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Application of the Schwinger Variational Principle for Scattering*
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The usual difficulty of having to evaluate double integrals with G(x,x') is avoided by considering as the
trial function U(x) = V(x)P(x) and its Fourier transform. Numerical calculations of s-wave scattering by a
Yukawa potential have been carried out both by means of this form of Schwinger's method and also by
using Kohn s variational principle. For comparable trial functions, the latter method appears to converge
faster.
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Schwinger's variational principle' gives

(6)

P'b l= (V'»V4"+)+(A VV")

(~ ,V~,)+-V -,VG V~,) -(7)
as a stationary expression for the T matrix under arbi-
trary infinitesimal variations of the trial functions lt,+
and pb about the exact solutions of (3). Although this
variational principle has often been hailed as an elegant
formulation of the scattering problem, only little use
has been made of it as a practical computational tool. '
The chief drawback stems from the fact that the Green's
function is nonlocal in coordinate space, so that the last
term in (7) requires the evaluation of the double
integral

dx dx' 1kb *(x')V(x')G+(x', x) V(x)f,+(x) . (8)

We may compare this situation with that posed by
the Kohn variational principle':

LT..)=2.."""'-(~—,(~ H)~'). (9)—
Here we have the advantage of the simpler local opera-
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1956), Vol. 36, p. 265.' W. Kohn, Phys. Rev. 74, 1763 (1948).

~
OR the Schrodinger equation

(E H)$=—0,
with the separation

H=Hp+V,

the conventional statements of formal scattering theory
are:

tor (E, H), bu—t the trial functions g,+, fb must be
constrained so that in the asymptotic region they have
the correct form Las determined by (3)j, with the only
allowed variation taking place in the numbers T~, "'"
associated with that form.

The purpose of the present paper is to describe a way
of making the Schwinger form (7) more tractable. In-
stead of concentrating on ik(x) as the function to be
varied, we define the new trial function

U(x) —= V(x)P(x), (10)

which we shall also need to represent, in momentum
space

U(p) = dx e—'&'*U(x) .

Assuming, as is generally the case, that the Green's
function is diagonal in p space,

G+(x, x') = dp
esp (x—x') G+ (It)

(2~)'
(12)

we can rewrite the Schwinger form as follows:

ft Tb.]= U.+(kb)

+ Ub
—*(k.)— dx Ub

—*(x)V '(x) U+(x)

dp
+ Ub *(p)G'(p) U."(p). (13)

(2sr)'

In this form, we have to evaluate only single integrals:
one in x space, as beftts V; a,nd one in p space, as
befits G. A nice extra feature of this formulation is
that U(x) is a well-localized function —assuming V(x)
is—and one does not have to put plane-wave terms into
this trial function, but can concentrate on the more
interesting region of small x.

The novel feature of (13) is the appeara, nce of the
immerse of the potential. The reader may readily con-
vince himself that this does not cause any serious
difhculties; and, in fact, this is a very natural con-
comitance: the inverse of V accompanying G, the in-
verse of E—IJO.
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FIG. 1.Computed values of —tans/k
versuso. or p for Eq. (15) with g= —2,
k'=0. The solid curve is for the
Schwinger method, the dotted curve
for the Kohn method.

10.4

10.0

9.6
tan 8

9.2

8.8

8.4

8.0

l

-l

i

IL

a

2
3

5
1.0

g ——2
e=o

I( =0

1.5 2.0

a,

i
/

/

2.5 3.0 3.5 4.0

sinkr coskr
+ tant«"'»& (1—e-e ),

kr kr(14)LTj=2T TV 'T+T—GT,

Further, our trial function U (y) may be recognized (9), we took the trial functions
as the T matrix T„with one leg o6 the energy shell.
We can thus write our variational formulation (13) in 4 =4+x
the symbolic form (dropping all labels)

(19)

with the advice that the t/' term be evaluated in x space
and the G term in p space. Equation (14) emphasizes
the fact that we have here a variational principle for
the T matrix itself, without any explicit reference to a
wave function.

SAMPLE CALCULATION

For a numerical exercise, we take the s-wave Schrod-
inger equation with a Yukawa potential:

/1d' e '
I-~+)p 4=g —0
Er dr' r

g D rs ie Pt'——
n=1

(20)

Since V e "/r, we see that, for appropriate choices of
the scale parameters n and P, the wave functions repre-
sented. by (17) and (20) span the same space. The
Kohn trial function then appears to have the advantage
of the explicit asymptotic terms represented by g.
However, if there has ever been any virtue claimed for
the Schwinger method, it is just that because it con-
tains the Green's function explicitly, the asymptotic
part of the wave function will be automatically taken
care of. Therefore this appears to be a fair comparative
test.

TAsLE I. Successive approximations to the scattering length
For our modified Schwinger method. (13), we used the (u= —tans/p at k=0) for the Yuhawa potential of strength
trial functions g = —2. Scale parameters ~=P = 1.8.

U(p) =Z
n

which in x space become

N

U(r) = QC„'r" 'e—
For a comparative calculation with the Kohn method

1
2
3

5
6
7
8
9

io

o(Kohn)

7.92155
7.91142
7.91139
7.91138
7.91138

o (Schwinger)

8.09387
8.00863
7.91228
7.91178
7.91178
7.91147
7.91142
7.91139
7.91138
7.91138
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