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We calculated the real part 5 of the ~X phase shifts for partial waves J& —,
' using the S/D equations with

inelastic unitarity. The generalized potential is determined by considering single-exchange diagrams for
the nucleon, the X* (1238 MeV) and the p (760 MeV). The inelastic factor g is taken from the recent, ex-
tensive complex phase-shift analyses. A straight cutoff 8', on the dispersion integrals in the energy plane Ht'

is used to eliminate the high-energy divergences associated with the exchange of particles with spin )1.
Full numerical solutions of the integral equation for the E function are obtained by the matrix-inversion
technique. The single cutoff W, is separately adjusted for each J to give the best fIt to the two coupled waves
l =J—

~ and J+&. For comparison, we also calculate the 8's using elastic unitarity, i.e., p(IV) =—1. By in-
cluding inelastic effects, we obtain better agreement with the phase-shift analyses, except for the S» and P»
partial waves. In particular, our calculation of the D» phase shift agrees with the phase-shift analyses for
'5D13 up to Ez, =450 MeV (whereas the solution for q

—= 1 gives a 6 which is much too small), The P» partial
wave is of special importance since (in addition to the nucleon pole) it contains a possible resonance at
L~I.~570 MeV which is very inelastic. We did two different calculations of the I=-„J=-,'partial wave:
(i) 8', was adjusted to yield the nucleon pole as a bound state. The residue (related to gNN ) is approxi-
mately twice what it should be. Both the S» and P» phase shifts are in violent disagreement with the phase-
shift analyses. (The calculations with inelastic effects gave only a slight improvement over the q

—= 1 calcula-
tions. ) (ii) The nucleon pole was included in the direct channel at the correct position with the correct residue
and tttt", was adjusted so that no zero appeared in the D function. We then obtained quantitative fIts to the
low-energy S» and E» phase shifts.

I. INTRODUCTION

ECENTLY, extensive energy-dependent complex
phase analyses of the experimental data on pion-

nucleon scattering have been performed by Roper' and

by Auvil, Donnachie, Lea, and Lovelace. ' The analyses
done for incident-pion laboratory kinetic energies, EI.,
up to 700 MeV have shown many interesting features.
In particular, the 5 matrix element S—=qe" for the P~~

partial wave has b going through Ir/2 at EI, 575 MeV
and the inelastic factor p becoming very small. Signifi-
cant inelasticity (i.e. , si(&1) is found in several partial
waves.

Many attempts have been made to calculate mE
scattering theoretically by solving partial-wave dis-

persion relations using the X/D method. '' ' Inelastic
effects have generally been ignored in these calculations.
The effects of higher mass inelastic channels can be very
important even though one is interested in an energy
region in which only the elastic channel being considered
(7rN channel) is open since the solution of the integral
equation involves knowledge of the functions over all

physical energies.
In this paper we calculate the real part of the wE
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phase shifts 8 for partial waves J&-,' by solving the
single-channel E/D equations with inelastic unitarity
derived by Frye and Warnock. ' The input inelastic
factors g are taken from the phase-shift analyses. ' 2 We
use the generalized potential found by considering
single-particle exchange diagrams for the nucleon, the
IV*(1238 MeV), and the p(760 MeV). The high-energy
divergences associated with the exchange of particles
with spin )1 are eliminated (following Ball and Wong')
by using a straight cutoff W, on the dispersion integrals.
We also did calculations using a smooth cutoff of the
type employed by Abers and Zemach with the result
that the low-energy phase shifts were essentially the
same for the two types of cutoffs. Full numerical solu-
tions for the E function are obtained by the matrix-
inversion technique.

We present, in Sec. II, the X/D equations with
inelastic unitarity and the generalized potential that we
use in our calculations. The results of these calculations
are described in Sec. III.

We calculated the phase shifts 6 using both inelastic
and elastic unitarity and compared the results to the
phase-shift analysis of Roper. ' Because of spin-effect
complications, the calculations involve the simultaneous
solution of the 1V/D equations in the energy plane W
for the two partial waves with the same values of I and
J, i.e. , l=J—I and f+—',. We have one adjustable
parameter, the cutoff 8'„which is used to give the best
fit to the two partial waves. ' For example, in calculating
the F33 and D33 partial waves, we adjust H/', to produce

6 G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963).
7 Among the coupling constants, only the interactions of the p

with the nucleon are not well known and we allow these to vary
somewhat (keeping, of course, one set of values to determine the
potential for all the partial waves).
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the 3-3 resonance at the observed energy. By including
inelastic effects, we obtain better agreement with
Roper's analysis than for the elastic-unitarity calcu-
lations with the exception of the S3~ and P» partial
waves. It seems reasonable to expect better agreement
here also when it becomes possible to treat the higher
energy inelastic effects realistically. ' Inelastic efIects
are particularly important in computing the D» partial
wave. We are able to fit Roper's 8(EI,) up to 450 MeV
by including them in the calculation whereas the solu-
tion for p =—1 is not close at all. By using the above
approach we were able to obtain reasonably good agree-
ment with Roper's phases for all of the partial waves
except the S~~ and P~~ which we now discuss in detail.

The approach used by Ball and Wong' was to com-
pute the nucleon as a bound state of srÃ system. 8', can
then be adjusted to produce the nucleon at the observed
energy. Following this procedure we found that it was
impossible to fit the low-energy phase shifts 8z„and
8&II or even the scattering lengths, '

ay
—— 0.171~0.005,

aug ———0.101~0.007,

of the S~~ and P~~ partial waves, respectively. The value
which we obtain for aj even has the wrong sign. The
calculated value of gg~ ' from the residue of the nucleon
pole is too large by a factor" of 2. Including inelastic
effects leads to only a slight improvement over the pure
elastic calculation ""

We felt that our failure to obtain a good fit to Roper's
values for Sq„and 5+1] is closely related to the fact our
calculated residue for the nucleon pole was too large.
There is no reason to expect a quantitative fit to these
low-energy phase shifts if our solution does not fit the
nearest singularity in the m.S system. Because of these
considerations, we decided to include the nucleon pole
in the direct channel in the generalized potential. This
procedure forces the nucleon pole to appear at the
correct position with the correct residue (—age~ '/4a. )
in the solution provided that we now adjust 8', so that
no zero appears in the D function below the elastic
threshold. We find that it is now possible to adjust the
cutoff to obtain the experimental values of the scatter-
ing lengths (1) and a good fit to the low-energy S» and
P» phase shifts found by Roper. '

We let g —+1 at the cutoB g, .
~ J. Hamilton and W. Woolcock, Rev. Mod. Phys. 35, 737

(1963).g"We use units it =c=m = 1.
~ It is interesting that the relativistic calculation yields an N~»

which is too broad and a nucleon with too large a residue whereas
the static Chew-Low calculation yields the correct value for the
N*33 width as well as the correct residue for the nucleon pole in the
static reciprocal bootstrap Lace G. Chew, Phys. Rev. Letters 9,
233 (1962) and F. Low, ibid 9, 279 (1962)g. .

"Note that the single-channel N/D calculation with inelastic
unitarity is not always equivalent to the multichannel ND '
calculation /see M. Bander, P. Coulter, and G. Shaw, Phys. Rev.
Letters 14, 207 (1965)g.

"The results here were not sensitive to the values of the p
couplings.

We show in the Appendix that if the D function
vanishes at some energy so below the elastic threshold
for a particular generalized potential, then adding a
term to the generalized potential of the form g/(s —ss),
with g arbitrary, does not change the solution of the
1V/D equation. Thus if a dynamical pole appears at
s=so, then neither the solutions or the residue of this
pole can be changed by adding a pole term at s=so to
the generalized potential. In our first approach, in which
we adjust t/t/", so that the nucleon pole appears as a
bound state, i.e. , as a zero in the D function, we were
unable to obtain the correct value for gp~ ' which un-
doubtedly means that our approximation to the
generalized potential (and to ri) is not good enough. The
success of our second approach (in which we force the
nucleon to have the correct position and residue) in
obtaining good fits to 68„and 6~„cannot be regarded as
evidence for the elementarity of the nucleon. We con-
clude only that the nucleon pole must have the correct
position and residue in the solution in order to have
the calculated S~~ and P~~ phase shifts agree with
experiment.

Our results may be summarized as follows: By in-
cluding inelastic effects and using the generalized
potential of Ball and Wong' we are able to obtain
reasonably good agreement with the low-energy phase-
shift analysis of Roper' except for the S~~ and P~~
partial waves. By forcing the nucleon pole in our solu-
tion of the J=—'„ l=-,' partial wave to have the correct
position amd residue we are also able to fit these phase
shifts. We are unable to make a definite statement about
the P~~ resonance found by Roper since our results in
this energy region are sensitive to the plV coupling (see
Fig. 7 and the accompanying discussion in Sec. III).
Our results do indicate that b~„becomes large at
relatively low energy. "

II. FORMULATION OF THE PROBLEM

A. Choice of Amphtude and the N/D Equations

The nucleon spin introduces a factor of s'" in the xE
partial wave amplitudes. Singularities of this type are
avoided by working in the total-energy (W) plane where
s= t/t/". The amplitude we consider may be written as
(omitting isospin indices)"

h J(W) —= (r)z (W)e"'&i~ 1)/2ipz(—W), (2)

where 6~ is the real part of the phase shift, g~ is the
inelastic factor, and pJ is a kinematical factor which we
define by

p (W) = (8+m)(k'/s)~, (3)

with m the nucleon mass, k the (center-of-mass)
momentum and E L= (s+m' —1)/2W) the nucleon

R. Dalitz and R. Moorhouse, Phys. Letters 14, 159 (1965)
discuss the possibility that the P» enhancement may not be a
resonant state.
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energy. The quantities p& and 8& are defined by In terms of the invariant amplitudes A and 8,we have

)/g(W) =)I)~(W)
= 'Q(Wi)-(W)

l)$(W) = ()(+(W)
= ~((+i)-(W)

t/t/'& WE,
8'& —8'E,

lV) H/'E,

8'& —WE,

~$(W) = [AZ 1/2($)+ (W m)BJ 1/2($)g
16xk'~ '

E—m)'
+

I I: A$+i—/~($)+ (W+m)B$+i/2($)1 (12)
u )

where Ws(=m+1) is the elastic threshold. and I+
means the state such that J=l~—', .

We use the 1V/D equations with inelastic unitarity
derived by Frye and Warnock. ' If we make one sub-
traction in the D function at I/I/'=0, " then we have

where

A ($,)') = i2P (2l+1)A (($)P((cos|)),
L=O

(13)

2))$ (W)
Re/V$(W)

1+)Ig(W)
—Wg

=By(W)+ —+
2pg (W') ReX$ (W')

1+))g (W')

8"
ReD$(W) = 1 P——

'W dW'
X B,(W') — B,(W), (6)8"'—W

B($,3) = 2g (2t+1)B)($)P)(cost)),
L=O

and 0 is the center-of-mass scattering angle. As usual
we have

$= [($2+m2)1 2+ ($2+ 1)1/2]2

/, = —2k'(1 —.cosg),

u j$+t=2m'+2.

B. Generalized Potential

2p$ (W') Re IV$ (W') dW'
(&)

[1+))J (W') )W' (H~' —W)

1
Bg(W) =h$~(W)+ P—

1—)/g(W') dW'
(8)

2pz (W') (W' —W)

where I/I/z is the inelastic threshold and the generalized
potential h$ (W) is that part of I/$(W) which is regular
in the physical region (I Wl & Wz)."Note that pz(W)
has been defined in (3) so that the proper behavior of
the phase shift (() ~k"+') at the elastic threshold for
both parity states (5) is guaranteed. The solution for
the amplitude is completed by the relations

2pg(W)
Re/V&(W),

I Wl & W&
1+))g (W)

1—$ W)
ReDJ (W) I

W
I

O' WQ,

ImD$(W') =—

n (
1m' g(W) =

2p$(W)
(10)

and otherwise

Im/V$(W) =D$(W)imh (W)

"The amplitude X/D is of course independent of the subtrac-
tion point. This is one of the checks that we make for our numer-
ical program.

"The superscript L signifies that these functions are regular in
the physical s region,

Smy33

8$» —Q

—(E„+m)'

m2 1
+3~ m'+1 —i2m3p —$+

2m332-
(16)

where m, is the mass of the p(760 MeV), mq, is the mass
of the 1V*(1238MeV), and E33 is the nucleon energy at
the 3-3 resonance. In these equations, gN~ is the
renormalized xE coupling constant. The g* residue
p» may be obtained from the experimental width of the
/V* (in the narrow width approximation). The residues
y~ and y2 for the electric and magnetic couplings of the

"Abers and Zemach, Ref. 4, use a somewhat different g* term,

We use the same generalized potential that was found
by Ball and Wong' by considering the single exchange
diagrams" for /V and Ã*(1238 MeV) in the "crossed u
channel" and p (760 MeV) in the t channel. Then for
the two isotopic spin amplitudes we have' "
(I/2'3/2)Ala($ lr)

= (2,1)(6ir) (y2/m, '—t) (2$+3—2m' —2)

+ (-,',—',)(8iry()()/(m33' —u))((mga —m) (E33+m)'
+-,' (m33+m) [m'+1 ——,'m332

—$+ (m' —1)'/2m882$} (15)
and

gNN~('" '/') B ($,t) = (1,—2)
Sl —Q

yi+2my2
y (2,—1)(—12~)

m2 —tP
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X/D equations, employing the matrix-inversion tech-
nique to solve the integral for the E function.

The input parameters m„mss, gg~ ', and ass in (15)
and (16) for the generalized potential are well deter-
mined from experiment: We use m, =5.4, m33=8.8,
gg~ '/4n =14.6, and ass ——0.06. On the other hand yt
and y~, proportional to the electric and magnetic
couplings of the p to the nucleon are not well known.
From a fit to the nucleon-isovector electromagnetic
form factors, Ball and Wong" and Spearman" estimate
that y~= —1.0 and

-40—
yg =0.27 yg. (17)

(b)

FIG. 1. (a) 5» phase shift as a function of the pion laboratory
kinetic energy EI,. Here (and in all of the other figures) the solid
curve is the solution of the Frye-Warnock N/D equations with
inelastic unitary and the dashed curve is the solution for p—=1.The
dots represent the results of the phase shift analysis of Ref. 1. In
Figs. 1—6, we used gg~ '/47l-=14. 6, y33

——0.06, y2 ——0.27y1, and
pi= —0.84. The inelastic factor g we use is taken from Ref. 1 in
the calculations for Figs. 1, 2, 5, 6, and 7. We use g, =19.0 and
8'.=18.6 for the elastic and inelastic unitarity calculations,
respectively. (b) Same as (a) for the P» partial wave.

p to the nucleon may be determined from a fit to the
nucleon's isovector electromagnetic form factor. '8"

The partial wave projections hs (W), our generalized
potentials, are obtained from (15) and (16) using
(12)-(14)

III. CALCULATIONS AND DISCUSSION

We will use (17) and treat yt as an adjustable pararn-
eter, varying it in the neighborhood of —1.0. For all the
calculations shown in Figs. 1—6 we use y~= —0.84.

The inelastic factor tI (the remainder of the input for
the E/D equations) is taken from the phase-shift
analyses of Refs. 1 and 2. This determines p up to
EI,=700 MeV; we then let p smoothly approach 1 at
the cutoff W.. We numerically solve the X/D equations
and adjust H/, for each J&—,

' to obtain the best fit to the
real parts of the phase shifts, 5, for both of the parity
states /= J~-,' which are coupled in the 8' plane. The
phase shifts for pure elastic scattering are calculated for
comparison.

The results of these calculations are shown in Figs.
1—5. The phase shifts 5~„,~ calculated using inelastic
and elastic unitarity (rI(W)

—= 1) are shown along with
the phase shifts obtained by Roper'. The 5's we find,
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The generalized potential hq (W), determined from
An(s, t) and. Bz(s,t) as given by (15) and (16), behaves
like 0(W) at high energies. This asymptotic behavior
makes it impossible to solve the 1V/D equations. We
force the equations to have a unique solution by in-
troducing a straight cutoff on the 8' integration at
t/V=@', ." We obtain full numerical solutions to the

Fto. 3. (a) Eaa
phase shift as a func-
tion of EJ.. The in-
elastic factors used
here and in Fig. 4
are taken from Ref.
2. 5,=17.3 and 19.0
for the elastic and in-
elastic unitarity cal-
culations, respec-
tively. (b) Same as
(a) for the D33 par-
tial wave.

' J. Ball and D. Wong, Phys. Rev. 130, 2112 (1963)."T.Spearman, Phys. Rev. 129, 1847 (1963).
A smooth cutoff of the type used in Ref. 4 gives about the

game results.
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with the exception of the S~~ and P~~ partial waves, are
in reasonably good agreement with Roper's results up
«Ei, 400—500 MeV. We observe that including in-
elastic effects produces better agreement with Roper's
phases with the exception of the S3~ and P~3 partial
waves. It seems likely that an improved treatment of
the inelastic effects at high energy will produce better
agreement here also.

According to Roper, ' the inelastic factors in the
I= &, J= ~ partial waves are very nearly unity up to
700 MeV. However, Auvil et al. ' did find values of

80—
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LABORATORY ENERGY

-40—
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0 I

IOOO I IOO I200 1300 I400 1500
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Fro. 4. A plot of (1/k2lsinrg for the 2'» partial wave as a
function of center-of-mass energy W. The cutoff is adjusted so
that the peak in the cross section occurs at the observed position.
W, =16.0 and 17.8 for the elastic and inelastic calculations,
respectively.

1—rf=0.2 in the Dss partial wave near 700 MeV and.
some slight inelastic effects in the P33 partial wave. We
obtain the solid curves in Fig. 3 by including these
inelastic effects in the D33 partial wave while using
g =—1 in the P33 partial wave. The result is a slight im-
provement to Roper's analysis. Again, we expect the
fit to be better when it becomes possible to include
higher energy inelastic effects realistically. In I'ig. 4 we
adjusted the cutoff so that the peak in the cross section
appears at the 1V* mass (since the output widths are
large). The result of including inelastic effects here is to
reduce the computed width of the S*by about 40 MeV
(from 235 to 195 MeV).

Inelastic effects are very important in computing the
D» partial wave LFig. 2(b)). When elastic unitarity is
used, the phase shifts are small and negative, remaining
& —0.5' up to 500 MeV. Using the inelastic factors
found by Roper we obtain good agreement with his
phases up to 450 MeV.

The only curves that are iri clear disagreement with
Roper's phases are for the Sy~ and P~~ partial waves.
Here t/t/', Inust be chosen so that the nucleon pole is
produced at the correct energy. By computing the
residue of this pole we obtain a value for gg~ which is
too large by about a factor of 2. The computed scatter-
ing lengths are in violent disagreement with the experi-
mental values (1).' Including inelastic effects lead to
only a slight improvement over the pure elastic calcu-
lations. "The results are not sensitive to y~.

Because of our failure to obtain agreement with
experiment for the J=-,', I=-,' partial waves, we re-
peated the calculations with the nucleon pole in the
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FJG. 5. (a) P» phase as a function of Ez, where the nucleon pole

is forced to appear as a dynamical bound state at the correct
energy. For the elastic unitarity calculation, W, =16.5 giving an
output g~~ '/4~=29. 0 and the computed scattering length is—0.278. For the inelastic unitarity calculation, W, =17.2 giving
an output gp~ '/4e. =25.1 and the scattering length of —0.222.
(b) Same as (a) for the S11 partial wave. The computed scattering
lengths are —0.517 and —0.476 for the elastic and inelastic
unitarity calculations, respectively.

(b)

FIG. 6. (a) P11 phase shift as a function of E'I, where the nucleon
pole is forced to appear in this amplitude at the correct energy
with the correct residue. W. =26.7 and 25.8 for the elastic and
inelastic unitarity calculations, respectively. The computed
scattering lengths are —0.105 and —0.099 for the elastic and
inelastic cases, respectively. (b) Same as (a) for the S11 partial
wave. The computed scattering length in each case is 0.17.
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I20-

IOO-

80-

60-
'D

40

arbitrary does not change the solution A =N/D. " (Or,
in other words, the residue of a dynamical pole or bound
state is determined by the potential and cannot be
arbitrarily changed. )

The unsubtracted N/D equations are

"LB(s') —B(s)j
N(s) =B(s)+ — p(s') V(s')ds', (A1)

s —s
40-

20-

1 "p(s')N(s')ds'
D(s) =1——

7/ 8@ s —s—z6
(A2)

I I I0
200 400 600

PION KINETIC ENERGY IN LABORATORY SYSTEM ( Me V)

pro. 7. Dependence of the P11 phase shift on y1. We use gNN~'/
4~=15.0, F33——0.06, and y2=0.27 y1. The scattering lengths for
curves 1—5 are —0.086, —0.094, —0.100, —0.095, and —0.106,
respectively, with W, =26.3, 26.2, 26.0, 27.2, and 26.9, respec-
tively. (The scattering length in the S~& partial wave is 0.17 in all
cases. ) The solid and dashed curves are for inelastic and elastic
unitarity calculations, respectively, and the crosses are the results
of the phase-shift analysis of Ref. 1. Curves 1-5 correspond to y1= —1.0, —0.95, —0.90, —1.0, and —0.90, respectively.

direct channel included in the generalized potential.
(We add a term to &s~""'B, Eq. (15), of the form
(0,3) gp~ '/(ms —s).) This procedure insures that the
nucleon pole in our solution occurs at the right position
with the correct residue; we must of course adjust the
cutoff so that no zero appears in D(W) below the elastic
threshold. . It is now possible to adjust t/I/", to obtain a
good fit to the low energy S» and P» phase shifts. This
is shown in Fig. 6 where our calculated scattering
lengths are a~=0.17 and a»= —0.099. We found that
8~„(W) was sensitive to yt. Since yt is not well deter-
mined, we treat it as an adjustable parameter, while
keeping it close to —1.0 fusing (17) to determine ys).
(The other partial waves were not sensitive to the exact
input values of the parameters. ) The dependence of
b~„on y~ is shown in Fig. 7. In all cases we see that
5&„becomes large at relatively low energies. "

This calculation should not be interpreted as evidence
for the elementarity of the nucleon (see Appendix). We
only conclude that in order to obtain agreement with
the experimental value of the S» and P~~ phase shifts,
the nucleon pole in our solution must have the correct
position and residue: The generalized potential obtained
from (15) and (16) and the rf used were not good enough
to do this.

APPENDIX

Consider the usual single-channel N/D equations in
the s plane with elastic unitarity. (The result is easily
generalized to include inelastic unitarity. ) We will prove
that if the D function is zero at some point s=sp&s~
(the elastic threshold) for a given generalized potential
B then adding a pole to B of the form g/(s —sp) with g

We assume that B(s) is such that (A1) is a Fredholm
integral equation and thus has a ueiqle solution. Now
define

B(s)=B(s)+g/(s sp), — (A3)

where sp(sz. We may now compute new functions X
and D such that

"LB(s') —B(s)3
N (s) =B(s)+ —

p (s')N (s')ds', (A4)
7i ftg S —S

1 "p(s')N(s')ds'
D(s) =1——

@@ s —s—26
(A5)

Equation (A4) is also a Fredholm equation with a
unique solution. By expressing B in terms of B and
rearranging (A1) we find

N(s) =B(s)+
LB(s')—B(s)3

p(s')
s —s

2' A similar result has been obtained by P. Kaus and F. Zach-
ariasen, Phys. Rev. 138, B1304 (1965).

"Neglecting inelastic effects, we could in principle use Levin-
son's Theorem to distinguish the two types of poles in A as s=s0'.
(i) the "dynamical" pole resulting from a zero in D, and (ii) the
"elementary particle" pole inserted in A (where no zero in D
occurs). The quantity S(ss) —b(~) =7r for case (i) and zero for
case (ii),

)(N (s )ds — D(sp) . (A6)
s—Sp

lf D(sp) =0, then (A4) and (A6) become identical and
hence

N(s) =N(s), (A7)

since the solutions of (A4) and (A6) are unique. Hence
D(s)=D(s) and our solution is unchanged for arbi-
trary g.

Thus for B(s) such that D(sp) =0, the residue of the
dynamical pole is determined by B(s) alone, and one
cannot change the solution of the 1V/D equations by
adding a term of the form g/(s —sp) with g arbitrary.
It is still possible, of course, to introduce a nondyna-
mical pole in A at s=sp with arbitrary residue by re-
adjusting B to a new B' so that B'(s)+g/(s sp) does-
not generate a zero in the D function at s= sp."This is
what we did in the calculations in Figs. 6 and 7 described
in Sec. III.


