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Exploiting the unitarity and analyticity properties of relativistic partial-wave amplitudes for pion-nucleon
scattering, the partial-wave amplitude has been analytically continued in the complex Jplane. The Froissart-
Gribov (F-G) representation in n-fl/ scattering is holomorphic in the domain ReJ)u+ —, provided the in-
variant amplitudes and their absorptive parts in the t and I channels are bounded by t,N for fixed s and
large t,44. Using the F/D method of analytic continuation it has been shown that it is possible to continue
the F-G representation in the interesting region ReJ&o.1& and it is meromorphic there. This has been done
under some reasonable assumptions on the asymptotic growth of the spectral function. It is further shown
that the tl//D method of analytic continuation does not work beyond the line I= -e and at I=0 there is
an accumulation of an infinite number of poles at threshold.

INTRODUCTION

'N a previous paper' we investigated the problem of
- ~ analytic continuation of relativistic partial-wave
amplitude in the complex angular-momentum plane for
identical pseudoscalar particles. The purpose of the
present paper is to extend this formalism to the problem
of pion-nucleon scattering. The notation of complex
angular momenta is introduced by obtaining a Froissart-
Gribov (F-G) representation for ir-X scattering, which

is a straightforward generalization of the F-G repre-
sentation in x-vr scattering. Apart from the dynamical
singularities, the F-G representation in x-3 scattering
contains singularities of gs type which occur in the
problem because of spin. Most of the earlier work' on
x-S scattering has been carried out in the 8' plane
(W'=s) in order to avoid the kinematical singularities
of the partial-wave amplitude which appear in the s
plane. The above argument for discarding the s plane is
not relevant in our approach, ' since in any case in our
problem of analytic continuation we have to de6ne a
new auxiliary amplitude which contains extra kine-
matical singularities. However, in order to preserve
continuity and connection with earlier work we have in
the following considered 8' as our variable instead
of s.

Exploiting unitarity and analyticity properties of
the F-G representation we have continued the partial-
wave amplitude in the interesting region of the J plane
where Regge poles can occur. This has been done ader
some reasonable assumptions on the asymptotic growth
of the spectral functions. XVe have further shown that
the domain of meromorphy of the partial-wave ampli-
tude, using the 1V/D method of analytic continuation,
cannot be extended beyond J=——,', and at J=O there
is an accumulation of poles at the threshold.

I. THE AUXILIARY AMPLITUDE

In m-iV scattering, the partial-wave amplitude is given
by'

E+M
a~1/2 CA JT1/2+(ti M)BJT1/23

16m H/

I —3I
+ L As~1/s+(&+—M)Bs+1/&j ~ (1)

16+8"
where

{Bs,As) = d(cost)) {B(s)t,u), A (s,t)u) )Ps(COSH) . (2)

Our task now is to express A J, Bg in terms of an F-G
representation. ' This is done by assuming the following
Mandelstam representation for A (s,t,u) and B(s,t,u):

1 "A, (s, t')
A(s, t,u)= — —

i
dt'

t'/

1 " A„(s,u') u)~+- —
/

du'
Sr (sr+1)2 u u Q 1

+ Q t" 'L (s)+ Q u" 'M (s), (3)

+Q t" 'L„(s)+Q u" 'M„(s), (4)
n=ln=l

where A, (s,t), B,(s,t) are the absorptive parts in the t
channels and A (s,u), B (s,u) are the absorptive parts
in the u channels. In view of the conditions (3) and (4)
we demand that there exist an 0,(E such that

~A4(S, t),B4(S,t) ~/t +' —+ 0 aS t —+oo,

1 "B,(s,t') /t)"
B(s,t,u) =R,/M' s+R„/M' u+ —

i

——
i

dt'
4 t t kt'/—

1 " B (s,u')/u)~

(~+1)2 S I XN /

(Ag(s, t),B,(s,t) ~/t
—'~~ as t ~~,

' V. Singh, Phys. Rev. 129, 1889 (1963).
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Haridas Banerjee and G. C. Joshi, Phys. Rev. 137, 81576
(1965).

2 W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960);
S. C. Frautschi and J. D. %'alecka, ibid. 120, 1486 (1960).



G. C. JOSH I

with similar relations for A„(s,u) and B„(s,u). Substituting Eqs. (3) and (4) in (2) we obtain for /) 1V that

and

Nlrb

4

/f& Q j~i/2f 1+ fA, (s,t)+(—1) +'"
2q2) M+1)

( u —(M' —1)'/s)
u Q j+i/2f 1+ IA„(s,u), (7)

2q' )

2g2

1 M' —(N' —1)'/s
(—1)""'Qj+i/21 1+

le g

(
dh Q j+i/21 1+ &i(s t)

2q'

P( 1)jT112
u —(M' —1)'/s)

/Eu Q jwi/2f 1+ fB„(s,u) . (8)
2g

/ M' —(1I'—1)'/sq /[s —(M'+2)]'i'+[M' —(M' —1)'/s]'") ~i 'i" 1

Q j-i/21 1+ ) l[s—(M'+2)]'/' —[M' —(M' —1)'/s]'/'
when

f

Jf~~, (9)
J1/22g

In order to get rid of the factors of the form (—1)j+'/2 in Eqs. (7) and (8), we define odd and even amplitudes de-
noted by aj+&/2"(W). For example, aj i/2 contains J values J=~, ~, $, and aj i/2'(W) contains J=2, 2,

. The amplitudes aJ+&/2" can now be defined for complex values of J as they satisfy Carlson's theorem,
but they will have a different continuation in the complex J plane. In our analysis we shall consider the amplitude
8j $/Q (W); however, a similar analysis can be carried out for other amplitudes.

In view of conditions (5) and (6), representation (1) for a' '(JW-„W) defines a holomorphic function of J in the
region Re J )n+ —,'. Our problem now is to analytically continue a' '(JW-'„W) in the interesting region ReJ&n+-,'.

The Grst step in doing this is the introduction of an appropriate auxiliary function. Our choice of the auxiliary
amplitude in the ir-ir scattering was crucially dependent on the l-asymptotic behavior of a+(l,s) [see Sec. II of
Ref. 1].Let us apply the same arguments here. Considering the contribution of the nucleon pole term in Eq. (8)
we find

which indicates the need of a factor of the form

[s—(M'+ 2)]'/'+ [M' (M' —1)'/s—]'/-'

[s—(M'+ 2)]'"—[M'—(M' —].)'/s]'/'

in the representation of a"(J&2, W). It can also be shown that with this choice of the auxiliary function all the
F-G representations occurring in Eqs. (7) and (8) are bounded in J.We would like to point out at this stage that the
choice of the auxiliary amplitude corresponding to the second and third terms of the right-hand side of Eq. (8)
introduces extraneous poles in the definition of a' '(J&2, W). Therefore, in view of Eq. (9) we define

where

([s—(M'+2)]'/'+[M' (M' —1)'/s]'—/') j '/' 16irW
h (J~-' w)=l ~ (J+-,', W)

l[s—(3II'+2)]"'—[M'—(M' 1)'/s]" ')— 8~1
X(J,W) 16irW

a"(JW-' W)
(4q2) j—i/2 ++1

X(J,W) =—([s—(M'+2)]'/2+[M' (M' —1)'/s]'/')"—

(10)

(12)

h"(J&i2, W) as defined in Eq. (10) satisfies all the re-
quirements of an auxiliary function [See Sec. II and
Ref. 1], i.e.,

(i) h' '(JW —'„W) does not contain any extra singu-
larities in the 8"plane and there is a finite gap between
the cuts arising out of the crossed-channel singularities
and the unitarity cuts. This will be accomplished in the
following section by appropriately choosing the cuts of
the auxiliary function.

(ii) The s-asymptotic behavior of h' '(JW —„W) is
J-independent.

(iii) h' '(JW 2, W) is a bounded function of J.

[s—(M'y 2)]'/'+ [M' —(M' —1)'/s] (13)

never vanishes on the physical sheet.

In this connection let us discuss a more interesting
problem, which is a peculiar feature of unequal-mass
kinematics, i.e.,

q2 —+~, when 8' —+ 0.

Such a behavior of q' introduces (J—~)-order poles in

(iv) h' '(JW —,', W) does not introduce any extraneous
poles in a' '(JW-,', W). This is because
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a"(J+-' W) if we define

a' '(J&—' W)a=—
(4 2)J—1/2

(15)

In our definition of the auxiliary amplitude, Eq. (10),
the above mentioned difficulty is absent. This is because

the noninteger values of J'—-', . Such a branch cut of (8)
when mapped in the 8' plane fills the gap between the
right-hand and the left-hand unitarity cuts coming
from A (s,24) and A, (s,t). This kinematical branch cut
can be easily removed provided we choose the cuts for
(4q2)~ "' as follows:

&(J W)/(4q') '/' ~ constant, when W —+ 0. (16)

The problem of auxiliary amplitudes has recently been
considered by Martin and Uretsky, ' in connection with
the one-nucleon-exchange problem in pion-nucleon
scattering. They defined an auxiliary amplitude:

—M —1&W&M+1,
i~ &5"&0.

Further, if we choose the cuts for

([s—(M'+ 2)]'/'+ [M'—(M' —1)'/s] "2)'i

as

(21)

h(JW-2', W) = (W'/4g')~ '"u(JW-2', W). (17)

The above amplitude, however, is not convenient for
our analysis. This is because Eq. (17) does not satisfy
requirement (iv) as mentioned for the auxiliary
amplitude.

—(M'+2)'"& W& —(M' —1)/M,
(M' —1)/M &W& (M'+2)'",

i~ &8'&0,
(22)

we Kind that there is a Gnite gap between the cuts on the
real axis.

II. ANALYTICITY OF Ii' '(j~-', W) IN
THE W' PLANE

The analyticity properties of /2' '(JW-'„W) as de-
fined in Eq. (10) essentially depend upon the F C. repre--
sentations for A Jg g]g and 8gp g/g. The cuts in the F-C
representation arise from the known properties of the
Qq~i/2 functions and the spectral functions A, (s,t),
A„(s,t) and B,(s,t), 8 (s,24).

Let us consider the F-G representations term by term.
The first term on the right-hand side of Eq. (8), which
comes from the I-channel nucleon pole, gives rise to
two short cuts, i.e.,

—(M'+2)'"& W& —(M' —1)/M,
(M' —1)/M& W&(M'+2)'/'. (»)

The second term of Eq. (8), which comes from the t

channel, i.e., xm —+ EX, gives rise to a circular cut and a
cut along the imaginary axis, i.e.,

f
W

f

= (M2 1)1/2,

i~ &W&+i~. —
The contribution of the crossed ~.&V channel or the I
channel is given by the third term in (8), which gives
rise to the following cuts:

—(M—1)&W&(M—1),
(20)i~ &W&—+i~.

Apart from these singularities we also have an extra
cut of one function, namely, Qz 1/2(s), which comes for

III. STUDY OF THE LEFT-HAND FUNCTION

The partial-wave amplitude as defined in Eq. (1)
contains two types of amplitudes, namely, a(J—2, W)
and u(J+ —',, W) representing transitions from J—

2 to
J—-', and from J+—,'to J+-,'states, respectively. For the
purpose of unique interpolation we further subdivide
each of these amplitudes into odd and even amplitudes,
represented by a"(J 2, W) and —a"(J+—.'„ IV).

Let us now consider the amplitude a'(J—2, W),
which is a holomorphic function of J in the region
ReJ) n+-2. Our subsequent discussion in this paper is
devoted to the analytic continuation of u'(J —-'„W)
to region ReJ&u+12. For the other amplitudes, how-

ever, a similar analysis can be carried out.
It follows from Eq. (11) that

X(J,W) 162rW
It'(J —-'„W)= a'(J—-' W)— . (23)

(4/72) J—1/2 E+ 1

If 2in12(J 2, ,W),—2i422(J —2, W), and 2i424(J——,', W),
2i422(J——', W) are the discontinuities of /2'(J ——,', W)
across the short nucleon cuts

[—(M'+2) '/' &W & —(M' —1)/M]

and [(M'—1)/M &W & (M'+2)'/'] the crossed-nucleon
cut [—(M —1)&W&(M—1)], the circular 2r-2r cut
[f

W
f

= (M' —1)'/'], and the imaginary cut

[—i~ &W&z~],

respectively, then the left-hand function is given by

F'(J 'W) =——-—(M2—I) //M

(~2+.cZ) 1/ 2

(J 1 W&) 1 (M2+2) ~/2
422(J——,', W')

d5"

ir 1 ~ (J 1 W~)+- dW' +——8'
4 A. %V. Martin and J.L. Uretsky, Phys. Rev. 13S, 8803 (1964).

~4(J—2, 0) 1 " ~2(J—2, X)
id' +— dy, (24)

We '& —y 2r „y+iW
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rais)where (» the last two integ
1)»2e'&= Ye'

and

„„(g—-'„W) .

g =23''

yI), we can ea»Iy calculaterocecIure « «Following the proce

8.(q 1 W) = Z» (~
k=&

tjpns, we ~nally obtainbut stra1g tforward calcula 1oPnd after sonle leng 5"

(25)

where
00

p .(J—-'„W)=
'trt 4 S —S

/
„(2(s',t))][X(S J—1/2(,(, t))—x( )Q -"

t z .—t)x(» ('")
00

p, e(g—'-„W)=- dQ

(M+1)

du))p (g—s—u, u)X(s)J—1/2

S —S
//

P12(s,u)
(2/(s u)) —x(s )QJ—/

1

, 2'(s', zt))][X($)QJ—1/2

00

p,e(g -'„W)=—
M+X) '

-
t g—.—t)x'(» (")dtQ. 1/(2(st»~" ' '

—S1

.1 (s t),
, (.(,,t))-x ($)Q -", ,(2(s', t))][x (s J 1/2—

00

dlp,.(J—-'„W)=
(M+&) M+&)

))y, (g—s—u, u) X (s) ' 2g)
I

Plz($ / )
/

(2 (S u)) —X ( )Q „,(s(s',u))][x (s J—1/2S
S —S

00

00

F5'(J—2~,.( — W) = ——
M+&) '

dt Q „,( (,t))x"( )&'(' S—t), (30)

P12(s, t) „((S t))—X (S )Q J+1/2, 2(s(s', t))][X (S J+1/2
S —S

/

00

dlp,e(J '„W)=--
(M+&) M+1) ' S —S

M+&) '
~, uu,d„Q, „,( '(. , ))x"('

/ /
(S)Q J+1/2

p12(', ) „(,(su)) —x"(')Q+''' ''"

00

p,.(g -'„W)=—
M+&)'

/
P (' ) „, „(,(s, t))—X"'(s')Q'+"'[x "(s J+1/"-S

00
S —S

//'

32)t))y (t, g—s X

p e(g —'„W)=— „,(, ) „, (. (, „))—X ( )Q+/'
/

, ,(2'(s', u))]ds [x (S +1/2
S —S

2 2—
M+&) '

// /e/ '//')
~e

'—
/e/

'
{—/e+/e),

16 X(J W) 1+———Q J+1/2
2/J22) J+3/2

dl

(M

(M+I) '

4 p(JW)
(W—M)QJ,» 1+

2
($)QJ+,/, (z(s,u))42 '

(4qz)
Q —$—u/ u)+

2 J+1/2
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where the symbols are defined in Appendices A and B Lsee Eqs. (A1) to (A9) and (B8) to (B13)).For a check on the
calculation one can see that F'(J—-'„W), as defined in (25), has only those cuts which are given by Eqs. (18) to
(22) and further that F'(J ip, W—) has no right-hand or left-hand physical cut. The discontinuities of F'(J ', , W—)—

across the unphysical cuts are the same as those of the auxiliary partial-wave amplitude h'(J —p, W).
Let us now examine the J-asymptotic behavior of the representation (25). This is fairly simple because of the

presence of ps+, i2(z) functions with arguments greater than unity. Vsing a similar procedure as for Ref. 1, we obtain

F'(J——',, W) O(c/[ J["')
[ J(~po. (34)

The above asymptotic behavior of F'(J p, W—) will remain true throughout the domain of validity of the repre-
sentation (25).

IV. THE N/D METHOD AND THE DOMAIN OF MEROMORPHY

We now apply the usual cV/D formalism to h'(J —p, W) such that

h'(J ——,', W) =N(J ', , W)/D—(J—,', W)—— (35)

where D(J—2, W) contains the unitarity cuts [—~ (W( —(M+1) and (%+1)&W& ~ ), and the rest of the
cuts, as defined by Eqs. (18) to (22), are contained in N(J —-'„W). The unitarity relation for h'(J —2, W) for
ReJ)n+p, W)M+1 is given by

h'(J —ipW+ie) —h'(J —ip, W —ie)=2'(J,W)h'(J —pi, W+ie)h'(J ip, —W—ie), (36)

(4g')~ '" F+M
p(J, W) =

q
— R(J,W)
X(J,W)

'
167rW

(37)

In the elastic-unitarity approximation, however, R(J,W) = 1. The functions N(J——',, W) and D(J—2, W) satisfy
the following integral equations:

gr gr —kI—1

D(J '„H ) =1———- y(J, W')N(J ——,', W') W —Wp

(w' —wp) (w' —w) ~ ~+

y(J, W') N(J--,', W')
dW'- (38)

(w' —w, )(w' —w)

rv(J ;, w)=F—(—J——,', w)

iF (J ,', W-') —L(W———W,)/(W' —W,)7F (J—-'„W)
N(J ,', W')P(J, W—)—dw'

1 " F'(J ,', W') —L(w ———Wp)/(W'—Wp)]F'(J ——,', W)
N(J —2, W')p(J, W')dw'. (39)5"'—H/

The functions appearing in the above equations can
easily be obtained, for negative values of 5', by apply-
ing the well-known MacDowell symmetry' to Eq.
(1), i.e.,

' '(J—-' —W)= —"(J+-' W) (40)

which, in view of Carlson's theorem, can be con-
tinued to the noninteger values of (J——',). The method
for obtaining F'(J——,', —W) is thus the same as for
F'(J—-' W).

In the problem of ~-x scattering, ' in order to prove
the existence and the boundedness (in s) of the left-

hand function, we assumed certain bounds for the
amplitude and its absorptive part. Similarly, in the pres-
ent investigation we assume the following conditions:

I~i,pl-&' '/s «r s &» (41)

' S. %. MacDowell, Phys. Rev. 116, 774 (1959).

(where 8 is any arbitrary large positive number) and

i pi, p i
-t'i' &/s, for s, t)—R, (42)

where y& 0 and the other notations are de6ned in

Appendix A and B )see Eqs. (A1) to (A9)]. These .
assumptions are clearly more restrictive than our as-
sumptions in Ref. 1. Ke have made them in order to
simplify the problem and to avoid the complications
due to subtractions in the dispersion relations for
A, (s,t) and A„(s,l). Our ansatz regarding the asympto-
tic behavior, as in (41) and (22), is consistent with the
observation made by other authors' that the B(J——',, s)
amplitude should vanish gs times faster than the
amplitude A(J—-'„s). This can easily be seen, if we

substitute Eqs. (41) and (42) into Eqs. (7) and (8),
respectively. %e would like to point out at this stage

P V Singh and B.M. Udgaonkar, Phys Rev. 123, 148.7 (1961).
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that restrictions (41) and (42) on the asymptotic
growth of the spectral functions were first used by
Mandelstam' in connection with the problem of x-z
scattering.

It is now possible to show (see Appendices A and B),
that if conditions (41) and (42) are satisfied, there exists
a left-hand function F'(J—is, W), such that

The above properties of F'(J——,', W) are sufficient to
guarantee that the integral Eq. (39) is nonsingular.
Equation (39) will be nonsingular provided

~—M—1

iF (J——,', W) i'dW(~,

(i) F'(J st, W—) is holomorphic for iF'(J——,', W) ['dW(~, (46)

ReJ)max(1 —y, —1)+s;

(ii) F'(J—si, W) asymptotically vanishes as

(43)
i
&(W,W) i

' dW dW'( ~, (47)

where
iF'(J—s, W)i cs s, s —+an

8=min(i, y) . where

i E(W,W')
i
' dW dW'( ~ (48)

F'(J——',, W') —L(W—W,)/(W —W, )jF (J—-' W)
E'(W, W') = y(J, IF') .

W 8' (49)

and

dR'8" 4~

—M—1

d8" 8" 4~

(M+1) /W

dX& ~,

For y) isthe conditions (4S) and (46) are clearly satis-
fied; thus, in order to show that Eq. (39) is nonsingular
we have only to show that the integrals I and I' defined
by Eqs. (47) and (48), respectively, should converge.
Substituting 8"=8' in I and I', we obtain

We therefore fi.nd that our method does not work be-
yond the line ReJ= —~. Consistency demands that
y(.2, which means the amplitudes and their absorptive
parts should not vanish faster than t '/s, t '"/s in t

i
see Eqs. (41) and (42)]. In the case of ~-~ scattering a

similar situation has been discussed in Ref. 1.
In the z.-vr scattering, ' apart from the singularities at

negative integral values of /, we also considered the
accumulation of poles at l= ——,

' at threshold. Let us in-
vestigate this feature in the present problem. The be-
havior of D(J——,', W) i Eq. (38)j at IV'= (tIf+1)' and
at J=Ois given by

provided y)-,'. We have thus shown that N(J ——,', W)
is a meromorphic function of J in the domain

ReJ)max( —1, 1—y')+ —', ,

where y'=max(-', ,y). It follows that h'(J ——,', W)& and
therefore u'(J ——,', W), is a rneromorphic function of J
in the domain ReJ)max( —1, 1—y')+-,'.

7. EXTENSION OF THE DOMAIN OF MERO-
MORPHY AND ACCUMULATION OF

POLES AT J=O

Let us now come to the question of how far to the left
we can extend the domain of meromorphy. So far we
have shown that the partial-wave amplitude u'(J ——',, W)
is meromorphic in the domain ReJ& ~3 —y', with
y'= max(-,',y). However, at J=——'„we find that: (i) The
representation for F'(J—ts, W) develops fixed poles
owing to the presence of Qj ]/s functions Lsee Eq. (25)7.
(This feature has also been observed by several other
authors. ) (ii) The kernel of the integral Eq. (39) is no
longer square integrable.

' S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).

D(J—,', W) =1—
I Ws —yr—y1)spy(J),

where P(J) is at m'ost merrnorphic at J=O. If f(J)~is
nonzero and bounded in the neighborhood of J=0, then
the zeros of D(J—-'„W) will be given by

2im7rJ=
lni W' —(iIE+1)'$ 1ni W' —(ALII+1)')

where a= —1nf(0) and m=1, 2, 3 . The above equa-
tion clearly shows the accumulation of poles of
g'(J ——',, W) in the neighborhood of J=0 and at
threshold.

In conclusion, we have shown that from the Mandel-
stam representation with a finite number of subtractions
for the total scattering amplitude, in x-Ã scattering,
there exists a domain of holomorphy ReJ)n+ s of the
Froissart-Gribov representation defined by Eq. (1).
Under some reasonable assumptions on the asymptotic
growth of the spectral functions Eqs. (41) and (42) it is
possible to analytically continue the F-G representation
with the help of the N/D method of analytic continua-
tion. And it has been shown that the F-G representation
is meromorphic in the domain ReJ& ~3 —y' with
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(i) F'(J——„W) is holomorphic in the region

ReJ&max( —1, 1—y)+22;

(ii) F'(J—2, W) asymptotically vanishes, i.e.,

F'(J—-'„W) s ', s~~

(81)

(82)

where 5=min(1, y).
Let us now consider Fi' as defined in Eq. (25) in the

form

Fi'(J——,', W)=4 Q M2, (83)

APPENDIX B

In this Appendix, we shall prove certain results re-
garding the existence and the asymptotic behavior of
the left-hand function F'(J——', , W). We shall show that

where X(J,s) is defined in Eq. (12) and p'(s, t) is defined
in the same sense as in Eq. (A12) of Ref. 1.

We shall now show that the required properties of
the left-hand function, namely, (81) and (82), are true
for each M2 Lk=1, 2, 3, 4).

(i) Mi. In view of the Eqs. (A6) and (A10), the first
integral on the right-hand side of (84) exists for
Re&2 —y and vanishes asymptotically in s, like (82).
For the second integral of (84), we use (A10) and follow
a similar procedure, to that given for Eq. (87) of Ref. 1.
We finally obtain that the second integral of (84) has
the properties as demanded by (81) and (82).

(ii) M2. Let us write (85) in the following form:

ds'pi2(s', t)F(s', t,s), (814)
g tJ+~f2 (~ 1)~

where F(s', t,s) is bounded in t and analytic in s' in the
interval (M+1)2&s'&R. Hence following Eq. (810)
of Ref. 1, we obtain

dt 4'(s, t)x(s)Qs i/2(s(s, t))
F(s', t,s) = p c„(s,t)2",

n=o
(815)

dt
Pi2(s'~t) where

d$ x($ )Qs 2/2(s(s', t)) (84)
s —s 2 = s' ——,'(R+ (M+1)2]. (816)

00

M2= — dt
7t

Pi2(s', t)
ds

s —s/

X(x(s)Qj 2/2(s($)t)) x($ )Qj 2/2(s($ yt))] y (85)

Using (815) and (A13) in (814) we obtain

tl—y ~

tJ+1/2
(817)

M, = x(s) dt A, (s)t)Qz, /2(2(s, t))

Pi2(s', t)
ds' x(s')Qz i/2(s(s', t)), (86)

S S

clearly, M2 exists provided ReJ) ~
—&. Similarly, as

in Eq. (813) of Ref. 1 it can be shown that

M2 max(s &,s ') when x~~.
(iii) M2. The first integral of (86) exists for all J

such that ReJ)——,. As s tends to infinity it is given by

M.= x(s) dt y2(t, &—$—t)Qs i/2(s(s, t)), (87) lns
M,'- A, (s, t)dt,

In the above and in Eqs. (25) to (33), we have used the
following notation:

x(s) =X(J,S)/L4/t2(s)]s '",
x'($) =(~(JP')/L4&'(s) 1""')(V's—M),

X(J,s)
x"($)= 4 [&(s)—M)'

I 4q2($))s+2/2

(88)
M2' 0Ls—')

(Bg) In view of condition (A12) the second integral of (86)
satisfies all the requirements of (81) and (82).

(iv) M4. From the boundedness condition (A10)
and Eq. (A7) it follows that

X(J,s)
[Z(s)—M) (Qs+ M),

L4g2($)) J+2/2

Qs(1+ t/2q2(s)) =Qs(s(s, t)),

( I—(M' —1)2/s)
Q, i

1+ I=Q.("(, »,
2q'(s)

(811)

(812)

(»3)

@2(t, Z —s—t) & constant(t' —~/s)

for large t and s)0. Therefore, M4 exists if ReJ) 2
—y

and is bounded asymptotically by s &.

We have thus shown that Fi as defined in Eq. (25)
satisfies the conditions (81) and (82). A similar proof
exists for all F2's, and the conditions (81) and (82) are
satisfied.


