known Balazs! two-pole
approximation. For purposes of matching, we have
evaluated the fixed-energy dispersion integrals, using K*
and p exchange diagrams along with the K* pole in the
direct channel.

In Sec. 3, we have attempted an alternative calcula-
tion of the S- and P-wave T=3 K= phase shifts, as-
suming K* to be a Regge pole & la Khuri.? Since no
experimental information exists on K= scattering, one
can only hope to check these results indirectly. In Sec. 4,
we assume a simple peripheral model® for the reaction
K—p— K%r— and use our phase shifts to calculate the
angular distribution. A brief comparison of our results
with experiments is also given.

2. N/D CALCULATION

The possibility of a self-bootstrap of K* in Kr scat-
tering has been investigated by various authors.? In this
section we perform a dynamical calculation for S- and
P-wave Kr phase shifts in 7'=% and § states. We con-
sider only the exchange of K* and p and use the strip
approximation to estimate the high-energy contribution
from crossed channels by effectively replacing them
with the K* pole in the direct channel (see Fig. 1). Since
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these approximations are well known we sketch the
calculations briefly (see Fig. 2).

From the structure of the singularities of the partial-
wave amplitude® one finds that it is convenient to work
in the complex S plane. We define the partial-wave
amplitude as

gi(s)= (s/2/R21H1) 1) sind, (s). (1)

Expressing this amplitude in the well-known N/D form

g1(8)=N1(s)/D(s), (2)
we approximate the N function by two poles
2
Nl(s)= ZR,;;/S—S,-. (3)
i=1
The D function then is given by
s—So [® ds' (BN (s")
Di(s)=1— f G
T S (' —=5) (' —s0) ()

where s¢1s the subtraction point and # is the mass of the
K meson (the mass of the pion is taken to be unity). The
parameters R;; are determined by matching the ampli-
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Fic. 1. Kr-scattering diagram.
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Fic. 2. Input forces.
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obtained by partial-wave projection of the Born terms.
The coupling constants involved in Eq. (5) are ex-
pressed in terms of the prm coupling constant using
SU(3) symmetry.®

Choosing s;=—m?, s;=—16m2, and so=3.5, we fix
our matching points by requiring a zero in ReD at the
experimental K* mass. The S- and P-wave phase shifts
for T=14 and £ states are plotted in Flg 3. The general
qualitative features of our results are in agreement with

m 810 on
> 4%? |4k }
ME> 2141 2141

myx2—2m:—2+s
—mK*2+2m2+2>Q1<1—~—W—>}
2k?
5[0 ’W!,,2
——( m,? 2m2—2+2s)Q,<1+—~—>lJ (5)
2141 2k 2k?

those found by earlier authors,* and in particular the
output width of K* turns out to be too large.

3. K* REGGE-POLE CALCULATION

Here, we calculate the =4, S- and P-wave phase
shifts for K scattering on the assumption that the K*
resonance lies on a Regge trajectory in the 17, T'=1
state. Using the Khuri representation,? the contribution

hase Shift (Deg)
8

F16. 4. Kr-scattering phase shifts in
(a) T=% P wave and (b) T=% S & 60f
wave.
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Fic. 5. One-pion-ex-
change diagram for the re-
action K~p — K% p.

of the K* Regge pole to the Kr S- and P-wave ampli-
tude is given by

gi(w)= _1 e Bl(w)_[eca—z)51+e(a—z>ez] , (6
2 ¢** [a(w)—1]

where w is the total center-of-mass energy (w=+/s),
a(w) is the trajectory of the K* Regge pole, and 8:(w)
is the corresponding residue. £; and £ are the two
thresholds given by

coshéy=142/k2, (7)
coshéy= ((m~+1)2—2—2m2+w?)/2k*—1.

From the threshold behavior of (:(k%), it easily

follows that the product of 8¢ is slowly varying and

essentially real and constant near threshold. We ap-

proximate it by a real constant C; for the entire range
under consideration. Thus,

Biexp(at)=Ci. (8)

We assume the Regge trajectory of K* to be a straight
line,”

Rea(w)=1+4e(w—mgx), 9)
where ¢ is the slope of the trajectory a(w), and that
Ima(w) =Ci[w— (m—41)Jot1/2, (10)

where ao=14¢e(m~+1—mgs). Equation (10) satisfies
two requirements: (i) a(w) must be purely real below
threshold, and (ii) Ima/(w)>k?*t! as k2 — 0. Using the
relation

1 d
= ]:Ima(w) —_— Rea(w)] (11
MK * dw? w=mpg*
we get
Ci1=1Te¢/[mg+— (m—+1)]ootii2, (12)
Combining Egs. (9) to (12), the full trajectory a(w) is
obtained as

a(w)= 1+e(w—mK*)+%I‘e<

w— (m—l— 1) ao+1/2
> . (13)
mgx— (m—+1)

For the slope of the trajectory, we take the Chew-
Frautschi® value. Using Egs. (1), (6), and (13), the
S- and P-wave phase shifts can be readily calculated.
These are plotted in Fig. 4.

(1;61\3I5 N. Khuri and B. M. Udgaonkar, Phys. Rev. Letters 10, 172
(1;6%) 'F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
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Fic. 6. Distribution in the
Kr scattering angle for events
with incident momenta ~1.65
BeV/e. (a) W=744 MeV, (b)
W =884 MeV, and (c) W=938
MeV. The full-line curves have
been obtained with all the
phase shifts from N/D. The
broken-line curves have been
obtained with 7'= % phase shifts
from Regge-Khuri analysis and
T=% phase shifts from N/D.
The dotted curves have been
obtained with T'=% P-wave
phase shift from Regge-Khuri
analysis and all the rest from
N/D. The crosses are the ex-
perimental points taken from
Ref. 11. (The theoretical curves
have been appropriately nor-
malized for comparison with
experimental data.)
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4. THE PERIPHERAL MODEL FOR K—p— K%~ p

In this section, we consider the production cross section for the reaction K—p— K°%—p. The Chew-Low
one-pion-exchange model,? when applied to Fig. 5, gives

[Gw*—3w?(m*+1)+5(m*—1)?] dox.(w, cosh)

2

BPog-psgirp A2— —1 2 A?

27 (A2+41)? g2 9 cosf

(14)
dw?dA%9 cosf

where A’ is the invariant four-momentum transfer squared given to the nucleon, g is the laboratory momentum
of the incident K meson, and f? is the pion-nucleon coupling constant. We wish to emphasize that here, we use a
simple peripheral model involving only a pion exchange and neglect contributions due to absorptive effects and the

vector-particle exchange.?

The differential cross section for K scattering in S and P waves for T=% and § states is given by*

dok-(w, cosh)

——=27A%[(2/9){sin%¢'+sin23¢3— 2 sindq' sindo® cos (o' —8¢%) } +4{sindo! sindy! cos(do'— 1)

d cosf

—sinde® sindy! cos(8p3—81') —sind® sindo! cos (813 —8o')+sinds® sinde?® cos(8:°—8¢°)} cosd

~+2{sin25,'+sin2*— 2 sind;! sind;® cos(8;'—8:%)} cos?].

Here, A is the reduced K~ wavelength in the K7 system.

Equations (14) and (15) and the results of previous
sections enable us to obtain the angular distribution
curves of the reaction K—p— K°r—p. These are shown
in Fig. 6. The experimental curves have been taken from
Wojcicki!! The angular distribution obtained by using
the T'=3% and T'=4% S- and P-wave K= phase shifts from
N/D calculations is in disagreement with the experi-
mental data. In one-channel calculations, this is not
surprising, since the width of the K* resonance using the
calculated phase shifts is rather large. On the other
hand, the angular-distribution curve plotted by using
T=1% S- and P-wave phase shifts as obtained from the
Regge-Khuri analysis, and the corresponding phase
shifts for the 7'=% channel taken from N/D calcula-
tions is in lesser disagreement with the data. This arises
mainly because the T'=% P-wave phase shifts as ob-

9 It has recently been shown that these corrections may not be
negligible [see J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965) and
also the literature quoted there]. Inclusion of these effects
presumably will alter the results considerably. Such calculations
are in progress and will be published elsewhere.

10 We use the notation 8,27, where T is the isotopic spin number

and J the total angular momentum.
1S, G. Wojcicki, Phys. Rev. 135, B484 (1964).

(15)

tained by the Regge-Khuri analysis are presumably
more reliable since the experimental width of K* has
been fed in. It is of interest to mention that if one takes
the T'=4 P-wave phase shifts from the Regge-Khuri
analysis and the rest of the information from the N/D
calculations, one obtains a much better agreement with
the experimental data. The Regge-Khuri K* pole gives
understandably a negligible contribution to the S-wave
T'=% Km phase shifts; on the other hand, the N/D
calculations yield much larger values in the energy
range of interest, in qualitative agreement with the
phenomenological analysis of Wojcicki.!!

Finally, we would like to mention that the T'=%
S-wave Kw resonance (x) has not been taken into
consideration, since the conclusion of Ref. 11 does not
warrant it in the energy range considered.
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