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Exploiting the unitarity and analyticity properties of relativistic partial-wave amplitudes for pion-nucleon
scattering, the partial-wave amplitude has been analytically continued in the complex J plane. The Froissart-
Gribov (F-G) representation in #-N scattering is holomorphic in the domain ReJ >a+3% provided the in-
variant amplitudes and their absorptive parts in the ¢ and % channels are bounded by ¢*,u* for fixed s and
large #,4. Using the N/D method of analytic continuation it has been shown that it is possible to continue
the F-G representation in the interesting region ReJ <«+-% and it is meromorphic there. This has been done
under some reasonable assumptions on the asymptotic growth of the spectral function. It is further shown
that the /D method of analytic continuation does not work beyond the line J=—% and at J =0 there is
an accumulation of an infinite number of poles at threshold.

INTRODUCTION

N a previous paper! we investigated the problem of
analytic continuation of relativistic partial-wave
amplitude in the complex angular-momentum plane for
identical pseudoscalar particles. The purpose of the
present paper is to extend this formalism to the problem
of pion-nucleon scattering. The notation of complex
angular momenta is introduced by obtaining a Froissart-
Gribov (F-G) representation for w-N scattering, which
is a straightforward generalization of the F-G repre-
sentation in -7 scattering. Apart from the dynamical
singularities, the F-G representation in 7~V scattering
contains singularities of 4/s type which occur in the
problem because of spin. Most of the earlier work? on
m-N scattering has been carried out in the W plane
(W?2=5) in order to avoid the kinematical singularities
of the partial-wave amplitude which appear in the s
plane. The above argument for discarding the s plane is
not relevant in our approach,! since in any case in our
problem of analytic continuation we have to define a
new awuxiliary amplitude! which contains extra kine-
matical singularities. However, in order to preserve
continuity and connection with earlier work we have in
the following considered W as our variable instead
of s.

Exploiting unitarity and analyticity properties of
the F-G representation we have continued the partial-
wave amplitude in the interesting region of the J plane
where Regge poles can occur. This has been done under
some reasonable assumptions on the asymptotic growth
of the spectral functions. We have further shown that
the domain of meromorphy of the partial-wave ampli-
tude, using the /D method of analytic continuation,
cannot be extended beyond J=—3%, and at J=0 there
is an accumulation of poles at the threshold.

(llgz)tridas Banerjee and G. C. Joshi, Phys. Rev. 137, B1576
965).

2W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960);
S. C. Frautschi and J. D. Walecka, sbid. 120, 1486 (1960).
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1. THE AUXILIARY AMPLITUDE

In 7-N scattering, the partial-wave amplitude is given
by?

E+M
aj¥1/2= [AJ3F1/2+(W_M)BJ:FI/2]
167 W
E—M
+ [—Aspip+(W+M)Brye], (1)
160 W
where
1
{Br,A;}= d(cost){ B(s,t,u),A(s,t,u)} P ;(cosh). (2)

-1

Our task now is to express 4, By in terms of an F-G
representation.® This is done by assuming the following
Mandelstam representation for A (s,t,%) and B(s,f,%):

1 wAt(S,tl) ¢ N
A(s,tu)=— / <~> dt
mJs '—t \V
1~ Au(su)fu\Y
AL
7)o W—u \u

N N
+ L LT L wLG), @)

n=1

1 © Bg(s,l/) t N
B(s)tau)=R3/M2-—S—|—Ru/M2-—u—|—~/ <_/> ar
s {—1 \¢

1 = Bu(s,u') f u\¥
AL
m™J (M+1)? u'—u M/
N _ N _
+> t"*an(S)-l—Z “"_an(s)y 4)
n=1 n=1

where A4,(s,t), Bi(s,t) are the absorptive parts in the ¢
channels and A4 .(s,%), Bu.(s,#) are the absorptive parts
in the % channels. In view of the conditions (3) and (4)
we demand that there exist an a<V such that

| Ae(s,8),Be(s,)| /tet¢—0 as (—eo, (5)
an
| 4u(s,),Bi(s,f)| /1= =0 as
3 V. Singh, Phys. Rev. 129, 1889 (1963).
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with similar relations for 4,(s,#) and B,(s,%). Substituting Egs. (3) and (4) in (2) we obtain for /> NV that

1 ] ¢ ] u—(M?2—1)2/s
Aﬁ1/2=“—2{/ dt QJ¥1/2<1+_‘>At(S,t)+(_ 1)J¥1/2/‘ du QH1/2<1+m—>Au(S,M)} , (1)
mq* /4 2¢? o141

2¢?
and

1 M2—(M2—1)2/s * ¢
BJ¥1/2=““{(_ 1)J:FUZQJ3F1/2<1+ >+/ dat QJ:F1/2<1+"'“>Bt(S;t)
,n.qz 2q2 4 2q2

© u— (M2—1)2/s
+(— 1)H1’2/ du QJ:F1/2<1+———‘—‘——>BM(S;”)] . (8)
(ar+1)? 2¢*

In order to get rid of the factors of the form (—1)/F1/2in Eqgs. (7) and (8), we define odd and even amplitudes de-
noted by asF1,2¢°(W). For example, as_1/2° contains J values /=%, §, 5,- - and as_1/2°(W) contains J=%, Z,
11 .... The amplitudes asF1/2*° can now be defined for complex values of J as they satisfy Carlson’s theorem,
but they will have a different continuation in the complex J plane. In our analysis we shall consider the amplitude
aj—12(W); however, a similar analysis can be carried out for other amplitudes.

In view of conditions (5) and (6), representation (1) for a*°(JF%, W) defines a holomorphic function of J in the
region ReJ>a-+3. Our problem now is to analytically continue a*°(JF%, W) in the interesting region ReJ <a+7.

The first step in doing this is the introduction of an appropriate auxiliary function. Our choice of the auxiliary
amplitude in the 7w scattering was crucially dependent on the /-asymptotic behavior of a.(l,s) [see Sec. I of
Ref. 17]. Let us apply the same arguments here. Considering the contribution of the nucleon pole term in Eq. (8)
we find

QJ—1/2<1—+

M2__.(M2_1)2//S [S—(M2+2)]1/2+[M2—(M2—1)2/S]1/2 —(J—1/2) 1
>~< > when |J]|—w, (9)

2 [s— (M2 12— M= (2= 1Y/ i’
which indicates the need of a factor of the form

[s— (4 2) T4 [ — (M2 1)2/s T -1
<Es—<M2+2>31/2—[M2—<M2—1)2/sjl/2> ’

in the representation of a¢°(JF3%, W). It can also be shown that with this choice of the auxiliary function all the
F-G representations occurring in Egs. (7) and (8) are bounded in J. We would like to point out at this stage that the
choice of the auxiliary amplitude corresponding to the second and third terms of the right-hand side of Eq. (8)
introduces extraneous poles in the definition of a®°(J7F%, W). Therefore, in view of Eq. (9) we define

Ls—(M24-2) 24 M 32— (M>—1)2/s 12\ T—112 167 W
heo(JF3, W)=< > e (J+%, W)—— (10)
[s—(M242) 12— [ M2— (M2—1)2/s M2 E+1
NJ,W) 160 W
=———q*°(JFL W) , (11)
(4g2)7-112 E+1
where
N, = (o (M2-2) 1 [M2— (M2 1)3/5 T2y, (12)

he°(JF%, W) as defined in Eq. (10) satisfies all the re- (iv) heo(JF%, W) does not introduce any extraneous
quirements of an auxiliary function [See Sec. II and poles in a®°(JF%, W). This is because

Ref. 1]7 i.e.; [s—(M2+2)]1/2+[M2— (M2—1)2/3] (13)
(1) keo(JF3%, W) does not contain any extra singu-

larities in the W plane and there is a finite gap between never vanishes on the physical sheet.
the cuts arising out of the crossed-channel singularities
and the unitarity cuts. This will be accomplished in the
following section by appropriately choosing the cuts of
the auxiliary function.

(ii) The s-asymptotic behavior of k®°(JF3, W) is g2 —o
J-independent.

(iii) %e°(JF%, W) is a bounded function of J. Such a behavior of ¢* introduces (J—3%)-order poles in

In this connection let us discuss a more interesting
problem, which is a peculiar feature of unequal-mass
kinematics, i.e.,
when W —0. (14)

)
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a®°(JF3%, W) if we define

a°(JFL, W)

(4q2)J——1/2

In our definition of the auxiliary amplitude, Eq. (10),
the above mentioned difficulty is absent. This is because

NJ,W)/(4¢?)7—12 — constant, when W —0. (16)

(15)

The problem of auxiliary amplitudes has recently been
considered by Martin and Uretsky,* in connection with
the one-nucleon-exchange problem in pion-nucleon
scattering. They defined an auxiliary amplitude:

HIFE, W)= (W/4g) 7 Pa(JF4, W), (17)

The above amplitude, however, is not convenient for
our analysis. This is because Eq. (17) does not satisfy
requirement (iv) as mentioned for the auxiliary
amplitude.

II. ANALYTICITY OF he°(J¥3%, W) IN
THE W PLANE

The analyticity properties of h*°(JF3, W) as de-
fined in Eq. (10) essentially depend upon the F-G repre-
sentations for 4 jr1/2 and Bysi,.. The cuts in the F-G
representation arise from the known properties of the
QuF12 functions and the spectral functions A(s,t),
Au(s,t) and By(s,t), Bu(s,u).

Let us consider the F-G representations term by term.
The first term on the right-hand side of Eq. (8), which
comes from the #-channel nucleon pole, gives rise to
two short cuts, i.e.,

— (242 KW S — (M2~ 1)/M,
M=)/ M <W < (M2+2)12.
The second term of Eq. (8), which comes from the ¢

channel, i.e., 7w — NN, glves risetoa arcular cutand a
cut along the imaginary axis, i.e.,

|| =Gy,
—i0 <W< 40,
The contribution of the crossed wV channel or the #
channel is given by the third term in (8), which gives
rise to the following cuts:
—MU-1)<WS(M—-1),
—t0 <W< 440,

(18)

(19)

(20)

Apart from these singularities we also have an extra
cut of one function, namely, Qs_1/2(2), which comes for

1 p—@=1m a(J—=3, W) 1 (M24-2)172
Fe(J—3, W)-—/ aw -—-————+—[ aw’
(

M) /M

(M) W' —w
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the noninteger values of J—3%. Such a branch cut of (8)
when mapped in the W plane fills the gap between the
right-hand and the left-hand unitarity cuts coming
from A,(s,u#) and 4(s,t). This kinematical branch cut
can be easily removed provided we choose the cuts for
(4¢%)7—1/2 as follows:

—M—1<W<M+1,

21
100 <WL0. @0

Further, if we choose the cuts for
(I:s___ (M2_|__ 2)]1/2+ [M2__ (M2,_ 1)2/‘?]1/2)2(J—1l2)
as
— (42 < W < — - 1)/,
(M2=1)/M<W < (M>+2)'7,
100 <WLO,

we find that there is a finite gap between the cuts on the
real axis.

(22)

III. STUDY OF THE LEFT-HAND FUNCTION

The partial-wave amplitude as defined in Eq. (1)
contains two types of amplitudes, namely, a(J—%, W)
and a(J+31, W) representing transitions from J—3 to
J—3% and from J+73 to J-+3 states, respectively. For the
purpose of unique interpolation we further subdivide
each of these amplitudes into odd and even amplitudes,
represented by a®°(J—%, W) and a®°(J43%, W).

Let us now consider the amplitude a®(J—3% W),
which is a holomorphic function of J in the region
ReJ>a-+3%. Our subsequent discussion in this paper is
devoted to the analytic continuation of a*(J—%, W)
to region ReJ<a-+3. For the other amplitudes, how—
ever, a similar analysis can be carried out.

It follows from Eq. (11) that

) AW
WT—3, W)y=——a
(4q2)J—1/2

If 240y (J—%, W), 2ia3(J—%, W), and 21a4(J—%, W),
2ias(J—31, W) are the discontinuities of A¢(J—3%, W)
across the short nucleon cuts

(-2 2<W<—(M*—1)/M ]

and [ (M2—1)/M <W <L (M?*+2)117], the crossed-nucleon
cut [—(M—1D)<W<(M~1)], the circular == cut
W |=(M?—1)"/%], and the imaginary cut

[—io SW<ie ],

respectively, then the left-hand function is given by

167 W
1 W)———. (23)

as(J—3%, W)
w-w

1

, (29

1 py=t as(J—=5, W) v >  a(J—3,¢) 1 as(J—3%,9)
+—/ aw’ + / 1de : / dy
T J -1y wW—-w wJo Wed—y  7J_ y+iW

4 A. W. Martin and J. L. Uretsky, Phys. Rev. 135, B803 (1964).
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where (in the last two integrals)
W= (M2—1)11%i% =it
and
W' =1y.
Following the procedure of Ref. 1 (see Sec. II), we can easily calculate
5

2 a(J—3%,W).

And after some lengthy but straightforward calculations, we finally obtain

Fe(J—3, W)= Z Fie(J—3%, W), (23)
where

2( )
(=3, W)=— / d / )0 a6 =%)"Y
(M41)?

s'—s

+4/ dt Qr_1/o(z(s,0)a(l, Z—5—1)x(s), (26)

4 re "o 13(s’,2)
Fae(J—13, W)=— / du / a5 L ()0 2 (50) = X() Qoo (0]
(M+1)?

(M+41)* s'—s

+4 / s o (s W5ty a)x(s)d,  (27)
(M+1)?

4 > ° p1a(s’,1)
Fe(J—3, W)= / & / ()0 e (5,0)— X ()0 oa(50))]
m™J 4 (M+1)2

S“‘S
+4 / 01 Qs oy (s0)aly S—s—Dx'(s), (29)
4

P13( U

Fe(J—%, W)=- / d%/ [x'(S)QJam(Z'(S,“))‘X'(S/)QJ—U?(Z(S',%))]
r4n? (M+1>2 s'—s

4 / 0 Qs )Wo(Z—s— 0, X (5), (29)
(M+41)?

12( 7
Fo(J—1, W)= —— / / )0 o5, (0ol )]
(M-i-l)2

S—S
—4/ dt Qriapoz(s,0))x" (s)po(l, Z—s—1), (30)

13( )
Fe(J—3, W)= / du / a2 5) 0 (50 =X () Qo (')
(M+1)2 (M+1)? s'—s

+4 f 01 Qs G (Wa(E—s—10, ), (31)
(M+1)?

4 00 00 12( ,
Fr(J—3, W) =— / p / )0 e 0) ()0 sa(5' )]
m™J 4 (M+1)Z

S“‘S
+4 / 010 o5, 0)Ealt, S—s—Dx"(5), (32)
4

13( ) )
Fe(J—3, W)=—— / du / S (5)Quasal (5,0))— X () Qo (5'0)) ]
(M+1)2 (M+1)2 s'—s

4 NJ, W) M*—(M?*—1)%/s
- / du X" (5)Qr+1/2(a(s,0) Wo(Z—s— 1, u)+— — 0 —L/?(H‘m)(W—M)
P ™ (4g2)7+112 2¢?

16 N(J,W) ( —(M*—1)%/s
J+1/2

T (4q2)./+3/2

)(a MYW+M), (33)
2¢®
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where the symbols are defined in Appendices A and B [see Egs. (A1) to (A9) and (B8) to (B13)]. For a check on the
calculation one can see that Fe(J—%, W), as defined in (25), has only those cuts which are given by Egs. (18) to
(22) and further that F°(/—%, W) has no right-hand or left-hand physical cut. The discontinuities of F¢(J—3, W)
across the unphysical cuts are the same as those of the auxiliary partial-wave amplitude 4°(J—3%, ).

Let us now examine the J-asymptotic behavior of the representation (25). This is fairly simple because of the
presence of v71,2(3) functions with arguments greater than unity. Using a similar procedure as for Ref. 1, we obtain

Fe(J—%, W)~0(c/|T|?), (34)

The above asymptotic behavior of F¢(J—%, W) will remain true throughout the domain of validity of the repre-
sentation (25).

7|

IV. THE N/D METHOD AND THE DOMAIN OF MEROMORPHY
We now apply the usual N/D formalism to 4¢(J—3%, W) such that
he(J—%, W)=N(J—3, W)/D(J—3%, W) (35)

where D(J—1%, W) contains the unitarity cuts [— o <W< —(M4-1) and (M+1)<W< ], and the rest of the
cuts, as defined by Egs. (18) to (22), are contained in N(J—3%, W). The unitarity relation for 4°(J—3, W) for

ReJ>a+3, W> M1 is given by

he(J_%, W+ze>_he(J_—1§) W_15)=27’¢(J7W)he(]—%7 W+1e)he(]—%’ W—Zé) ’ (36)
where
(492).!—1/2 E+M
o(JW)=¢— R(J,W) . 37
NI, W) 16x WV

In the elastic-unitarity approximation, however, R(/,W)=1. The functions N(J—%, W) and D(J—3, W) satisfy

the following integral equations:

W—W, M1
DI—3, W)=1—— / d

™
and

N(J—%, W)=F(J—3, W)

TJ

: f ~ut o=}, W)= [(W=Wo)/ (/=W JF(/ =}, W)

™

The functions appearing in the above equations can
easily be obtained, for negative values of IV, by apply-
ing the well-known MacDowell symmetry® to Eq.
1), i.e.,

ae,o(]_%’ _VV)= _ae,o(J_l__%’ W) ) (40)
which, in view of Carlson’s theorem, can be con-
tinued to the noninteger values of (J—3%). The method
for obtaining Fe(J—2%, —W) is thus the same as for
Fe(J—%,W).

In the problem of -7 scattering,! in order to prove
the existence and the boundedness (in s) of the left-
hand function, we assumed certain bounds for the
amplitude and its absorptive part. Similarly, in the pres-
ent investigation we assume the following conditions:

[r2l, [¥1el, for s,i>R (41)

5 S. W. MacDowell, Phys. Rev. 116, 774 (1959).

I”LZI ’\’11—7/8,

: / © BT, W)= [V =W/ (W= W) ]F(T—}, W)
M1 w—w

(I WINIT—5, W) W—W, = o(J,WIN(IT—%, W)
W / aw’ ' (38)
(W'—W)(W'—W) T M1 (W'—Wo)(W'—W)
N(T—3, W), W)W’
W'—Ww
NT=5,We(J,W)adW’. (39)

(where R is any arbitrary large positive number) and

[fr2], [¥12], (42)

where v>0 and the other notations are defined in
Appendix A and B [see Egs. (A1) to (A9)]. These -
assumptions are clearly more restrictive than our as-
sumptions in Ref. 1. We have made them in order to
simplify the problem and to avoid the complications
due to subtractions in the dispersion relations for
A(s,t) and A4,(s,u). Our ansatz regarding the asympto-
tic behavior, as in (41) and (22), is consistent with the
observation made by other authors® that the B(/—%, s)
amplitude should vanish 4/s times faster than the
amplitude A(J—3%,s). This can easily be seen, if we
substitute Eqs. (41) and (42) into Egs. (7) and (8),
respectively. We would like to point out at this stage

|G1,2] ~81%=7/s, for s,t>R,

6 V. Singh and B. M. Udgaonkar, Phys. Rev. 123, 1487 (1961).
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that restrictions (41) and (42) on the asymptotic
growth of the spectral functions were first used by
Mandelstam? in connection with the problem of -w
scattering.

It is now possible to show (see Appendices A and B),
that if conditions (41) and (42) are satisfied, there exists
a left-hand function Fe¢(J—3%, W), such that

(i) Fe(J—%, W) is holomorphic for

ReJ>max(1—ry, —1)+35; (43)
(ii) Fe(J—%, W) asymptotically vanishes as
|Fe(J—%, W)|~cs™?, s—o0 (44)

where
d=min(1,y).

JOSHI 141

The above properties of F¢(J—%, W) are sufficient to
guarantee that the integral Eq. (39) is nonsingular.
Equation (39) will be nonsingular provided

—M—1
/ P3P <, (45)

/w [Fe(J—%, W) [2dW < =, (46)
M+1

/ / KW, W) |2dW dW'<w,  (47)
M+41J M+1

/;M—l [ ;M_IIK(W,W’) [2dW dW'< o, (48)

where

K(W,W")=

Fe(J—=3, W)=[(W—=Wo)/ (W =Wo)JF(J—%, W)

o(J,W’). (49)

wW-w

For y>1% the conditions (45) and (46) are clearly satis-
fied; thus, in order to show that Eq. (39) is nonsingular
we have only to show that the integrals 7 and I’ defined
by Egs. (47) and (48), respectively, should converge.
Substituting W'=W in I and I’, we obtain

) © }\~27_ )\—1 2
I=/ aw W1‘47/ -——)\l AN |
M1 (M+41) /W A—1
and
M1 —M—1 | \—2y—_)\~1 |2
I'z/ aw Wl_”/ —ﬁ-}\ AL o,

provided v>3%. We have thus shown that N(J—3, W)
is a meromorphic function of J in the domain

ReJ>max(—1,1—")+3%,

where y'=max(},y). It follows that s¢(J—3, W), and
therefore a*(J—%, W), is a meromorphic function of J
in the domain ReJ>max(—1, 1—v')+3.

V. EXTENSION OF THE DOMAIN OF MERO-
MORPHY AND ACCUMULATION OF
POLES AT J=0

Let us now come to the question of how far to the left
we can extend the domain of meromorphy. So far we
haveshown that the partial-wave amplitude a¢(J —%, W)
is meromorphic in the domain ReJ>$—+’, with
v'=max(3,y). However, at J=—%, we find that: (i) The
representation for Fe(J—3%, W) develops fixed poles
owing to the presence of Q_y/» functions [see Eq. (25)7].
(This feature has also been observed by several other
authors.) (ii) The kernel of the integral Eq. (39) is no
longer square integrable.

7S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).

We therefore find that our method does not work be-
yond the line Re/=—3. Consistency demands that
v<2, which means the amplitudes and their absorptive
parts should not vanish faster than ¢~/s, £3%/2/s in ¢
[see Eqgs. (41) and (42)]. In the case of -7 scattering a
similar situation has been discussed in Ref. 1.

In the m-r scattering,! apart from the singularities at
negative integral values of I, we also considered the
accumulation of poles at /=—1% at threshold. Let us in-
vestigate this feature in the present problem. The be-
havior of D(J—%, W) [Eq. (38)] at W2=(M-1)? and
at J=01is given by

D(J =5, W)=1=[W*— (M +1)*T4()),

where ¢(J) is at most mermorphic at J=0. If y(J )is
nonzero and bounded in the neighborhood of /=0, then
the zeros of D(J—3%, W) will be given by

a 2imm

= In[W2— (M+ I)Z]Lln[W2— M+1)2]’

where ¢= —1Iny(0) and m=1, 2, 3- - -. The above equa-
tion clearly shows the accumulation of poles of
a*(J—%,W) in the neighborhood of /=0 and at
threshold.

In conclusion, we have shown that from the Mandel-
stam representation with a finite number of subtractions
for the total scattering amplitude, in -V scattering,
there exists a domain of holomorphy ReJ> a3 of the
Froissart-Gribov representation defined by Eq. (1).
Under some reasonable assumptions on the asymptotic
growth of the spectral functions Eqgs. (41) and (42) it is
possible to analytically continue the F-G representation
with the help of the N/D method of analytic continua-
tion. And it has been shown that the F-G representation
is meromorphic in the domain ReJ>3—+' with
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v'=max(3,y). We have further shown that with the
help of N/D method the domain of meromorphy cannot
be extended beyond the line J=—3%. However, at /=0
there is an accumulation of an infinite number of poles
at threshold. It is interesting to note that the domain of
meromorphy as obtained by the /D method is larger
than the domain obtained by the analytic completion.?
The author is grateful to Dr. Haridas Banerjee for
interesting discussions and useful suggestions.

APPENDIX A

In this Appendix we shall prove some results which
will be used in Appendix B.
The total scattering amplitude 4 (s,¢) is defined by

A (S:t) = ”1<sit)+ﬂ2(s7 Z—s5—1) )

s R, (A1)
B(S,t)= + +ﬁ1(5,t)+ﬂ2(s, E—S—t) )
M*—s M?—u
where
1 0 At(S,t) ¢ N N
pa(s,)=— / <—) '+ 3t 1ha(s), (A2)
m™Ja (If,—t) 4 n=1
and
1 Au(s,u’) fu\V
ua(s,t)=— / - <—> du’
™ J (M+1)2 w—u \u'
N
+ > urtML(s). (A3)

n=1

The absorptive parts in the ¢ and # channels are de-
fined as

Ay(s,t)=(s,t)+2(t, Z—s5—1) (A4)
and
Au(s,u)=¢2(2—s—u, M)+l//1(s,u) ) (AS)
where ) )
°° y12(s”,t
d(s,t)=— f Ta, (a6)
TJ (1 § S
1 (t,u")
wz—s=p=- [ )
m™J (M+1)2 U —U

1 pus(s'yu)
witsan= [ as,  (a8)
™ J (M+1)? s'—s
1 “ p23(t',7u’)
Yo(Z—s—u, u)=—[ dy’, (A9)
™J 4 l/—t

with similar relations for the other invariant amplitude
B(s,t,1) in which all the double spectral functions are
denoted by symbols with bars over them.

8 G. C. Joshi (unpublished).
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In view of our ansatz Eqs. (41) and (42) it follows
from Egs. (A6) to (A9) that

pra(s',1)~1=7/s

pas(ty )~/ (A10)
pas(s’ u)~u="/s’,
and
pu(s’)~t1rr/s’
pas(tyu )~/ (A11)

pua(s’su ) ~u't 1= /5"

for large values of the arguments of the respective spec-
tral functions. Since we have assumed that Egs. (A6)
to (A9) exist without subtraction, we have some further
conditions. In (A7), for example,

pr(s’ )~ (s )~ f() for s>R, (A12)

Similar relations exist for other cases. Using Egs.
(A10), (A11), and (A6) to (A9), carrying out a similar
analysis to what we did for the 7-r scattering [see Ref.
1, Eq. (A20)7], we obtain

t<R.

+£1
/ p12(v+7, Hvdo~i—7, for >R,
—&
+§1
/ pgg(t, 7)+’Yl>‘l)nd2)'\’ll—7 y for t>R,
-
' (A13)
+£1
/ p1is(v+y1, w)v*dv~u—7, for u>R,
—-&1
+£2
/ p23(v+y2, w)o*dv~ur"", for u>R,
—£2
where
b= [“ (M+ 1)2+R:]/2 y Y1 — [(M+1)2+R2]/2 )
£=3(—4+R), v2=—3(4+R). (A14)

For the spectral functions of B(s,t) similar relations
exist. For example,

+E1
/ pr2(v+v1, )ordv~it2-r . t>R. (AlS5)

—£1

For the asymptotic behavior of the absorptive parts in
the ¢ and # channels, we follow a similar procedure to
that given in Ref. 1 [see Eq. (A23)], and using the re-
strictions on fi; 2 and w9, it follows that

R
/ (A s,), Buls ) ydins, (A16)

and

R
/ (Au(s0),Bu(sid)}du~s,  (AL7)
(M+1)?2

for large values of s.
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APPENDIX B

In this Appendix, we shall prove certain results re-
garding the existence and the asymptotic behavior of
the left-hand function F¢(J—%, W). We shall show that

(i) Fe(J—%, W) is holomorphic in the region

ReJ>max(—1, 1—v)+3; (B1)
(ii) Fe(J—3%, W) asymptotically vanishes, i.e.,
Fe(J—3, W)~s0, s—o (B2)

where §=min(1,y).
Let us now consider F;° as defined in Eq. (25) in the
form

Fre(J—3%, W)=4 > My, (B3)

k=1
where

M= / 01 ¢/ (5,0)()Q1,2(a(5,0))

_E /w dl/m dsrpml(s ’t)x(s')QJ_uz(Z(S';t)) (B4:)
TJR R

§'—s
1 ] 0
=—/ dt/ ds
TJR (M+1)*

X [2()Qu—1/2(a(5,)) — 2(5 ) Qu—1/2(3(s",1)) 1,

pra(s’)

s'—s

(B3)

R
M3= x(s)/ dt Ay(s,0)Qr—1/2(z(s,1))

—1/ dt‘/’oo ds’pm,(s ’t)x(S')QJ—uz(Z(S',l)), (B6)
T R

S—Ss

M4=x(s)/oo dt $o(t, 2—s—1)Qr-1/2(2(5,1)) , - (B7)

In the above and in Egs. (23) to (33), we have used the
following notation:

x(s)=N\(J,S)/[4¢*(s) J7—/2, (B8)
#'(s)=((J,S)/ [4q2(3):|“” YWs—M), (B9)
A(J,s
() = A MT B10
&'(s)= [t )]Hm[ (5)—M7?, (B10)
NER) )
&' (s)= |:4g2(s):]"+3/2[E(S)_M:| Ws+M), (B11)
Qs(141/2¢%(s)) = Qu(3(s,)) 5 (B12)
u—(M2—1)%/s )
QJ(1+—W> =0 (s;,w)), (B13)
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where A\(J,s) is defined in Eq. (12) and ¢/(s,?) is defined
in the same sense as in Eq. (A12) of Ref. 1.

We shall now show that the required properties of
the left-hand function, namely, (B1) and (B2), are true
for each M, [k=1, 2, 3, 4].

(i) M. In view of the Egs. (A6) and (A10), the first
integral on the right-hand side of (B4) exists for
Re>3§—~ and vanishes asymptotically in s, like (B2).
For the second integral of (B4), we use (A10) and follow
a similar procedure, to that given for Eq. (B7) of Ref. 1.
We finally obtain that the second integral of (B4) has
the properties as demanded by (B1) and (B2).

(i) M. Let us write (BS) in the following form:

M2=/
R

where F(s',t,s) is bounded in ¢ and analytic in s’ in the
interval (4/+1)?<s’<R. Hence following Eq. (B10)
of Ref. 1, we obtain

tJ+3/2

/ ds'pra(s',F(s',t,s), (B14)
(M+1)?

F(s',t,s)= 2 ca(s,t)o™, (B15)
n=0
where
v=s"—3[R+(M~+1)%]. (B16)
Using (B15) and (A13) in (B14) we obtain
© dt
M2"~"/ 1= (B17)
R t']+1/2

clearly, M. exists provided ReJ>$—+. Similarly, as
in Eq. (B13) of Ref. 1 it can be shown that

My~max(s—,s71) when x—o.

(ili) M. The first integral of (B6) exists for all J
such that Re/> —3. As s tends to infinity it is given by

Ins rE
My ~— / Ay(s,)dt,
N 4

and using (A16) we obtain
Ms/’\’OI:-Y—Z] .

In view of condition (A12) the second integral of (B6)
satisfies all the requirements of (B1) and (B2).

(iv) M4 From the boundedness condition (A10)
and Eq. (A7) it follows that

¢2(t, Z—s— 1) < constant(¢1~7/s)

for large ¢ and s> 0. Therefore, M exists if ReJ>2—y
and is bounded asymptotically by s—.

We have thus shown that F; as defined in Eq. (25)
satisfies the conditions (B1) and (B2). A similar proof
exists for all F}’s, and the conditions (B1) and (B2) are
satisfied.



