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The usual difficulty of having to evaluate double integrals with G (x,x") is avoided by considering as the
trial function U (x) =V ()¢ (x) and its Fourier transform. Numerical calculations of s-wave scattering by a
Yukawa potential have been carried out both by means of this form of Schwinger’s method and also by
using Kohn’s variational principle. For comparable trial functions, the latter method appears to converge

faster.

FOR the Schrédinger equation

(E—H)y=0, )
with the separation
H=HV, (2)

the conventional statements of formal scattering theory
are:

Vo= oatGEVYE, )
Gt=1/(E—Hotie)= (G)T, )
(E—Hy) 0a=0, (5)

and the T-matrix elements are
Toa= (o0, Vipat)= @5,V ¢a) - (6)

Schwinger’s variational principle! gives

[Tea]= (o8, V¥a)+ @5,V ¢a)
— W, V¥ah)+ W@, VG V) (7)

as a stationary expression for the 7" matrix under arbi-
trary infinitesimal variations of the trial functions y,*
and ¢4~ about the exact solutions of (3). Although this
variational principle has often been hailed as an elegant
formulation of the scattering problem, only little use
has been made of it as a practical computational tool.2
The chief drawback stems from the fact that the Green’s
function is nonlocal in coordinate space, so that the last
term in (7) requires the evaluation of the double
integral

/ i / dx i (X) V ()G (<, ) V (et (x). (8)

We may compare this situation with that posed by
the Kohn variational principle?:

[Tbujz Tha (erial) (‘//b—y (E_H)\[/a+) . (9)
Here we have the advantage of the simpler local opera-
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tor (E—H), but the trial functions y,*, ¥s~ must be
constrained so that in the asymptotic region they have
the correct form [as determined by (3)], with the only
allowed variation taking place in the numbers T}, i)
associated with that form.

The purpose of the present paper is to describe a way
of making the Schwinger form (7) more tractable. In-
stead of concentrating on y(x) as the function to be
varied, we define the new trial function

U(x)=V(xp(x),

which we shall also need to represent, in momentum
space

(10)

U(p)= /dx e (x). (11)

Assuming, as is generally the case, that the Green’s
function is diagonal in p space,

dp
G=(x,x)= / e'» =G (p) (12)
) Ry )
we can rewrite the Schwinger form as follows:
[Teal=Uat (ks)
+ U5 (ko) — / dx Us* (@) V() Uat (v)
dp _ -
+ [ e Tam. 19
(2m)?

In this form, we have to evaluate only single integrals:
one in x space, as befits V; and one in p space, as
befits G. A nice extra feature of this formulation is
that U(x) is a well-localized function—assuming V (x)
is—and one does not have to put plane-wave terms into
this trial function, but can concentrate on the more
interesting region of small x.

The novel feature of (13) is the appearance of the
inverse of the potential. The reader may readily con-
vince himself that this does not cause any serious
difficulties; and, in fact, this is a very natural con-
comitance: the inverse of V accompanying G, the in-
verse of E—H,.
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Further, our trial function U,(p) may be recognized (9), we took the trial functions
as the T matrix T',, with one leg off the energy shell.
We can thus write our variational formulation (13) in y=¢tx, (18)
the symbolic form (dropping all labels) sinbr - coskr
= + tang(tria 1—¢br 19
[T]=2T—TV-T+TGT, (14) ¢ B br ( ) (19)
N
with the advice that the V term be evaluated in x space x=2_ Dnrvlebr, (20)
and the G term in p space. Equation (14) emphasizes n=l

the fact that we have here a variational principle for
the T matrix itself, without any explicit reference to a

wave function.

SAMPLE CALCULATION

For a numerical exercise, we take the s-wave Schrod-
inger equation with a Yukawa potential:

1 42 e
(— —4+k2)¢= —v. (15)
7

r dr?

For our modified Schwinger method (13), we used the
trial functions

~ ¥y Ca
U (1>)=n§l e (16)
which in x space become
1w
Ur)=-3 C,/rv1eer, an

¥ n=1

For a comparative calculation with the Kohn method

Since V~e~"/r, we see that, for appropriate choices of
the scale parameters a and 8, the wave functions repre-
sented by (17) and (20) span the same space. The
Kohn trial function then appears to have the advantage
of the explicit asymptotic terms represented by ¢.
However, if there has ever been any virtue claimed for
the Schwinger method, it is just that because it con-
tains the Green’s function explicitly, the asymptotic
part of the wave function will be automatically taken

care of. Therefore this appears to be a fair comparative
test.

TaBLE I. Successive approximations to the scattering length
(e=—tand/k at k=0) for the Yukawa potential of strength
g=—2. Scale parameters a =8=1.8.

N a(Kohn) a(Schwinger)
1 7.92155 8.09387
2 7.91142 8.00863
3 7.91139 7.91228
4 7.91138 7.91178
5 7.91138 7.91178
6 7.91147
7 7.91142
8 7.91139
9 7.91138

10 7.91138
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F16. 2. Computed values of tand/k versus o or 8 for Eq. (15)
with g=—2, 22=1. The solid curve is for the Schwinger method,
the dotted curve for the Kohn method.

The integrals required by (13) were readily evaluated
with the basis (16), (17); those needed for the Kohn
method (9) were somewhat more tedious to grind out,
mostly because of the extra ¢ terms. The entire nu-
merical calculation was a quite trivial one on an elec-
tronic computer, and we now describe the results.

The stationary approximation to tand/k was calcu-
lated for many values of the scale parameters «, 8 at
several successive stages of approximation N=1, 2, 3,
-« +. Figure 1 shows the results at £2=0 and g= —2 (the
first bound s state occurs at g= —1.679809). The values
at a=pB=1.8 are listed in Table I for a finer comparison.
Both methods obviously converge very nicely, but the
Kohn method is clearly way ahead if one is greedy for
accuracy.

In Fig. 2 are similar curves at a higher energy. Again
the Kohn method is seen to converge much faster; but
there is also more detail to talk about here. The Kohn-
method curves show the occasional divergence which has
been discussed previously?; and this phenomenon re-
duces somewhat the accuracy with which one can deter-
mine the true phase shifts. The Schwinger-method
curves are free of this particular curse (the prediction
to the contrary found in Ref. 4 is incorrect) ; the several
curves are, in fact, prevented from crossing by the
theorem?® that for a potential everywhere attractive the
Schwinger principle gives a lower bound for the phase
shift. However, this apparent blessing may also cause

4 C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961).

5 T. Kato, Phys. Rev. 80, 475 (1950); extended by R. Sugar
and R. Blankenbecler, bid. 136, B472 (1964).
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F16. 3. Computed values of (w/k) tand, versus « for a Bethe-
Salpeter equation (see Ref. 6), with A=1, M =1, k2=0.4. The
curves are numbered to identify the number of basis functions
used in the Schwinger variational method.

some trouble. For suppose one calculated only at one
fixed value of a, such as a=2.4 in Fig. 2; then one
might draw quite a false conclusion about the accuracy
of the second-order calculation, if one did not go on to
higher approximations. Thus the curse of the Kohn
method shows up in a rather different guise in the
Schwinger method ; and one must obey the general rule
of getting a lot of information (such as Figs. 1, 2) before
drawing quantitative conclusions about the accuracy of
any variational calculations of scattering problems.

Other calculations, up to k2= 16, had the same general
features described above.

In conclusion, we have seen that this form (13) of
the Schwinger variational principle works very well as
a practical computational method, although it appears
that sometimes the Kohn method may still be more
powerful. It is not clear if one can make further applica-
tions of this device to such other problems as many-
body scattering. However, our new method has been
used with great success in the solution of a Bethe-
Salpeter equation,® where it turned out that a Kohn
method was not usable. In Fig. 3 are curves, similar to
those of Fig. 2, for that Bethe-Salpeter calculation. The
resemblance is close enough so that we expect all the
same general properties for that relativistic calculation,
as for the nonrelativistic ones discussed in the present
paper. Actually the Bethe-Salpeter results appear to
converge at a faster rate for the cases illustrated here.

6 C. Schwartz and C. Zemach, preceding paper, Phys. Rev. 141,
1454 (1966). ’



