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Inelastic Electron-Deuteron Scattering and the Rescattering Corrections*
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The inelastic electron-deuteron scattering is completely re-examined on the basis of the recent Orsay ex-
periments described in an accompanying paper. The expression for the differential cross section is derived on
a more general basis, the rescattering corrections predicted by diBerent methods are compared extensively,
and their effects on the nucleon form factors are discussed.

I. INTRODUCTION

'ANY eGorts, both experimental' and theoretical, '
- - have been devoted to the problem of the electro-

disintegration of deuterons, with the specific purpose of
understanding the neutron form factors. However, the
situation is not yet clear in many respects. First, the
general problem of treating relativistically the electron-
deuteron system has not yet received a satisfactory
solution; second, even in the case of a two-body system
our knowledge of nuclear forces is still very poor.

The purpose of the present paper is threefold:

(1) To give a new formulation of the general ex-
pression for the cross section of inelastic electron-
deuteron scattering in terms of nuclear matrix elements
and nucleon form factors, which allows a better char-
acterization of the difFiculties appearing in the theory.

(2) To present a further analysis of the effect of the
interaction of emerging nucleons and a critical com-
parison with the diferent methods previously pro-
posed. '4 Our approach is the dispersive one proposed
by one of the authors' and already applied to the
S-wave corrections. '" In the present analysis this
method is extended in order also to include the I'-waves
of the neutron-proton 6nal-state system. Furthermore,
in order to compare our present conclusions with the
ones obtained by the model proposed by Durand, in
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both cases the calculations have been performed for a
wide range of momentum transfer.

(3) To interpret on the basis of the above expressed
ideas the recent experiments at Orsay. '

Of course, according to Ref. 3, these experiments
have been planned in order to determine the S and I'
waves as carefully as possible. The corrections due to
those waves are then introduced in the cross section
for deuteron disintegration at the peak, from which the
neutron form factors are determined.

Naturally our treatment will be substantially non-
relativistic. Only certain kinematical corrections are
introduced automatically and consistently in the theory.

II. FORMULA FOR THE INELASTIC
CROSS SECTION

A. General Formulation

The method for deriving the inelastic cross section
for the deuteron disintegration is similar to the one for
obtaining the elastic cross section already published by
one of the authors. ' The derivation relies on the general
properties of electromagnetic vertex functions' and on
the Sachs interpretation of the nucleon form factors. '

The inelastic electron-deuteron scattering will need
one more parameter than the corresponding elastic
scattering —for example, the energy of the scattered
electron. However, once the 6nal energy of the proton-
neutron system is given and the total angular mo-
mentum and parity relative to the deuteron of this
system are determined, then this is equivalent to a
two-body system. The corresponding cross section is
then obtained by a summation over the angular
momenta:

=aM. z4~'——(&+et) 2 2 ((&z,z...z„')'
dQdE3 E 3e2 J )4,X2

+ (1—rt) (Tq, q, ,z„+)'$1+2 ta,n'(8/2) (1+es)j), (1)
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where
422 cos'(8/2)

OMott-
4E22 sin'(8/2)

where QJ "4(x) is the nonrelativistic wave function of
the neutron-proton system with total angular mo-
mentum J and J,= —X4, normalized to the asymptotic
condition

dQdE3

8~
=oM,«LA(q2, P,)+tan' —~B(q2,P„)j,

2

which is the well-known consequence of the one-photon
exchange approximation.

(4) The structure of Eq. (1) is such that any change
in the wave function normalization can be accounted
for by a corresponding change in the constant e&.

(5) The constants 2) and 02 are completely determined
by the definitions of the charge and magnetic moments
of the system.

B. Nonrelativistic Limit

In order to obtain the nonrelativistic limit of the
functions TI" we shall write

TJ, /, , /,
0= s tPJ

—x4(x)(F p(q2)si& x/2+0 is x/2F ( l2—)nj/

X Ps
"2(x)dsx

E& is the initial electron energy, E3 is the final electron
energy, E and p, are, respectively, the energy and the
momentum of either of the outgoing nucleons in their
center-of-mass system, 0 is the scattering angle of the
electron, M is the nucleon mass, 02 equals —(q2/8M2)

+22), 02 equals (q2/4M&2)+22/, $ equals (2E/MD)' —1,
and r/ equals —2p(q'/M/2 ) '(1+q'/4MzP+2$) ', q2 is
the four-momentum transfer, MD is the deuteron mass,
P 4 and ) 2 are the helicities of the proton-neutron system
and of the deuteron, respectively, T& are connected to
the matrix elements I'& in the Hreit frame defined in
Ref. 6 by the relation

2 J,X4, Xg (2EMD/p02p04) I J,X4, X2 .

and p02 and p04 are the deuteron and the proton-
neutron system energies in the Breit frame of reference.

The functions TI' have a normalization of the states,
1/V, V being the volume of the system. This allows
simpler expressions for the nonrelativistic limits.

Some remarks are now in order concerning Eq. (1):
(1) The functions T& depend on two variables. We

will choose them as q2 and p„.
(2) In Ref. (6) it has been shown that the conser-

vation laws imply that only two components of T& are
independent; we will choose as independent quantities
T0 and T+= (T'+iT2)/V2.

(3) It is evident that Eq. (1) has the general ex-
pression

/pJLS - (p.r) ' »n(p. » 2L—2r+& JLS)

ps(x) is the deuteron wave function, F,r, F,", F &, F "
are the Sachs form factors, and p„and p„are the total
magnetic moments of the proton and neutron,
respectively.

Equations (2) are the obvious generalization to the
inelastic processes of the expressions which can be
written in the elastic case."

Equations (2) are nonrelativistic expressions which
cannot be written without any ambiguity in particular
in the normalization of the wave functions. We follow
the Sachs interpretation of the form factors and so we
have not placed a contraction term in the wave func-
tions. In fact, as outlined by Nuttal and Whippman"
the problem is not clear. Equations (2) are only Fourier
transforms of an electromagnetic distribution and
slightly different from the matrix elements given by
Foldy-Wouthuysen transformation. For example, if we
use the Sachs nucleon form factors, To diAers from the
expression given by Durand, s by (1+/t2/8M2). Gourdin"
has observed a little inconsistency in Ref. 7 and defined
other nuclear charge and magnetic form factors which
are the Sachs form factors divided by L1+ (q2/4M') J '.
Introducing those form factors, only negligible differ-
ences subsist between the two approaches and we obtain
the same To expression as Durand. '

In writing the nonrelativistic expression for the
current the orbital term has been neglected. This is
because we neglect the coupling between waves with
diRerent angular momenta. The resulting expression
for the differential cross section is then

d'o M' p,=o M,« —(1+er)I(8,q2),
dQdE3 x E

I(8q')= 'Z Z (2~+1)K-J,»'(F "+(—1) F )'

1 g
(1—

2/) L1+ 2(1+0,) tan'(8/2) )
3 4'

&&+ t 2(/4+~2+( —1)L/4 F n)2L(3L+4)KL+r, L, 22

+ (2I.—1)KL,L,p+ (3L—1)KL z, L, z j
+/L/4+ " (—1) /4 F ") (2L—+1)KL,LO'} (4)

where

TJ,/„,&2= fJ "4(x)/q'J& iro/zoF "(q') e'0 x/'

2M

+ I)( i~oF n(q2) s i 2 x/2)y 4 (x)dsg— .

2 M. Gourdin, Nuovo Cimento 21, 1094 (1961).

(2)
00

KJ,L, S FJLS(pry')&L(2/Ir)N(r)«(5)
0

are defined according to Durand's paper.
' L. Durand, III, Phys. Rev. 123, 1393 (1961).
"M. Gourdin, Nuovo Cimento 36, 129 (1965).
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I (H, qs) = $(F,")s+ (F,")s]M(P„q)+2F,"F,"N (P„,q)

g2

+ (1—ii)L1+(1+e,)2 tan'(8/2) j
4M'

with M(p„q) and N(p„,q) defined as in Ref. 9.
On the basis of Eq. (6), we can derive a simplified

expression of I(8,q') to be valid at the peak, in which
the terms proportional to F,"F," and to F &F " are
neglected. It has been found'b that at low q' the con-
tribution due to these terms may be quite releva, nt. In
Table I corrections due to this term for different values
of q' are reported.

Finally in Fig. 1 the results predicted by Eq. (6) are
compared with the experimental results' for the whole
spectrum. As easily observed, above the threshold the
experiments give cross sections greater than the ones
predicted by Eq. (6).

IV. RESCATTERING CORRECTIONS

Many attempts have been made to evaluate the
rescattering corrections. "'9 Substantially they have
been evaluated by two different methods which we
shall outline here. The first one assumes a potential,
from which wave functions are computed by solving
the corresponding Schrodinger equation and then
evaluating the matrix elements. 'The second one relies
on the analytic properties of the matrix elements. "
These properties together with elastic unitarity allow
an Omnes integral equation to be written for each
matrix element, in terms of the corresponding Born
approximation (free-wave solution) and the phase
shifts of the elastic scattering of the outgoing nucleons.

Both methods are of course affected by difhculties;
the difFiculty of the potential method is obvious, since
we know only the asymptotic part of the potential
between the nucleons and therefore the method relies
on models which may give very different answers. The
second method needs the introduction of constants
which are determined directly by the experiments, in

TABLE I. Percentage of the terms in P "F & in the magnetic
term of the cross sections at the quasi-elastic peak.

g2

(F ')

Percentage
of the terms
inF "Ii

0.7 0.9 1.5 2.0 2.5 3.4 5.0 7.0 9.1

9.4 7.4 4.6 3.2 2.4 1.6 0.8 0.5 0.4

n 3. Bosco, Phys. Rev. 123, 1072 (1961).

III. FREE SOLUTION'S RESULTS

If the proton-neutron system is described by plane
waves the summation can be performed in Eq. (4) and
one obtains'b

order to account for the discontinuities due to the
anomalous thresholds.

It has been stated' that the two methods are equiva-
lent. While this is certainly true from a theoretical
point of view since both methods are different ex-
pressions of the Schrodinger mechanism, there is no
reason that the practical results of the two methods
should be identical. Indeed, we do not know the
potential which generates the experimental phase
shifts we use in the dispersive approach or the phe-
nomenological constants we determine from the
experiments.

A simplified version of the potential method has been
presented by Durandg in order to avoid. the lengthy
computer calculations. We applied this method very
widely. We shall discuss this version in the next sub-
section, while in the subsequent one we shall discuss
the dispersive approach. In the following calculation
the phase shifts plotted in I'ig. 2 will be used. A third
very simple model is explained in the Appendix.

A. The Durand Model

This method has been presented 6rst by Durand'
and applied by him in very particular cases. Even if
we suspect its validity, particularly near the threshold,
(because of the singlet 5 state and the proximity of the
deuteron pole term), it seems very interesting to extend
this very simple method and to compare it with the
experiment. In fact, we find this approximation some-
what in agreement with the experiment.

Such a simple model can be useful in some appli-
cations where one needs an expression of the theoretical
cross section, e.g., for calculating the radiative cor-
rections along the complete spectra. '~ We apply this
method under very different conditions. We even
calculate final-state corrections for very high q2 and
we find acceptable results. Then this method can be
used to give qualitative indications on the behavior of
the cross section under the variation of some parame-
ters, bearing in mind that this model cannot be an
exact representation of a complex problem.

Durand has treated the problem assuming a square
well potential of Axed range ro= 2 I'. Outside this range
he uses the asymptotic wave functions with experi-
mentally determined phase shifts. The continuity of
the wave functions and their erst derivatives at ro

should determine the depths of the potentials. How-

ever, since the resulting transcendental equations have
an inhnite number of solutions, a further condition is
needed in order to completely define the potential.

A supplementary condition has been imposed by
selecting the minimum absolute value for the potential
depth. "

"We select the solution which corresponds to the minimum
absolute value for the depth of the potential. In some exceptional
cases, the depth corresponding to this solution is very important.
(The maximum is 220 MeV for 5 waves, 340 MeV for P waves,
500 MeV for D waves). This model introduces very apparent
discontinuities (Figs. 3 and 4).
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Fzc. 1. The spectra predicted by the Durand model compared- to the experimental ones. The dashed line is obtained neglecting the
final-state interaction; the solid line includes the final-state interaction. The bound state is described by a Hulthen wave function.
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In order to compare with the experimental data the
calculation has been performed for a wide range of q'.

In Fig. 3 the quantities

&el.s= (&zl,s' E—J.')/&I. ',

~JLS
(radian)

Brclt phase shifts: YLANG and YLAN 3M

3D2

3P2

where EI. are the matrix elements (5) computed with
free waves, are plotted versus q', at the quasi-elastic
peak. In Fig. 4 the corresponding quantities

I(8,q') —Ip(0, q')
hI=- =

Io(8,q')

Q25- lt

r rf s
p g

4

~ y

r

/

290

1D2

3D3

S1+g
t

are plotted versus q' at 0=60' and 130'. Io(0,q') is the
function I(8,q') computed with free waves and I(8,q')
includes the final interactions in the 5, I', D waves. One
can easily observe that such corrections are of the order
of 1.5%%u~ for q' above /. 5 F '.

The comparison with the experimental data for the
whole spectrum is given in Figs. 1 and 5. The calcu-
ati ons have been performed for two diferent deuteron
wave functions: a Hulthen wave function and a wave
function with a hard core. A noticeable disagreement
with the experiments is evident from these figures
between the threshold and the peak.

-Q,25 ~

«05 ~

1SO
~ 3PO

3S1+7L' -1.25 ' 1P1

~ ~
~ g ll

«-301

"3P1

1

B. Dispersive Approach

We shall devote this subsection to the dispersive
treatment of the rescattering corrections. Since the
theoretical formula and hypothesis have already been
published in a number of papers, "'' we shall only
recall the explicit expressions we need for the purpose
of the present calculations. We wish to compute the
corrections for 5 and I' waves. Let us drst define the
matrix elements which are convenient for the dispersive
treatment. We shall introduce

FIG. 2. The sets of phase shifts utilized in the calculations.
They are the YLAM and YLAN3M published by Breit.

The quantities S,"(p„) and &p,"(p„) are defined in

such a way to be dimensionless. They are related to the
matrix elements (5) by the relations

Se&(p")=p qK„O& &

"pe"(p.) =q'&.~'
Applying the usual dispersive techniques" one is led

to the following expressions for the quantities (7) and

(g):

S, (p„)=q p„'"'*(p„,rU, ('q-
0

f'(q)

(7) Sq&(E„)= A„+B,'(E)+ 8„& cosh„
E+n'

"p "(p)=q' 4 '""(p r)i (-'qr)N(r) «(g) +—e» U4)E„&I2P

&p„'"' is the outgoing function for the s waves which
may belong to the singlet (@=0)or triplet (+=1) state.
It is normalized to the asymptotic behavior

: [sin(p, r+8„)ge"~.

r(q)E '& 2

A„+B;(E,')+ 8„&
E'+~'

e»&s"') sin8„(E') dE„'
(7'))

&P„„'"' is the outgoing wave function for the P waves
and may belong to four diferent states according to the
spin p and the total angular momentum v of the state.
It is normalized to the asymptotic behavior

1
[sin(p, r—~~&r+8„&„)]e'~"& .

1
+ ep& &(&)E„&I2P—

"A„„+Bp(E„')

E,&~/~(E, & E„)

Xe—»"&s"') sin8„&„dE,' e""». (8')

&p~"(E„)= [A„„+B,&(E)) cos5„q„
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FIG. 3. The DJ1,8 represented as a function of q' for different
models at the quasi-elastic peak. The crossed line corresponds to
model a, the solid line to model b, and the dashed line to the
model c described in the Appendix.
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3„, A„„are constants which must be determined by mation.
the experiments.

.~2+ (Q 1/2+ lq)2 /32+ (g I/2+ lq)2
8 '(E, )=— In —ln

a2+ (g 1/2 Lq)2 P2y (g 1/2 1q)2

is the solution for 5~"(E„) in the free-wave approxi-

~2+ (g 1/2+ lq)2
c/2+ E,+ (-', q)' In

~2+ (g 1/2 lq)2

P2+ (g 1,2+ 1q)2
P+E„+(-', q)' ln-

P2+ (g 112 Lq)2
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is the analogous solution for I'I'a" (E,).
4n q g

arctan —+arctan-
4n 4p

g—2 arctan
2(-+~)

TABLE Il. Percentage of the S, I', and D waves near the most
accurate points taken in the experiments at Orsay,

is the residue of the bound state and appears only in
triplet solution. Therefore this term is multiplied b
the Kronecker symbol h„t. rr=(3IIB)"' 8 being the

ip ie y

binding energy of the deuteron. ; S„and 8„» are the
phase shifts for S and P waves, respectively; E„is the
relative energy of the outgoing particles. The p are
defined by means of the phase shifts through the
relation

(MeV)

447.1

(deg)

60

426.6 60

404.6 60

363.8 60

268.9

219.9 130

E3
(MeV)

392.3
376.8
357.0
377.0
362.8
345.4
357.2
344.9
332.4
325.6
313.6
303.5
212.8
199.4
181.4
179.5
165.5
156.2

q2
I' 2

4.51
4.33
4.10
4.13
3.98
3.79
3.71
3.59
3.46
3.04
2.93
2.84
4.83
4.53
4.12
3.33
3.07
2.90

waves

Fo
other

waves%S %& 'FoD

71.5 25.4
29.1 38.8
14.0 27.8
75.2 22.6
31.7 39.2
15.5 28.8
63.9 30.1
29.5 37.8
17.3 30.1
72.1 24.3
30.9 36.7
20.2 31.7
76.5 22.2
30.3 45.4
12.5 31.1
72.9 24.9
23.5 40.2
16.7 35.0

2.7
15.6
16.7
1.9

14.8
17.0
4.6

15.5
173
2.8

15.5
17.5
1.2

12.3
14.5
1.6

14.2
15.1

0.5
16.6
41.3
0.3

14.3
38.7

1.4
17.2
35.3
0.8

16.9
30.6
0.1

12.0
41.9
0.7

22.2
33.2

Percentage of the

d2o

+f, (8,q,p„)j+ (Born approx. of all the
dQdE3

remaining waves), (10)

TABLE Hl. Constants of the dispersive approach obtained
using the experimental data of Orsay.

'S1 'S0

—0.020 0.100

'EP 3P1 3P,

1.200 —0.950 0.450 2.300

The cross section can thus be described by means of
six constants, one for each wave ('St 'S 'I' 'I' 'I'
~1) ~
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where the A and f; are different for each wave. The

explicit expressions for the f; can easily be derived by
inserting Eqs. (7') and (8') in Eqs. (3) and (4) and by
identifying the result with Eq. (10).We shall not write

them here.

We use the Orsay experimental results to determine

these constants. '~ We erst determined the two constants

for the S waves. To this purpose the experimental cross

sections corresponding to kinematical situations in

which the S waves are dominant have been utilized

(see Table II). All other waves have been accounted

for in Born approximation.

FzG. 6. The quanti-
ties AI predicted by
the dispersive ap-
proach for 60' and
130' at the quasi-elas-
tic peak. The dashed
lines represent the DI„
the solid lines repre-
sent AI,+„.

0.1

lr
II
lt
II
If
II
rf

~ g

I
tr
ti
t

r ~~ 130'
P r

rr
~ r

qa

TanLE fV. gf for each wave and total &I calculated with different theories near the experimental points of Orsay. (See Appendix. )

E& (MeV) it (deg) E, (MeV)

Threshold

~Itotal Theories

447.1

426.6

404.6

363.8

268.9

219.9

447.1

426.6

404.6

363.8

268.9

219.9

130

130

60

130

130

392.3

377.0

357.2

325.6

212.8

179.5

376.8

362.8

344.9

313.6

199.4

165.5

2.364
2.285
0.237
1.959
2.886
2.810
0.379
2,419
1.332
1.234
0.132
1.132
1.866
1.745
0.290
1.670
5.034
4.936
0.875
3.300
3.590
3.396
1.037
2.540

0.077
0.063—0.028
0.053
0.095
0.077—0.037
0.065
0.045
0.032—0.057
0.021
0.009—0.002—0.091—0.051
0.176
0.147
0.027
0.065
0.020
0.011—0.041—0.031

0.107
0.139
0.122
0.551
0.085
0.109
0.097
0.526
0.062
0.076
0.083
0.456
0.037
0.045
0.049
0.420
0.150
0.203
0.165
0.797
0.062
0.076
0.078
0.627

E waves
0.000
0.005
0.045
0.231
0.007
0.011
0.047
0.243
0.001
0.005
0.036
0.212
0.002
0.005
0.028
0.201
0.015
0.022
0.071
0.364—0.007—0.003
0.028
0.232

0.056
0.075
0.074

~ ~ o

0.038
0.050
0.050

~ ~ ~

0.046
0.056
0.056

~ ~ ~

0.021
0.025
0.025

~ ~ ~

0.031
0.043
0.042

~ ~ ~

0.016
0.019
0.019

0.058
0.063
0.063

~ ~ ~

0.055
0.060
0.060

~ ~ ~

0.045
0.048
0.048

~ ~ ~

0.035
0.037
0.037

~ ~ ~

0.047
0.022
0.052

~ ~ ~

0.024
0.025
0.025

2.527
2.498
0.434
2.511
3.009
2.968
0.526
2.945
1.440
1.365
0.269
1.588
1.924
1.814
0.364
2.091
5.214
5.182
1.082
4.097
3.668
3.491
1.134
3.167

0.136
0.131
0.080
0.284
0.157
0.149
0.071
0.309
0.091
0.086
0.028
0.233
0.046
0.040—0.026
0.186
0.238
0.221
0.150
0.429
.0.038
'0.033
0.012
0.201

a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive

a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
a
b
C

Dispersive
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TABLE IV (comtsggccd)

I

E~ (MeV) 8 (deg) Eq (MeV) Theories

447.1

426.6

404.6

363.8

268.9

219.9

60

60

60

130

130

357.0

345.4

332.4

303.5

181.4

156.2

—0.058—0.052—0.059—0.059—0.062—0.056—0.064—0.064—0.067—0.061—0.075—0.069—0.090—0.084—0.104—0.096—0.033—0.030—0.035—0.052—0.059—0.055—0.068—0.080

Peak
—0.004—0.004—0.007

0.063
0.001
0.000—0.003
0.074—0.025—0.022—0.002
0.089—0.019—0.017
0.004
0.108—0.001—0.001—0.005
0.089—0.024—0.022
0.000
0.134

0.009
0.009
0.010

~ ~ ~

0.012
0.012
0,013

~ ~ ~

0.016
0.016
0.016

~ ~ ~

0.016
0.016
0.016

~ ~ 0

0.011
0.012
0.012

~ ~ ~

0.011
0.011
0.011

—0.053—0.047—0.056
0.004—0.049—0.043—0.054
0.011—0.075—0.068—0.058
0.020—0.093—0.085—0.084
0.011—0.022—0.020—0.028
0.037—0.072—0.066—0.057
0.055

a
b
C

Dispersive

b
C

Dispersive

b
C

Dispersive

b: .

C

Dispersive

b
C

Dispersive
a
b
C

Dispersive

in this case Eq. (10) takes the form

d 0
(A'fr+A fs+ fsj

dQdE3 s waves

(Born approx. of all the
dodE3

remaining waves) . (1 1)

Equation (11) furnishes a system of two equations of
second order in the two unknown constants A„which
can easily be solved by numerical methods. Of the four
solutions only one is constant with respect to the
momentum transfer. "

With this solution we proceed to determine the
constants for the P waves. We utilize the experimental

cross sections with the highest possible contributions
from I' waves (see Table II). Equation (10) furnishes a
system of four equations of second order in the four
unknown constants A„„ for the P waves. Also in this
case a solution satisfying all the requirements is found.

A Anal check is made on the spectrum in order to
redetermine the constants for the S waves.

The resulting procedure is a rapidly convergent one.
The Anal values of the constants are reported in Table
III. With these constants the predicted values of

I(g,q') —Ip(e, q')
AI=

Ip(8, qs)

for 0=60' and 130' are plotted versus q' in Fig. 6. The

TABLE V. Comparison of the experimental cross sections with the theoretical ones for diferent hypothesis. (See Appendix).

(MeV)

447.i

426.6

404.6

363.8

268.9

219.9

(deg)

60

60

60

60

130

130

E,
(MeV)

392.7
375.7
377.2
361.9
357.0
344.6
325.3
314.2
212.9
200.1
179.2
166.7

d'0

(dad Egj...t,

(10 "cm')

0.651 &0.033
2.392 ~0.095
0.918 &0.046
2.576 &0.100
1.387 ~0.062
3.928 ~0.149
2.298 &0.057
5.982 ~0.215
0.1139~0.0056
0.3341~0.0107
0.3995~0.0168
1.117 &0.039

dQdE3

Dispersive

0.717
2.304
0.937
2.697
1.303
3.814
2.356
5.806
0.1153
0,3182
0.3594
1.157

dQdE3

a

0.728
2.131
0.966
2.419
1.393
3.458
2.303
5.266
0.1454
0.2711
0.4095
1.025

dQdE3

b

0.570
2.063
0.767
2.372
1 ~ 161
3.439
1.970
5.262
0.1082
0.2525
0.3400
1.034

dQdE3

C,.

0.203
1.998
0.257
2.243
0.643
3.270
0.988
4.878
0.0358
0.2346
0.1690
1.001

"g ith this solution the matrix elements for S waves have the sign of the free-wave solutions.
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PzG. 7. The spectra predicted by the dispersive approach compared to the experimental ones. The bound state is
described by a Hulthen wave function.

comparison with the experimental data for the whole

spectrum is given in Fig. 7. A better agreement is
obtained for all the spectra in all the kinematical
situations considered.

V. CONCLUSIONS AND NUMEMCAL RESULTS

We wish to summarize in this section the main con-
clusions we can draw from the preceding analysis and
to present more detailed numerical results. A erst
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observation concerns the percentage of the different
waves. The region below the quasi-elastic peak is
clearly dominated by the first few S, F, and D (see
Table II).

At the quasi-elastic peak the percentage of the other
waves is certainly comparable to that of the waves we
have corrected. However, we neglect these conditions
since the phase shifts corresponding to the higher waves
are small an.d the relative energy of the outgoing
particles is high enough to make these interactions less
important.

The effects of the corrections for each wave on the
differential cross section for various potential models
and for the dispersive approach corresponding to many
experimental points are presented in Table IV.

A more detailed comparison between the predictions
of the diGerent approaches discussed in the preceding
sections and the experimental cross sections is given in
Table V. It is possible to obtain a consistent agreement
with the experiments with the dispersive treatment.
The other models present a poorer agreement. Of course
this is due to the fact that the constants appearing in
the first method have been determined in the region
below the peak. However, we wish to point out that
the agreement is maintained over the whole spectrum.

From Table IV one may observe that the good
agreement of the dispersive approach is obtained by a
considerable enchacement of the P-wave corrections.
The region of momentum transfer we have chosen (q'
between 2.8 and 4.1 F ') is particularly sensitive to the
final-state interaction. This is the reason why we con-
centrated on it.

In Table VI the cross sections, according to formulas

(3) and (4), without and with rescattering corrections
computed with different models, are given in the
hypothesis F,"=0, Ii ~=P ".

Finally, in Table VII the quantities (F,"/F, &)s

and F "jF & are reported for each model. It is interest-
ing to notice that also here at the peak, the rescattering
corrections obtained by the dispersive approach are

working in the opposite direction to the potential
models. Furthermore the form factors are very sensitive
to these corrections. Unfortunately the accuracy of the
present experimental data is still not sufhcient for a
definite determination of the form factors at relatively
small momentum transfers.

At higher momentum transfers all approaches show
that in the peak region the corrections are negligible.
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APPENDIX

Diferent models used in the potential approach:
The model a is obtained by describing the bound

state by a Hulthen wave function and the final-state
interaction by the Durand method.

The model b has the bound state described by a Breit
wave function with repulsive core of 0.5 F. Only the S
part of this wave function has been considered and this
part has been normalized to 1. The final wave function
is the same of the model a.

In model c the wave function of the bound state is
the same as the model b. The final wave function is the
one described by de Swart and Marshak" for the
photodisintegration process. In this function the
asymptotic behavior is utilized from 1.5 F to infinity;
below this distance only the regular part is retained.

"J.J.De Swart and R. E.Marshak, Phys. Rev. 111,272 (1958).


