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The Bethe-Salpeter equation studied in this paper describes the interaction of two scalar particles via the
exchange of a third scalar particle in the ladder approximation. The properties of the Green’s function and
the potential in coordinate space are shown to permit a Wick rotation to an imaginary time variable, without
appeal to information not contained in the original equation. The resulting four-dimensional (Euclidean)
wave equation has a solution which grows exponentially for large time-like distances but behaves as an
ordinary Schrédinger scattering wave for large space-like distances. A modification of the Schwinger varia-
tional principle is used to obtain, with a modest use of computing machinery, scattering phase shifts for
various angular momenta and for energies below the inelastic threshold. The success of these calculations
indicates that the Bethe-Salpeter equation can be accepted as a powerful and practical tool for the study of

strong-interaction dynamics.

I. INTRODUCTION

HE calculation of scattering amplitudes and
bound-state properties of systems of strongly
interacting particles is a central problem in elementary-
particle physics. Two techniques for defining such
calculations when the forces are specified—equivalent
in physical content though differing in form—have
received serious attention. These are the Bethe-Salpeter
equation! (BS equation), a relativistic analog of the
Schrodinger wave equation, and S-matrix theory, which
adopts the principles of analyticity and unitarity while
avoiding the concept of wave function.

The S-matrix approach, in various approximate
forms, has been applied to many practical problems in
recent years and has contributed considerable physical
insight to them. In contrast—apart from a recent
calculation of some bound states’—work on the BS
equation relevant to strong interactions has concen-
trated on its formal mathematical structure.

Now, when one attempts to solve a nonrelativistic
potential problem, one finds that traditional methods,
e.g., integration of the Schrodinger equation, variational
principles, etc., are always easier and more accurate
than S-matrix methods. Moreover, traditional methods
have been successful in three-body problems which are
wholly beyond the current scope of S-matrix techniques.
In addition, present S-matrix methods for calculating
phase shifts break down for states of angular mo-
mentum greater than one. We are thus motivated to
attempt quantitative calculations with the BS equation
and to take seriously the possibility that they may have
real advantages over the relativistic S-matrix methods.

In order to present the BS equation in a fairly
general way, let us start by writing down the familiar

* This work was supported in part by the U. S. Air Force
Office of Scientific Research, Grant AF-AFOSR 130-65 and
Grant AF-AFOSR 232-65.

LE, E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. Low, zbid. §4, 350 (1951); J. Schwinger,
Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951).

2 C. Schwartz, Phys. Rev. 137, B717 (1965). For the special
case where the exchanged particle is massless, the bound-state
problem has been solved by R. E. Cutkosky, Phys. Rev. 96, 1135
(1954).
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integral version of the Schriodinger equation:

V@O =vo()+ f )V EWE), (L1)

2m eik[r——r’l
6ot ==(2)

(1.2)
47

[r—r|

With ¢(x), V(r), and Go(r,r’) interpreted, respectively,
as the position probability amplitude, the interaction,
and the free propagator, this equation is an expression
of the basic quantum-mechanical rule for compounding
such amplitudes. Thus the integral equation carries
a direct intuitive meaning based on fundamental
quantum-mechanical notions which are more generally
valid than the nonrelativistic context in which (1.2)
is written. It is then possible to write down a plausible
relativistic version of (1.1) for two-body systems; this
is the Bethe-Salpeter equation:

W (201,%2) = W (%1,062) + /Gl(xlaxl,)

X G (xz,le)l (xlleI ; x{’xz”)‘Il (xln,x2u)

delldledxll/dle, , (13)

x1= (rl,tl), Xo= (rz,tz).

W (x1,42) is the two-body wave function which deter-
mines the joint probability that the two particles may
be found at the points ry, ry at the times ¢; and ¢. For
t1=1,, we have the “equal times wave function” which
has the meaning of a Schrodinger wave function and
from whose asymptotic form (|ry—rs] — ®) the
scattering amplitude may be inferred. The Green’s
functions Gi(x1,%1) and Ga(xs,x2") describe free rela-
tivistic propagation with the causal boundary conditions.

In field theory or in S-matrix theory, the interaction
I is usually understood to represent a sum of irreducible
Feynman graphs contributing to the interaction of the
two particles. But owing to uncertainties about the
completeness of these theories at the present time,
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one cannot guarantee that this specification of I is
always correct or even meaningful.

By way of contrast, one may recall that in quantum
electrodynamics the BS equation has been used to
derive several specific observed effects: proton recoil
correction to the fine structure® and to the hyperfine
structure* in hydrogenic atoms, and similar contribu-
tions to the energy levels of positronium.® In these
cases, since the electromagnetic coupling is inherently
weak, only a few of the simplest Feynman diagrams
contributing to / were needed, and their effects were
calculated as small perturbations on the nonrelativistic
Coulomb energy levels.

For the complete dynamics of strong interactions,
more general methods are required. It behooves us, in
inaugurating a quantitative investigation of the BS
equation, to look first at the simplest system imaginable,
namely, two spinless mesons which interact via the
exchange of a third spinless meson of mass M. We
shall represent 7 by the one-particle-exchange process
(ladder approximation)®:

x1")8 (we—xy')

d4qe'iq(zl—1‘2)

(@+M>—ie)

I (1325 21" %2 ) =T (01— x2)8 (20— (1.4)
—1\

The interaction strength parameter A of (1.5) is (47)~2
times the product of the coupling constants which
connect the exchanged meson to the incident particles,
and it is inherently positive (attractive force) if the
incident particles are identical.

The one-particle Green’s functions obey the differ-
ential equations

(p2+m)Gr(o1,21") =84 (21— x1)

(P2 mo?)Ga(xe,05") = 84 (22— 12")
p=(—i(3/0r), i(3/01)), p*=p*—pe.

(1.6)

Applying the above forms, we obtain the starting
equation in its differential form:

[(p4me) (p2tm?)—I (x1—x2)] ¥(w1,x2)=0. (1.7)

The chief results to be reported in this paper are
accurate numerical values for s-, p-, d-, f-, and g-wave
phase shifts for a range of values of the coupling
parameter A and the mass M of the exchanged particle
(but with the fixed relation m;=ms). The higher
partial waves are shown to be well represented by their
Born approximations. The calculations were done at

3 E. E. Salpeter, Phys. Rev. 87, 328 (1952).

4R. A. Arnowitt, Phys. Rev. 92 1002 (1953); W. A. Newcomb
and E. E, Salpeter, zbzd 97, 1146 (1955)

5 R. Karplus and A. Klem Phys. Rev. 87, 848 (1952); T.
Fulton and P. C. Martin, ibid. 95, 811 (1954).

¢ The Lorentz scalar product is AB=A-B—A4,B, and we use
units z=c=1.
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several energies up to the threshold for production of
the meson of mass M.7

In the next section, we examine some general proper-
ties of the equation and carry out in detail the “Wick
rotation” which transforms the Lorentz metric into a
Euclidean metric. Section III is devoted to the numeri-
cal solution of this transformed problem, and Sec. IV
treats various related topics such as the nonrelativistic
limit and the unitarity condition for a BS amplitude.
Section I'V includes a derivation of scattering variational
principles of both the Schwinger and Kohn types. Some
secondary mathematical details are given in Appendices
which follow the summary of Sec. V.

II. BS EQUATION
A. Kinematics

The coordinates and momenta of the two scattering
particles have already been denoted by x1, x2 and p4, ps.
We now wish to introduce the total-momentum
operator P and the relative coordinate x. A complete
canonical transformation is given by

P=pitp2, X=pyri+psxs,

2.1)
p=pepr—pipe= (p,p0), x=x1—x=(r,t), (
where uy, ue are constants restricted by

pitua=1 2.2)

Condition (2.2) assures that dPdp=dpidps and dXdx
=dx1dx2.

Let P have the eigenvalue K; then the BS wave
function can be written

W (w1,02) = €5 XY () (2.3)

and the scattering proceeds from the inijtial plane-wave
state
Vo (1, %2) = eih1eigibam= giK Xy ()

(2.4)

Working in the center-of-mass coordinate frame we can
write

k1= (kwy), ko= (—k, ,
1= (kyw1) : (—k, w2) 2.5)
=+ +mAV2, =12,
so that
K=k1+k2= (O,E) B E=w1+w9,. (2.6)

Then the incident wave in the relative coordinate is

Yo(r,f)=eilern, 2.7

where
(2.8)

7 There are a number of reasons for limiting ourselves to low
energies: (a) At higher energies the inelastic channels must also
be considered in a consistent manner; a related circumstance is
that our method of calculation—via the Wick rotation—is valid
only below the inelastic threshold. (b) The omitted higher order
contributions to 7 involve the exchange of higher mass systems and
hence give forces of shorter range. The ordering of forces by their
ranges and the use of the longest range force in a first approxi-
mation is commonly (and plausibly) thought to be a good rule for
scattering at low energies.

V= oW1 — M1 .
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Last, we make the transformation
Yy ey, (2.9)

so that all time dependence has been removed from the
incident wave.?

B. The Green’s Function

The differential equation for the transformed relative
wave function now reads

[0*— (potw1)*+mP2J[p*— (po—ws)*+ma* J(x)

=T(x)y(x). (2.10)

a*p
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(Note that the undetermined parameters i, us have

now disappeared.) The corresponding integral equation
is

V()=o) + / FLC DWW, (211)

where

lﬁo(x) =gtk )

and the Green’s function, with causal boundary
conditions, is

eip(x—x')

6w)= | |
(2m)t [p°— (potwr)*m2—ie][pP— (po—ws)*+md—i€]

Combining the denominators of (2.12) by the Feynman
parameter technique and then translating the po
integration variable, we get

w1 dﬁ )
G(x,x’)=/ —e#B U=t
W E
¢ip(a—s")

/ -
X .
(2r)* [p*— p+B2— r—ie ]

(2.13)

Using the results of Appendix A, Eq. (A5), we have
, i rerdp
Glan)=—, f —e#OK(QR),  (2.14)
8n% ) _uy E
where
R=[(e—1)— (=P, Q= (E—F)".

As is explained in Appendix A, Q is taken to lie in the
fourth quadrant and R in the first, so regardless of
whether Q and R are real or imaginary, their product
has a positive real part. Now since

(2.15)

Ko(QR) — (r/20R) e 9% as [QR| = @, (2.16)
we see that G(x,x’) is well behaved at large space-like
or time-like intervals.

Further insight into the structure of G(x,x’) is ob-
tained by asking for the nonrelativistic limit of the
Green’s function. Looking at (2.13) or (2.14), we are
led to consider the infinite integral over the parameter 3.

Thus, making the separation

/:2 dﬁ=j: ds— (]:ZJF/Ddﬁ .17)

8 In a discussion of two free particles with momenta as in (2.5),
a natural choice is ui=w1/(wi14w2). This implies that »=0 and
that the relative momentum k=puski—uike is orthogonal to
K=Fki+k; and is purely space-like in the two-particle center-of-
mass frame. However, as the text shows, there is no need to
specify u1, u2 so long as (2.2) is obeyed.

(2.12)

and applying formula (A6) to the first part, we obtain?®

i eikh——r’{ —w32 % dﬁ
ot )
8rEl|r—1| —o o/ T

Xe"ﬁ(‘“"’Ko(QR)} . (2.18)

Now when g is in one of the intervals (— o, —w,) or
(w1,0), Q is real, positive and, in fact, larger than m,
or mi1. Thus if we consider large space-like separations,
R— « (real), we have, using (2.18) and (2.16),

7 eik|r~r'|
G(xax') — — ,
8rE |r—1'|

(2.19)

which, apart from a constant factor, is just the non-
relativistic free-particle Green’s function (independent
of the relative time!).

Taking this limit in the integral equation (2.11),
we see

Y@ — or
Ir]—e0

1: eikir—r']
d’ T ("W (' 2.20
— @NE), (220

[r—r'|
from which we can pick out the scattering amplitude as

f(k’«—k)=§;zi / il T (W (). (2.21)

[That (2.21) gives the correct expression for the scatter-
ing amplitude is known from field theory. We have not
shown, wholly within the context of the BS equation,
that our prescription is the correct one to associate
with actual scattering experiments. This presumably
would require a careful discussion of particle fluxes and
wave packets, which we have not undertaken. ]

® A simple way to understand why the first term of (2.18) is
time independent is to note that the corresponding integral over
(dBd*p) is invariant in a five-dimensional space, with 8 a fourth
spacelike dimension. The integral must then depend only on the
invariant |r—r' |24 (t—1')2— (F—¢)2
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The interaction (1.5) can be expressed, using (A7), as

16)= (40t DK ),
] = (e, -

with |#'| in the first quadrant. For large x’, we have
I(a")~N(8mM )2 | &' | ~32e— 212"l | (2.23)

showing exponential decay for space-like distances.
The Born approximation to (2.21) is obtained by
setting

Y (@) = o) =e . (2.24)
This gives
2m\/E
Bk —k)=—- (2.25)
(k—K")4 212

which agrees, of course, with the one-particle exchange
amplitude calculated directly from Feynman’s rules.
It also agrees, in the limit £ — m;+ms, with the Born
amplitude for scattering by the Yukawa potential

V(r)= (—m)\/mums) (e~ 2"/7)

in the two-body Schrédinger equation.

(2.26)

C. The Wick Rotation

Wick?!? has shown that, for the bound-state problem,
the Lorentz metric can be transformed into a Euclidean
metric by a rotation of the relative time wvariable,
t— —it. He found that no additional singularities were
encountered in the BS wave function or the Green’s
function, and the subsequent mathematical studies
were much simpler in the Euclidean metric. However,
certain assumptions made in that original work—such
as the presumed spectrum of stable particles—appear
now to be unnecessary; all our results follow simply
from the 7e prescription in (2.12).

For the general problem of bound states (E<m+ms2)
or scattering (E=mi+ms), we consider the Wick
rotation applied to the integral equation (2.11) with
the Green’s function (2.18). Set

t=re7i, t'=1'¢t, (2.27)
and let the angle ¢ go from zero to 4. This is similar
to the continuation process used in Appendix A to
evaluate some important integrals; and, in particular,
we note that the distance function R remains in the
first quadrant of the complex plane. The variable ¢
appears in the integral equation as an argument of the
analytic function G(x,x"). Then the justification of the
analytic continuation requires a demonstration that the
¢ integral converges. As |7—7'| — o, the quantity
et ) K (OR) in the Green’s function has a magnitude

10 G. C. Wick, Phys. Rev. 96, 1124 (1954). A general Euclidean

form for field theory has been considered by J. Schwinger, Proc.
Natl. Acad. Sci. U. S. 44, 956 (1958).
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proportional to the real exponential factor

e(T=7")8 singg—| 7—1'| (B—kH1/2 sing (2.28)
which can be a growing function. This exponential
growth under the ¢ integral will be overcome by the
interaction 7, which, by (2.23), is proportional to
e M7l sine for |7/| — o0,

We must also see how the wave function ¢(+)
behaves for large 7/, and we can learn this from the
integral equation. Writing (2.11) in a very schematic
form, appropriate to | 7| — o, we see

eikr

Y)~errt—
r

+<f +/ )dﬁ/dT’e(f—r’)ﬁ sing

Xe—-l —7/| (B2—k2)1/2 sin«pe—Ml r'lsinw‘// (T’) .

d,r/e—-Ml 7’| sin(p‘l/ (T’)

(2.29)

Thus, assuming for the moment that the 7’ integral
does converge, the dominant terms (coming from 8 near
w1 and —w2) show that

;//(T)Nelfl (w2—m2) sin¢’ F— — o

(2.30)

Nglﬂ (w1—m1) sinP’ T— + 0,
Finally, if this behavior is inserted under the 7’ integrals
in (2.29), it is seen that the integrals will converge,
both for r — 4 and 7 — — w0, provided that

E=w1tws<my+me+M. (2.31)

Equation (2.31) may be read as the condition that
the energy of the two-particle system is less than the
threshold for the production of a real meson of mass

all further work in this paper will be subject to
this restriction. The Wick rotation is now completed
by setting p=34m so that = —ir, = —i7’. The rotated
wave function is well defined in coordinate space, but
it does have an exponential growth for |r|—oc0. This
function in momentum space will then have special
singularities which make it hard to analyze.l!

D. The Euclidean Problem

Having justified the Wick rotation, subject to (2.31),
we restate the problem in notation appropriate to the
Euclidean metric. The BS equation now reads

o) = oo+ / L H ) V() o), (2.32)

where
(2.33)

(2.34)

1 Such singularities have been noted by N. Kemmer and A.
Salam, Proc. Roy. Soc. (London) A230, 266 (1955), who first
applied Wick’s trick to the scattering problem

x= (xlax%xSyT) = (l',T) )

— pik-
po=e"T,



1458 C. SCHWARTZ AND C. ZEMACH 141
V(x)= @4MN/R)K:(MR), R=(+7)12, (2.35) R?=r?+ 2
ik|r—r’| 1 —wy o ! w?= K+ mi:f i=12
H (') =— ([ + / )dﬂ . %
$xE|r—r'| 8n2E\)_, )., \ o~ e ok
M N p~e +f - //
XeB " K(Q|R—R'|), (2.36) \4% </
=/ &/
| R—R'| =[|r—F [+ (r— )], Q= (= B2, (2.37) R N
\ <
The differential form of this equation is \\ //
. —w,T-m,R / . w;T-m R
[+ 2ianpi— R0 2iwspe— ko () P e N P e
=V@e), (2.38) T
where Fic. 1. Behavior of the Wick-rotated Bethe-Salpeter wave
pa= -—i(&/ar) P2=P2+P42 (2 39) %lnction ggl,-r)/in thetenetrgy region mi+ms < E<mi+me+M, as
’ : : — o with /7 constant.

This is a fourth-order partial differential equation.
The boundary conditions at the origin R=0 are the
usual ones that the singular solutions are to be discarded.
The boundary conditions at infinity are given in the
integral equation (2.32), and we may read them off
from the asymptotic behavior of the Green’s function
H(xx'). For 7—7'>0 and for [R—R'| > with the
ratio |7—7'|/|r—r’| fixed and finite, the dominant
portion of the 3 integral of (2.36) comes from near
B=w1, and, by a partial integration, we find!?

)

e[wl(r—-r’)—mllR—-R’l]

1 I—eiklr—r’l

H ()~
8rEL [r—1'|

X . (240
[wdR——R'[——ml(T—'r')]] )

For 7—7'<0, we can write down the analogous ex-
pression directly by making use of the fact that H (x,x”)
is invariant under the transformation

T—>—T, M1> M. (2.41)

This symmetry applies because the propagators of
both particles were given the same 7e treatment. The
asymptotic behavior of the wave function, determined
by (2.40), is pictured in the (r,7) plane shown as Fig. 1.
In a cone of finite aperture (which fills the entire space
as the kinetic energy goes to zero), we see that ¢(x) is
asymptotically like a Schrodinger scattering wave

function
p(x)~exr+ f(e/7),

with the scattering amplitude

(2.42)

1
f(k’<-—k)=g;l-z—/d4x’ eIV () o(x'). (2.43)

This is identically the same quantity as the original

2Qur conclusions concerning the asymptotic behavior of
H (x,x") away from the space axis are not in accord with those of
A. R. Swift and B. W. Lee, J. Math. Phys. 5, 908 (1964). In
particular, we do not confirm their asymptotic evaluation of the
integral I in their Eq. (B7).

scattering amplitude (2.21), but expressed in terms of
the rotated functions.

The wave function ¢(x) is seen to grow exponentially
for large 7-like distances. However, o(x) occurs multi-
plied by V(x) in the integrals (2.32) and (2.43), and
this product is well behaved at large distances in all
directions. Therefore, although this feature is, perhaps,
at first disconcerting, it can be abided. Some under-
standing of this unseemly behavior of ¢(x) may be
gained from the following rough analogy. Think first
of a one-dimensional (radial) Schrédinger equation.
One of the two possible solutions of this second-order
equation about the origin is discarded, and the other
may be fixed by a choice of normalization. Thus, as one
integrates out from r=0, the solution is completely
determined. Approaching = », we have (a) for bound
states, the requirement ¢ — 0 which can be satisfied
only for certain values of some parameter (eigen-
values); (b) for scattering states, the phase shift is
uniquely found.

Now, for comparison, think of the BS equation as a
one-dimensional problem (in the 7 variable) but of
fourth order. Of the four independent solutions at the
origin, two solutions are discarded as being too singular.
The other two will occur in a linear combination, so
that, in addition to a normalization factor, we are left
with one free parameter as we integrate out to infinity.

Then, for R—w ;

(a) For bound states we have the requirement
¢— 0. Of the four possible solutions of the equation
in this region, two are exponentially increasing, two
decreasing. We thus have two conditions to be filled
with the one free parameter, and this will work only for
particular values of some other parameter in the
equation (eigenvalues).

(b) For scattering states, the four possible solutions
of the differential equation (2.38) for r —o have the
following characters:

¢,1~e(w1+m1)‘r, ¢2~e(w1—m1)f

J

(2.44)

¢3~e—(wz-—m2)f s 4)4'\'6_'(“’2 +ma)T
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For 7— 4+, our asymptotic formula (2.40) tells us
that the solution must be dominated by ¢, Thus our
boundary condition may be stated: The strongly
divergent solution ¢; must be absent. This is one
condition which fixes the one free parameter we had in
¢ starting at the origin. The solution is now well deter-
mined, and we can read off the phase shift.

To complete this admittedly nonrigorous discus-
sion one should ask about 7— — . The strongly
divergent solution is now ¢, But the symmetry under
(2.41), which applies to ¢(x) as well as H (x,x"), guaran-
tees that ¢4 is absent when ¢, is.!3

III. METHOD OF SOLUTION

It now remains to demonstrate that one can, as a
practical matter, numerically solve the equation
written down and described in the preceding section.
It is clear that the ordinary angular momentum is a
constant of the motion. We may thus separate out two
angular variables and have left a two-dimensional
(|r],r) fourth-order elliptic equation. There are a
number of standard numerical approaches to choose
among: use mesh-point integration or variational
principles; study the differential equation or the
integral equation; use the coordinate representation or
its Fourler transform. A few of these different routes
were tried without success. Then, a variational method
based on the integral equation was found to solve the
problem very successfully.

This generalized Schwinger variational principle for
the scattering amplitude is derived in the next section
and reads as follows:

[8rEf(K k)]

= / d*x e*"“"’V(x)cpk(x)—!— / d*x q;k: (—x)V(x)exs

~ [t eV @+ [ [

X (=) V (@) H (x,2") V (& )pre(2) -

The last integral in (3.1) looks forbidding, but the
following simple device puts the entire calculation in a
manageable form. Instead of the function ¢(x) as the
quantity to be varied, we take

Ux) =V ()¢ (x).

Then, defining the Fourier transforms

(3.1)

(3.2)

U(p)= /d“x e 2 (x) 3.3)

13 The scattering states are even under this symmetry. because
the incident plane wave is even; but bound states of the BS
equation may be even or odd. In nonrelativistic problems, the
states are all even under this transformation.
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and
H(xx')= / ik H (p)eir- (== | (3.4)
(@2r)t
we find that the variational principle reads
[8rEf(K «—k)]
O+ O () /d4xUk' (=) Ux(x)
V()
a'p -
+f RCCLDIIONECD

The virtue of this form is that it leaves only two single
integrals to be evaluated [no double integral as in
(3.1)]; one of these is in x space, the other is in p space.
A second advantage is that, while ¢(x) has the un-
pleasant behavior at large 7, the function U (x) is well
behaved.

We now simplify to the equal-mass case:

mi=ma=m=1, wi=wi=w=(14+k)12=1E. (3.6)

For the Fourier transform of the Green’s function
we can use
H(p)=[(p*—k*—ie)+4w?p T 3.7)
but a few words must be said in explanation.®® Firstly,
the formula (3.4) is not well defined by itself because of
the exponential growth for |7|— . We need to evalu-
ate the integral

/d‘*x/d“x’Uk,(——x)H(x,x’)Uk(x') (3.8)

in (3.1), and show that it can be expressed in the form

/ O (D)D) (3.9)
2n)k K .

of (3.5). We do this in three steps: First, un-Wick-rotate
the two time variables. Second, Fourier-transform U
and H. Third, attempt to re-Wick-rotate (counterclock-
wise) the fourth component of momentum. The func-
tions U are taken to be sufficiently well behaved so that
these steps are all trouble free, and the only point to
watch is the original problem of the location of the poles
in the momentum Green’s function. What we are left
with is a specific contour of integration for the p, vari-
able which is illustrated in Fig. 2. What prevents us
from simply integrating along the real p4 axis are the

1 Footnote added in proof. This part of the discussion was in-
correctly given in the unpublished version of this paper, and some
of the numerical results given there are consequently wrong (al-
though only by an inconsequential amount). We thank Klaus
Rothe for bringing this matter to our attention.
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poles at

g2=1[w— (p*+m?)'2+ie]
and

g3=1[ —w—+ (p*+m?)2—ic].

These poles make their maximum intrusion for p?=0,
and so we can specify that the integral (3.9) be evalu-
ated along the fixed contour Cma.x Which goes around
the points ps===[7(w—m)—€]. Then the following de-
vice allows us to follow this prescription very easily: the
integral (3.9) may be seen as an analytic function of %2
(provided the functions U are taken to be analytic in £2,
which is easily done) and in particular may be continued
into the region
—m?<k?<0.

In particular for real negative k? (just like the bound
state situation) the troublesome poles of Fig. 2 never
cross the real axis, and so we can now move the contour
Cmax to coincide with the real axis. This will allow us to
introduce polar coordinates for doing the |p|, p4 inte-
gral. We can summarize this discussion about the mean-
ing of the last integral in Eq. (3.5) by the following:

Rule: Proceed as if there were no poles to
worry about (i.e., assume k® negative); then
analytically continue the result to the correct
value of £

(3.10)

Next we shall separate the (three-dimensional) angu-
lar momentum for our problem just as one does for the
Schrédinger problem ; and by separating real and imagi-
nary parts, convert the variational principle for e siné
into one for tand. In Sec. IV can be found the unitarity
theorem showing that the phase shift & is real. The
imaginary part of H [see (2.36)] can be Fourier trans-
formed without difficulty to yield:

Hi=(%/20)5 (92— k2)5(ps) . (3.11)

The partial-wave expansion proceeds as with the
Schrédinger problem:

f& —K)=k1 3, Py - k) (21+1)ei®t sins;, (3.12)
U(x) =31 Pi(k-#)it QU+ u(r,7) . (3.13)

For the equal-mass case #;(r,7) is a real function, even
in 7; and, using the symbol ® for “the real part of,”
we finally arrive at

[m_m,;in_a_’] =241, (k,0)— / d*x ui (r,7)/ V(r,7)

ap
+a / 22 2ol p0H (lp] p0), (3.14)
(2m)
where

(|p|,pe)=4r f dr e=iver

)

x / sdr ji(|plHutrr)  (3.15)
]
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F16.2. The ¢;,1=1, 2,
3, 4 indicate positions of
the poles of the momen-

tum Green’s function in %
the ps plane. The ps N
plane is obtained from __ /_?'3 _

et R S

the original poplane by a
Wick rotation po— ips. |
The heavy line is the }
contour of integration
in the momentum inte- ql‘]l’
grals of (3.5) and (3.9). {

|

|

or, conversely,

00

47 /‘ Dot
P‘ielpAf
(2m)

0

141(7’,1‘) =

X / ol ]p] e[ plNElpl 2. (3.16)

The basis functions for the calculations were chosen

to be p/0)
2wk (p/a)™
=21 mbnm SINW cos” J——— | (3.17)
e
where
P': (l p[ 2+P42)1/27 COS&:?‘*/P) (318)

and

n=114+2,1+4,---, m=1,23 ---. (3.19)

The detailed procedures for evaluating the integrals
of (3.14) with these basis functions are described in
Appendix B.

The variational principle (3.14) can also be used to
find bound states by dropping the first term, and con-
verting it to a stationary quotient for the potential-
strength parameter A (at a given energy E). Calculations
of some bound states for this equation, using the
Rayleigh-Ritz method on the differential equation,
have already been published.? In that approach, it was
difficult to get accurate answers for weakly bound
states (k2 very small and negative), because the correct

TasLE I. Eigenvalue in coupling constant A for first
bound s state for mi=me=m=M, E/2m=0.9.

Size of Old way at«=0.3  New way ata=1.3
matrix (differential eq.) (integral eq.)
1 2.90247 1.740278
2 2.18762 1.671994
4 1.84898 1.665830
6 1.76092 1.665305
9 1.71556 1.665217
12 1.69850 1.665190
16 1.68794 1.665180
20 1.68179 1.665174
25 1.67729
extrapolated 1.667:0.008 1.665174-0.00001
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F16. 3. S-wave phase shifts versus k2 for various coupling

strengths A and for exchanged-particle mass M =1, Zero-energy
bound states occur for A=0.76222 and A=6.01.

wave function has a very asymmetric (in 7,7) asymp-
totic behavior. In Table I are shown comparative
results of that old and this new method for 22=—0.19
(E/2m=0.9); and it is clear that the new method
converges very much more rapidly than the old. Credit
for this improvement is due to the presence of the
Green’s function in the new calculation; for it is the
Green’s function which determines the asymptotic
behavior that was causing the difficulty. We achieved
similarly excellent results right up to zero binding
energy (k®— 0_); the critical values of A needed to
produce a bound state at E=2m—for several values
of the exchanged particle mass M and for several
partial waves—are given in Table II.

TasLE II. Computed values of 7A/M which give a first bound
state at E=2m. One nonrelativistic value (M — 0) for /=0 is
known, from solution of the Schrodinger equation, to be 1.67981.

M =0 =1 =2 1=3 =4

10 6.585 143.3 729

5 4.455 75.72 369

2 2.970 36.12 158.2

1 2.395 23.18 90.67 250 567

0.5 2.071 16.64 59.3

0.2 1.853 12.5 39.7

0.1 1.771 1.1 33.6

0.05 1.727

0.02 1.700

0.01 1.690

0.0035 1.684

0.001 1.681
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The variables in the stationary calculation with the
basis (3.17) are the linear amplitudes a,,, and the scale
parameter a. The sequence of approximations was
defined by taking all terms of (3.17) with m-+n—1 less
than 1, 2, 3, etc.: This gave the sequence of basis
dimensions 1, 2, 4, 6, 9, 12, 16, 20, 25, 30. We collected
much data at sizes up to 20 and 30 in order to be
thoroughly convinced of the true convergence of our
numerical results; but it also became clear that one
could frequently get fairly useful approximations

1
[ 0.2 0.4 0.6 0.8 1.0 1.2

Fi1c. 4. P-wave phase shifts versus %% for various coupling
strengths A and for exchanged-particle mass M =1. A zero-energy
bound state occurs at A=7.377.

(within 109,) by using just one or two terms. In several
ways our computer programs were ‘‘over-engineered,”
since we did not know beforehand just how well our
method would work. It may now be said that one could
probably do reasonable computations of the BS equa-
tion using only a desk calculator.

The variation of the scale parameter « is discussed
in another paper,* where we also present curves of
w tand/k as a function of « for a series of basis sizes.
In Table IIT are listed results at three values of « for
=0, M=1, k>=0.4; and a very rapid convergence is
again apparent. It is probably true that this variational
method gives a rigorous upper (or lower) bound for the
true phase shift, but we draw our confidence in the
reliability of the numerical results chiefly from the
apparent good convergence, as represented by the data
in Table III. For the following collection of numerical
results o was simply kept fixed at 1.5M.

In Fig. 3 are shown curves of s-wave phase shifts
versus energy for M=1 at several coupling strengths.
The familiar jumps by = at 2=0 may be seen whenever

1 C. Schwartz, following paper, Phys. Rev. 141, 1468 (1965).
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a new bound state appears; otherwise the behavior is
very smooth and simple. In Fig. 4 are similar data for
p waves.

Partial-wave contributions to the total cross section,

Q1= (214-1) (sin2,/k2) ,

are shown in Fig. 5§ for M =1, A=35. At this value of A
there is one very deeply bound s state.’® The s-wave
cross section is very large at k=0 because of a ‘“‘virtual
state’”: The next bound state occurs at A= 6.01, which
is quite nearby. Qo then bounces through zero at
k?=0.2; this happens because the phase shift (see Fig. 3)
is passing through = on its return toward zero as k — .

The p-wave cross section in Fig. 5 shows a large peak
at low energy. However, in standard parlance, this is
not really a resonance, since é (see Fig. 4) does not pass
through 47 at this Value of A\. The phase shift merely
stays close to about £ of 37 over a wide range of energy
(0.2<k%<1), and so Qq is close to its maximum value
of 3/k%. Then as k approaches zero, (; must vanish as

FiG. 5. Partial-wave cross sections Q;= (2/41) sin?;/k? versus
k% for A=5, M =1. The Q; for the higher / are well represented by
their Born approximations.

k%, and these two forces working against each other
produce the large peak seen in Fig. 5.

Contributions from /=2 and /=3 are also shown in
Fig. 5, and these are seen to be rather small. In Table

15 In fact, at A=3.4 the total energy E of that bound s state
reaches zero, so at still stronger coupling strengths we really
cannot say what happens to that bound state without going
outside the given BS equation. In the present section, we merely
wish to show that ordinary results for the BS equation look just
like the familiar results for a Schrédinger equation; and therefore
we shall ignore such extraneous problems.
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TaBre III. Computed values of (w/k) tande for M=m=1,
k=0.4, A=1 at several values of « and several matrix sizes.
Convergence is seen to be rapid enough that accuracy for ordinary
purposes is achieved with fairly small matrices.

Matrix size a=1.2 a=1.6 a=2.0
1 2.46995 3.23430 3.02017

2 3.40599 3.26699 3.30337

4 3.49375 3.54227 3.44639

6 3.55633 3.55208 3.53635

9 3.56117 3.56121 3.55757

12 3.56345 3.56342 3.56100

16 3.56368 3.56372 3.56289

20 3.56386 3.56388 3.56358

Extrapflated 3.563941 3.56404-1 3.56404-2
value

IV are given values of Qs Qs and (, calculated at
A=23, along with a comparison to their Born approxi-
mation values. We see that, as / increases, the contri-
bution to the scattering becomes smaller and the Born
approximation becomes more accurate. A semiquanti-
tative understanding of these two observations may be
had by recalling that the expansion parameter of the
Born series is A/A*, where M is the value of the coupling
at which a bound state appears. Looking across the
M =1 row of Table II, we see that, in going from /=2
to /=3, the ratio of A* values increases by 2.8, and from
I=3 to I=4 by 2.3. The accuracy of the Born approxi-
mation (judged by R;—1 from Table IV) is seen to
increase by roughly these factors, going from /=2 to
!=3 to I=4; and the magnitudes of the cross sections
decrease very roughly as the square of these ratios. We
therefore conclude that the entire elastic-scattering
problem for the BS equation may be very well solved

0.8 T T T T T T

-8/m

0 0.2 0.4 0.6 0.8 1.0 1.25

Fic. 6. S- and P-wave phase shifts versus %% for various negative
coupling strengths and for exchanged-particle mass M=1.
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TaBLE IV. Computed values of the partial cross sections,
Qu= (21+1) sin’;/#?, for A=S5, M=1. R; is the ratio of Q; to its
Born approximation.

k2 Q2 R. Qs R3 Q4 Ry

0 0 (1.120) 0 (1.017) 0 (1.0038)
0.1 0.01393 1.242 0.0¢8413 1.036 0.085851  1.0067
0.2 0.09753 1.358 0.021669 1.061 0.043448 1.013
04 0.3961 1.451  0.01708 1.105  0.0%888 1.028
0.6 0.6300 1.400 0.0461 1.127  0.02381 1.041
0.8 0.731 1.298 0.0778 1.129  0.02870 1.047
1.0 0.744 1.194 0.1051 1.118  0.01470 1.052
1.25 0.705 1.088  0.1292 1.091  0.0223 1.045

by doing these numerical calculations for the lower /
values and then adding the Born approximation values
for the higher partial waves.

We also looked briefly at some scattering by repulsive
potentials (A negative). Some resulting curves of &
versus k% are shown in Fig. 6, and it is seen that they
have the general appearance of what one would expect
from a repulsive potential in a Schrodinger equation.

The scattering data discussed so far has emphasized
M/m=1 as a typical relativistic situation. For M — 0,
one may expect an approach toward the nonrelativistic
results (since the restriction to elastic scattering implies
small & if M is small), and this is borne out by the data
of Table II. We have done some scattering calculations
for M larger than m; and the general nature of the
results, as compared to those for M=m, may be de-
scribed in terms of the following scaling of the variables
X and k. For k>Zm?, the data of Table II indicates how
\ varies with M for a fixed value of the phase shift.
For kZ>m?, one sees from the differential equation that
results depend only on the two ratios 2/M and \/M>2
Thus, for fixed A, we can use the Born approximation for
very large M, nonrelativistic results for very small M,
and our numerical procedures for intermediate values.

IV. MISCELLANEOUS TOPICS
A. The Nonrelativistic Limit

We shall first observe that the BS equation reduces
to the Schrédinger equation, if the integral terms in the
Green’s function (2.36) are dropped, and we shall then
consider under what circumstances this is permissible.
(This first result may be seen as easily from the un-
rotated equations, but the subsequent studies are
simpler in the Euclidean metric space.)

When the integral terms in (2.36) are dropped,
H(x,x"), and therefore also ¢(x), become independent
of the time variable. The integral over 7/ in (2.32) may
then be done:

e’;p cz!
/V(x’)d*r /dT— /d4
P2+M2
ezp -’ e—Mr'
dp— =dm—, (&1)

) ptme r
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The equation reduces to

etklr—r’| e—Mr’

(4.2)

o(t),

2
p(r)=e*r— / dr’
E

[r—r|

which should be compared with (1.1). If the E in (4.2)
is replaced by mi+ms, then this reduced BS equation
is identical to the Schrédinger equation with the
Yukawa potential (2.26) already inferred by com-
parison of the Born approximations.

To decide when the above approximation to H (x,x")
is valid, we distinguish two regions of the variables
R R
(4.3)

(4.4)

| R—R’| Xmin (m1,m2)>>1,
| R—R’| Xmin (my,ms) Z1.

Since Q in (2.36) always exceeds m; or ms, (4.3) is the
region in which the asymptotic evaluation (2.40) is
valid. In this region, the integral terms are ignorable
relative to the nonrelativistic term provided that

w1,2] T— T, |<<m1,2 l R“R’ I
or, equivalently,

[t—1'|>(k/my2) | 7—1] . (4.5)
Since the interaction treats |[r—r’| and |[7—7'| sym-
metrically, this means that for relative time effects to be
small we must have

k<<m1,2 . (46)

In order that the region (4.4), which is not covered
by the above argument, also be ignorable, it is sufficient
that it be a domain small in extent compared to the
region of variation of R, R’ which is relevant to the
dynamics. This latter region is

RMZ1, RMZ1,

since M~ is the range of the interaction. Hence we
need, in addition to (4.6), the requirement

M<my,s. (47)
In conclusion, we can state that the BS equation
reduces to the Schrodinger equation when both the de
Broglie wavelength associated with the relative mo-
mentum and the range of the interaction are large
compared to the Compton wavelengths of the inter-
acting particles.

This conclusion may be demonstrated numerically
with our calculations of the coupling constant values
needed to produce a bound state at zero binding (E
=my+ms). This gives us one set of conditions (4.6)
directly via £=0, and we can study the limit M — 0
(4.7). (The other limit, M=0, E — my+m,, may be
found from the solutions of Cutkosky.?) At zero
binding, the s-wave part of (4.2) is equivalent to the
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differential equation

d2 e?
(——}-)\o—)u(z) =0 y Ao

P , (4.8)
2 z

=M(m1+mz)

for which the lowest eigenvalue is known to be A,
=1.679809. Several numerically computed values of A
are given in Table II (for mi=ms=1), and it is seen
that the proper limit is approached.

B. Elastic Unitarity and Other Properties

The main objectives of this subsection are to show
that, subject to the threshold condition (2.31), the BS
scattering amplitude satisfies the unitarity condition
for elastic scattering and to prepare for the derivations
of the variational principles below. Such discussions in
nonrelativistic theory may be founded, equally well,
on the differential or the integral equation. The use of
the differential BS equation, however, appears to
involve some delicacy in the process of integrating by
parts, while the integral equation, having a structure
similar to its nonrelativistic counterpart, is easier to
deal with. We begin by listing some properties of the
BS functions. The wave functions will be given sub-
scripts to specify the incident momenta. We repeat
the basic equations:

@) eu@)=errt / He )V (&) o ()%

B) S —k)=@BrE)! | ™V (x)por(x)d*x.

We also note

(©) ex(r,7)=¢x(—1,7),
(D) H(xx)=H(—«', —x).
From (2.36),

1
(E) z_i[H (o,0") — H* (w,27) ]
1 sink|r—1'| k dQrr

—_ weik” -re—'ik" Y .

$E |r—r| 8rEJ) 4x

(F) V(x) is real and invariant under r— —r or
x— —2x.

(G) H(x,x'), and hence o(x), is invariant under
change of sign of the time variables, provided m; and
me are also interchanged. Then ¢(7,7) is an even func-
tion of 7 if m1=ms..

Because of (D), (F), we have

H) oo (=)=t / 0 g (=) V &V (),
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and hence, as an alternative to (B),
O S0 0= 6By [ u(—a) @it
By setting r— —r in (B) and using (C), we obtain
the parity property
Q) K —k)=f(-kK « —k).

Setting * — —«x in (B) and comparing with (I),
we get
(K) & —k)=fk—K).

For brevity, we shall write @x(x) for ¢x(—x) and

(olp)= / dt o* (W ().

To obtain the unitarity condition, first consider X; and
X, (we use now a more compact notation):

X1=(¢_w|VHV gu)= (@1 | V(—e™ ™+ o))

=—=8rEf*(K —k)+(¢_x|Vex), (4.9)
Xo= (G| VH*V ¢ie)={(— €™ "+ g_) | V o))
= —8rEf(K —K)+(p1| V). (4.10)
Invoking (E), we have
Imf (k' — k)= (16miE)~(X1—X>)
dﬂku
—r(@etyt [ s v
4
X" | Vo). (4.11)

The desired condition then follows:
(L) Imf(k'<k)
= (k/4r) / dQu f* (K — k") f(" k).

(E), and hence (L), are only valid if the Wick
rotation is valid, that is, for E<mi+me+ M.
On the other hand, elastic unitarity below

E='m1+m2+M

may not be physically correct even though our BS
equation obeys it. This possibility arises if there is a
bound state of particles 1 and 2. Such a state is pre-
dicted by the BS equation itself, if A is large enough.
In this case, the ladder approximation may be in-
sufficient even for low-energy scattering where it is
expected to work best.

C. Variational Principles
The BS analog of the Schwinger variational principle®
can be taken over from nonrelativistic quantum

16 J. Schwinger, Harvard University, 1947 (unpublished); and
J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
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mechanics directly. It is

(8B (K — 1)
- f di 1V () g (0) / dr g (— )V (e

- / 02 o (—2)V (2) o)+ f dxd! po(—5)V ()

XH(xx) V(&) (®). (4.12)
It is easy to verify that if ¢k, i’ are taken as trial
functions, then the right-hand side of (4.12) is an
extremum when (A) and (H) above are satisfied and
the extremum value is 87E f(k’ < k) as indicated.

The usual derivations of the Kohn method for
scattering with the Schrodinger equation involve some
partial integrations, and these may be difficult to study
in our generalized problem. We now give a derivation
(following Kato!'?) which proceeds from the Schwinger
result, (4.12). Let J(¢ox’,¢x) represent the right-hand
side of (4.12) in terms of trial functions ¢x(x), ¢’ ().
Define Xi(x) by

o (3) = e / Hs) V@ )i, (4.13)

so that

V(@)X (%) = Dexe(#) (4.14)

with © the differential operator of the BS equation.
Now write (D is formed from D by x — —x)

[8zEf (k' «— k)]

=700 04 [ (COO=V @ () V1)
X[D—V(x)]ou(x)d*x. (4.15)
One sees that the right-hand side of (4.15) is stationary
about the true value of ¢ (and thus also of x), since
each term of (4.5) is separately stationary and the
stationary value is clearly 87Ef(k’ < k) as indicated.

Now after some algebraic manipulations, not involving
partial integrations, we get

[8rEf(k' — k)]= f e 1V ()X (x)d%x

- f ow (—)[D— V(@) lou(@de. (4.16)

This is the generalized Kohn variational principle. The
first term

/ e TV ()X () d%% (4.17)

17 T, Kato, Phys. Rev. 80, 475 (1950).
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isidentified from (4.13) as the trial scattering amplitude
describing the asymptotic behavior of the trial function
ox ().

Generally, one would imagine that the Kohn form
(4.16) would be easier to apply in practice than the
Schwinger form (4.12), because the former involves the
local operator H—V while for the latter one needs to
evaluate the double integral

/ dx / dx' o (—2)V(x)H (2,2 )V () o ('), (4.18)

and it looks as if this would be much harder to do.
However, there is an important constraint in the Kohn
procedure: The trial function must have the correct
asymptotic form, as shown by (4.13). In ordinary
Schrodinger problems, one can easily write for a trial
function

o= (sin(kr+34))/kr+short-range terms (4.19)

and then proceed to use (4.16). However, for our
Bethe-Salpeter problem, the exact asymptotic form
of ¢ is a complicated thing [see Eq. (2.40)], and we
have not been able to see how the Kohn method can be
put to practical use here.

V. SUMMARY

We have shown, by rather ordinary analytical and
numerical techniques, that a Bethe-Salpeter equation
can be understood and solved almost as expeditiously
as its nonrelativistic counterpart, the Schrédinger
equation. The results are not yet directly applicable
to physical problems because nothing has yet been
said about spin, inelastic channels, nonlocal interactions,
and so forth. We expect to treat some of these questions
shortly.

The present study has emphasized some “‘traditional”
language—coordinate space, wave function, variational
principles—rather than the contemporary language of
S-matrix theory. We note, however, that in the final
working formula (3.5) the wave function has dis-
appeared from view, and what remains (the U function)
is really the 7 matrix in some slight disguise. One is
then led to ask if our complete study of the Wick
rotation is really necessary, since, at the final stage,
it may be viewed merely as a trick for evaluating
integrals in a variational principle for the original
Lorentz problem. The reply is that a good understand-
ing of the orders of magnitude of functions and integrals,
which is facilitated by the rotation, is very helpful in the
construction of analytical and numerical procedures.

To conclude, we refer again to the data presented
and discussed in Sec. ITII. There it was seen that by
direct application of the numerical program, and with
the appropriate supplement of familiar Born approxi-
mation and nonrelativistic results, we could cover the
entire range of values of the parameters [ (orbital
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angular momentum), M (exchanged-particle mass), and
N (interaction strength). Thus within the restrictions
of our model—the ladder approximation with 7,=ms,
and energies below the inelastic threshold—we have
provided a well-rounded picture of scattering with the
Bethe-Salpeter equation.

APPENDIX A: AN INTEGRAL FORMULA

Consider

dn dn’ ! yi(px—p’z’)
Pag)= [222 7y
"=+ Q)+

where p, x are vectors in #-dimensional Euclidean space,
9, ' are vectors in an #»’-dimensional Euclidean space,
and Q is a complex number in the fourth quadrant so
that ImQ?<0. As a function of any component of p’,
the integrand is seen to have poles only in the second
and fourth quadrants; hence the contours of integration
over p’ can be rotated counterclockwise to the imaginary
axes. In order to keep the product p'x’ real, we simul-
taneously carry out an analytic continuation of F(x,x"),
rotating the components of «’ clockwise by an equal
amount. This can be formalized by setting p’=ge’,
&' =ye~% with ¢, y real and letting ¢ vary from zero
to gw—4. Making these changes in (Al) and setting
g— —g¢, we get

dn{;dn'qei(px+qy)
F(xa)=i" / _
P+

Now transform to spherical coordinates in #-#’
dimensions: Set

P= (42, R= (42, ntn'=2+42,
and do the angular integration first!8:
iV 2(r)r 2 e prHigp
T(+3) Jo (PAQYv

(A2)

(A3)

F(xal)=

X / dd (sinz?)z”e“’R cosd
0

®  pyHgp ],.(PR)

o (PHQH* (PRY

i 2m)H QT
—m(;> Komu(QR).

The analytic continuation of #" may now be retraced to
its starting point; then R becomes equal to (x2—x'*)!/2
where the root is to be taken so that R is always in the
first quadrant. This gives us the result that QR, the

=4 27yt

(A4)

18 We take the definitions of the special functions and integrals
involving them from W. Magnus and F. Oberhettinger, Functions of
]1% Zti;ematz’cal Physics (Chelsea Publishing Company, New York,

9).
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argument of the Bessel function in our result (A4), is
always in the right half plane, although sometimes only
by an infinitesimal amount.

The applications needed for the present paper are:

n=3, n'=1v=1 u=1:

d“p eir(z—z’)
/ (0= oG — ki)
=2r%Ko((B2—R)2|x—«'|); (A5)

n=4,n'=1,v=% u=1: [note Ky/2(2)= (7/2z)!/2%¢ %]

dpd*p eiB(t—t") gip(z—z’) etklr—r'|
/ =24m® ; (A6)
@+p—pi—k—idt [
n=3,n'=1, =1, u=0:
d4p eipr(z—3')
/ (p— po+M?—ie)
=i (2m)? Ki(M|zs—2']). (A7)
| x—a'

APPENDIX B: CALCULATIONAL TECHNIQUES

A formally simple choice of basis would be

#([pl,p)=> gni(p) sin Cn_;*1(cosd), (B1)

using the Gegenbauer polynomials. Then we would find

wi(r,m) =2 fni(R) sin’d C,_i'(cosh), (B2)
where (1) i o)
_1 (n—=1)[2 p*® ]n+1 pR
(R = | pp—— g (p), (B3
= [ par ), 9
R= P+, cosb=1/R.
Then with g,:(p) expanded as
> aanWkIM(P/a) , (B4)
m (1+P2/a2)n+m

we would find the corresponding terms in f,;(R) to be

2

Rl (_1)(n—l)/2a4 aR\ mHm—2
_—___( ) (B5)

Anm— K|2—m| (aR) .
m dr (n+m—1)!

Since the potential V is a function of R only, we can
then do the angular integral in the second term of
(3.14) and get

1
- Z Z Cpmbn’ m’ Yn'm'nm P}

\ nm nrme

(B6)
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where
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B (n+14+1)1B(m, m', 2n+m—+m') 2

Y”lm,"mz b

with the integrals

* Km o) Ko ()Y
B(mm' ,N)= | dt .
0

M
K(=)

!
A numerical table of these integrals may be safely
(i.e., without serious loss of accuracy due to subtraction

of nearly equal terms) built by using the recursion
formula

(B8)

Kﬂ(t)= ( )Kv—l(t)+KV—2(t)7

after we have first got the values for m, m’=1 and 2
for all NV needed. These three sets of integrals were
obtained directly by numerical integration.

The trial functions actually used were not exactly in
the form (B1), but can be readily written as linear
combinations of these terms. The choice (3.17) was
made in order to reduce the loss of accuracy encountered
in combining the several parts of the integral involving
the Green’s function in (3.14). Consequently, some
slight loss of accuracy was introduced into the V-1
terms described above, but this seemed a reasonable
compromise. With the actual basis (3.17), the last term
of (3.14), the H matrix, can be given as

’ ’
Z Com@n'm' L ym™ ™ )
where

Z"mn’m’=k2l ZV(_ l)d(ltl)
XAGw+n")+1—140, nt-n'+m4-m', s (n+n")42),

(B9)
in terms of the integrals (x=p/a)
® dx 2?1 1
ALMN)=®R| ———
0 (1+x2)M ™
™ dd cos?L%9
X / . (B10)
o [(2—F2/a2—ie)?+ (4w?/a?)x? cos® ]

A safe recursion formula for going from high to low M
values is

A(L,M,N)

=A(L, M+1, N+1)+A(L, M+1,N); (B11)

and, for &2 not too negative, we can safely step up in

" 1) (n— 1) L )RM (k- tm— 1) Ut/ — 1) | 22m42betm'41

(B7)

L with the formula
(4w?/a®)A(L,M,N)
=—AL—1, M—1, N)+ {1+2k2/a®)A(L—1, M, N)
— (kYA (L—1, M, N—1)

+D(L—1V)EM,N—1), for L>1, (B12)
where
(L—3/2)!
D)= —
L—D!(—1/2)!
and
N—=-DI(M—-N-1)!
EM,N)= .
2(M—1)!

Thus, we must start by evaluating the integrals 4
with L=1 at the maximum M for the set of N values
needed. Following the rule (3.10) we first do the &
integral for negative %2, finding

1,7 dd
T /o (a2 —k2/02—i€)?+ (4w?/a?) cos?d
1
= , (B13)
S(x) (22— k2/02—1¢)
where
S(x)=—4 ((x2—k2/a2)2+4(w?/a®)2?)2.  (B14)

We now analytically continue to the correct k2 value
under the x integral, and, taking the real part in the
familiar way, obtain

© dx x2N-1 1
o (14a)M S(x) (2—k/a?)

These integrals were evaluated by numerical integration
after the principal-value part was subtracted off and
done analytically. The actual integration variable
used was

A(1L,M,N)=P.v. (B15)

a2, for 0=x=1
and
X2 (B16)

for 1=x= o;

this was done to accommodate the rather sharp behavior
of S(x) for small values of k2/a?.

The evaluation of these starting numerical integrals
for the H and V! matrix elements took 10 to 15 sec
(given fixed values for M, , ) ; then we could do many
1, X values at a fraction of a second each. All the data in
the figures and tables in this paper were collected in
about 12 min of computer (IBM 7094) time.



