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mesons have been seen in three-pion states dominated
by ~-p. Work is now in progress on these calculations.
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A model for three-spinless-meson relativistic resonances, based on the Alessandrini-Omnes generalization
of the Faddeev equations, which was explained in two previous papers, is studied in all three-pion states with
angular momentum J(3.The only part of the two-body amplitude which is taken into account is the p
resonance. The separation of isospin is shown explicitly, and it is explained how the momentum-space equa-
tions reduce to only one when Bose statistics is taken into account. The results do not suggest the dynamical
origin of the 2 2, and Inany isoscalar resonances are found in a small energy region.

I. INTRODUCTION
' 'N two previous papers'2 we have described a model
- - for relativistic three-pion resonances. This model
uses a version of the Faddeev equations given by
Alessandrini and Omnes, ' and assumes that the two-

body amplitude is separable in the initial and final
momenta. The calculation was carried out in II for the
specific case I=0, J =1, by assuming that the m-m

amplitude was dominated by the p. The results were
encouraging in that they exhibited an independence
from the detailed structure of the form factors used to
characterize the off-shell dependence of the two-body
amplitude. The energy-behavior of the eigenvalues of
the kernel was shown, and the strong inQuence of the
w- p normal threshold allowed one to understand
qualitatively the features of the model.

In this paper, we shall keep the assumption that the
two-body amplitude is entirely given by the I=1,J=1
interaction, and we shall examine the results of the
same model for all isospin and parity states and for
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J=O, 1, and 2. It must be noted that the isoscalar part
of the x-x interaction will contribute to the I=1 three-
pion states. However, both because the three-pion
resonance decays seem experimentally dominated by
x-p, and because we wish to keep the calculation rela-
tively simple, we have neglected these isoscalar
contributions.

In Sec. II, we examine the consequences of having an
I= 1 two-body amplitude on the isospin structure of the
three-body scattering amplitude. In Sec. III, we show
that the identity of the particles and the application of
Bose statistics reduce the number of equations that need
to be considered from three to one. Finally, Sec. IV is a
statement and discussion of the results.

II. ISOSPIN

In a three-pion system one can construct one state of
isospin I=O, three independent I=1 states, two inde-
pendent I=2 states, and one I=3 state. Since we are
considering x-p systems, I=3 is impossible. We shall
show that it is possible to remove the isospin dependence
(up to the inhomogeneous term and a fa,ctor in the
kernel) from the I'addeev equations for each definite
total isospin.

Case I=O

There is just one total isospin state, which may be
written variously as

iIr= 1, Iss= 1, I=O)= iIs= 1, Isi
——1, I=O)

= ~Is=1, I» ——1, I=O), (2.1)
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where 1, 2, 3 are the labels of the particles. It is therefore
obvious that the matrix elements of all the transition
amplitudes involved in the Faddeev equations are all
the same as far as isospin is concerned, and that the
Faddeev equations can be written simply by omitting
the isospin dependence.

l1)= lI,=1,I»-o, I=1),
l2)—= lI, =1, I»—o, I=1),
l3)—= lI3=1, I~2-0, I= 1).—

(2.2)

The matrix elements of the three-body amplitude
between these states are written

Case I=1
Here there are three independent states and we shall

choose the symmetric nonorthogonal basis

where t' no longer has isospin dependence. It is clear
from (2.10) that

(2.11a)

(2.11b)

T1P' =0
and

A similar treatment can be given to T' and T', so that
the final Faddeev equations are

Gp'=-3t'(5s2 —bsa)+ ,'t'Gp-[Gs'+Gp'j. (2.12)

The equations for Gj-,' and Gp' are obtained by cyclic
permutation of the indices. The subscript P has no
essential role in the structure of these equations as it is
a final variable and appears only in the inhomogeneous
term. The kernel of these equations is the same as for
I=0 except for the numerical factor —-'.4

(~
l
T

I
P&= T-s— (2.3)

Case I=2

We need to know the matrix elements between these
states of, for example, the transition amplitude t' where
particle 1 does not interact. To this end we define a new
basis in which t' is diagonal:

l1),—= la= 1, I»=1, I=2),
l
2)g—= lIg ——1, I»——2, I=2). (2.13)

There are two independent states and no basis
symmetric in the three particles, so we choose

l
0)g=—lIg= 1, I23=0, I= 1),

l1&,=—lI,=1,I„=1,I=1&,
I2)~—= II,=1, I/3 2, I=i).

In terms of this basis the Faddeev equations become
(2.4)

The other basis is related to this one through the
equation

where
1 0 0

1/v3
—1/v3 -',+5.

(2.5) (T2) =
l

kv3/4

1T

GP —T1~ )

G~'= Tir'

(2 7)&=2-t
I )I-s&PI, (2.15)

where
—1

1 0

4 —1
—1 4
.—1 —1

I=10 and upon inserting (2.15) into (2.14), we obtain
equations identical to (2.12) except for the inhomoge-
neous terms.The Faddeev equation for the amplitude T' is

As our original basis is not orthogonal, the identity has We define
the representation

T'= t' —FG,LT'+ T'j. (2.9)

We take matrix elements of this equation with respect
to the basis (2.2), and in the particular case considered
here where the subsystem is in I=1, upon using (2.5)
and (2.7), the resulting equation is

III. STATISTICS

For a system of three identical bosons, the statistics
requires complete symmetry upon particle interchange.
If we call S the symmetrized amplitude and abbreviate
the variables (p&,p2, p3) by (123) then, for I=o, we have

0
(T')= 0

.0
0 0
1 1
3 3
1 1
3 3

0
—t'Go 0

.0

0 0
l —

2 E(T')+(T')3, (2 10)
1 1

65(123)= T(123)+T(231)+T(312)—T(132)
—T(213)—T(321), (3.1)

4 Let us remark that the factors are the usual isospin crossing
coeKcients for a single isovector exchange, despite the iteration
implicit in the equations. For an isoscalar two-body interaction,
however, the factor is 3.
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since the isospin part is antisymmetric. If we define

Z (123)= T'(123)+T'(312)+T'(231),

then we have

6S(123)=Z (123)+Z(231)+Z (312)—Z (132)
—Z (213)—Z (321). (3.3)

For 5= 1, we have, for example,

6Sip(123) = Tip(123)+T2p(213)+T8p(231)
+

Tip�(132)+

T2p(312)+ T8p(321) . (3.4)
If we define

Z(123) =G'(123)+G'(312)+G'(231) (3.5)

and use Eq. (2.11) and its cyclic counterparts, we have

6S1p (123)=2 (213)+Z(312)—Z (231)—Z (321) . (3.6)

Similar equations hold for S& and S3.
For I= 2, we again define Z by (3.5) and we have

6S1p (123)= —2Z (123)+2Z (132)+Z (231)
—Z(213)+Z(312)—Z(321), (3.7)

and an analogous form holds for 52. The important
feature of Eqs. (3.3), (3.6), and (3.7) is the physical
amplitude depends only on the function Z. In all three
isospin states, because the particles have identical
dynamics, the equations for G' have the form

G' (123)= I i (123)+E'(123,123)LG2 (123)+G'(123)),
G'(123) =I2(123)+E(231,231)[G'(123)+G3(123)],
G'(123) =I8(123)+E(312,312)t G'(123)+G'(123)j.

(3.8)

A trivial permutation of the variable involved in the
second and third equations, and a summation, yield

2 (123)=I(123)
+(E(123,231)+E(123,312)jg(123), (3.9)

which is our final momentum-space equation. Thus the
statistics allows us to consider only one equation instead
of the original three, and we do not need to impose any
symmetry requirements on Z.

We now want the representation of (3.9) in terms of
states of definite angular momentum. We shall follow
the techniques of Omnes' as was done in I and II, so
that the p, th component of an object of angular momen-
tum J can be written

fixed system whose s axis is along p&Xp2, and whose &

axis is along pi. '
After separation of angular momentum in this fashion,

our Eq. (3.9) becomes

~ GO]M2M3

3f'~J
IM(~1~2338)+ Q fEMM'(~1~2&3y'332 ~1 313 )

Xp ' '""+EMM'(~1~2~3~8~1~2)~ ]
XZ- (-,-. ,-.), (3»)

where 8; is the angle between p and p, '. The in-

homogeneous terms depend on the final variables, which

have been suppressed. The summation over M' will

contain only even or odd terms according to the parity.
If the two-body interaction is only in the 3th partial
wave, then E~~ has the form'

EMM~((o, (u')= f((o,u&'; Ir)GoXMM~t'I(ei ei'), (3.12)
2~2

the matrices are

S=—sing sing',

C=—cosy cosy',

(3.14)

JZ 0—

JP—1—

Xoo= (3/4~)C;

XM= (3/8~)S;

J~= 1+, XMM —— (S+2MM'C);
16m

(3.15a)

(3.15b)

(3.15c)

J~=2 XMMI= (zMM S
329

'

+CL2 —-', (2+/6) (M'+M")

+ (5+2+6)M2M "/16)}; (3.15d)

where t (&u,co'; 0.) is the two-body lth partial-wave
amplitude, Go is the Green's function, and

XMM'= 2, ~M, '~M .'"I'1"(7,0) I'3"(7',0); (3 13)

the notations here are the same as in I and II. For the
various angular momentum and parity states, assuming
that the two-body interaction is in l=1, and defining

f (P1P P8)
J~= 2+, X~~.—— MM'S.

16m
(3.15e)

where pi+p2+p3 ——0, ar;2=P, 2+1, and (n,p,y) are the
Euler angles which take the space-fixed into a body- A little omission must be noted in Eq. (37) of Ref. 5 which

relates states di6ering by a rotation of the body-fixed s axis into
the plane. As is clear from the representation (3.10), in general
there are phase factors present,' R. L. Omnes, Phys. Rev. 134, 81358 (1964).

2J+1
P f„M~(~,,~2,~3)&„M~(&p ~) (3 10) In the preceding equations, if the parity is even (odd)

the possible values for M and M' are odd (even).
The final equations obtained by combining (3.15),
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TABLE I. Masses and widths in MeV of the resonances
obtained in the various channels.

0
1+

1
2+

2

I=O
3II

13708
1390
1470
1350
1480

140
80
60
85
60

I=1 2
3f

none
1340
none
none
1350

90

a It must be noted that in the 0 channel there seem to be two resonances
close together. In fact, two eigenvalues of the kernel, which are very nearly
equal, approach 1. This explains the large width of the resonance curve
obtained in this case.

(3.12), and (3.11) can be further reduced by using
explicit symmetries of the kernel, and by using a
separable approximation to the two-body amplitude.

IV. RESULTS AND DISCUSSION

' For all experimental results, see, for example, G. Goldhaber,
Second Coral Gables Conference, Symmetry Principles at High
Energy (W. H. Freeman and Company, San Francisco, 1965),
p. 34; and A. H. Rosenfeld et al. , Rev. Mod. Phys. 36, 977 (1964).

For the determination of the existence and quantum numbers
of the A2, see Suh Urk Chung et al. , Phys. Rev. Letters 12, 621
(1964); and M. Aderholz et al. , Phys. Letters 10, 226 (1964).

The method used to analyze the equations is the same
as in II. Again it should be emphasized that we are
interested only in resonances, so that we study only the
properties of the kernel and do not compute the full
amplitude. Also, the only part of the two-body ampli-
tude which we consider is the p state, so that the results
are the same for I=1 and I=2, as explained in Sec. II.
The complete results are given in Table I, where we

give the masses and widths of the computed resonances
for all isospins and for total angular momentum J=0,
1, 2 in the two parity states.

C'ne immediate feature of this table is the absence of
a J"=2+, I=1 resonance. In fact this is the channel
of the A~ particle, ' whose existence and quantum
numbers seem very well established and which has a
branching ratio of 60% in m.-p. The only isovector reso-
nances that we obtain are in J~=1+ or 2, which are
impossible for the observed EE decay mode of the A&.

However, these resonances are not incompatible with
the experimentally observed enhancements above 1 BeV
(the A~ meson, ' for instance).

We also find a plethora of isoscalar resonances, all of
which lie in a very limited energy region. Although this
is not absolutely incompatible with the present experi-
mental evidence, it does seem unlikely that all of these
resonances actually do exist. However, as was pointed
out in II, the E meson~ seems a good candidate for one
of them and at a lower energy there is some evidence for
the so-called II meson. '

An interesting detail of the results is that this model
predicts relatively small widths, which are in very good
agreement with the size of observed widths of meson
resonances in the energy range 1 to 1.4 BeV. Further-
more, it was seen in II that because of the nature of the
eigenvalue curves, influenced essentially by the vr-p

normal threshold, the widths of resonances tend to
increase as the mass decreases in this energy region.
This is because the imaginary part of the eigenvalues is
largest in the vicinity of the x-p threshold. It is interest-
ing to remark that the widths and masses of experi-
mentally observed resonances follow this qualitative
rule.

In conclusion, we can say that the lack of an A~ and
the multitude of I=O resonances seem to indicate
serious deficiencies of the model. The simplest remedy
that one could try would be to give more detailed infor-
mation on the two-body scattering amplitude by in-
cluding the fo and the ABC enhancement. This change
would affect only the I= 1 channels, and the ABC would
not contribute to the 2+ and 1 amplitudes. 'The large
branching ratio' of the A~ into KE and 7r-g indicate
that a good calculation of this particle should include
these channels. In general, it seems certain that at the
energies of our resonances, inelastic effects will often be
important. Also, the inherent drawbacks of a Faddeev-
type approach, among which are the omission of certain
classes of diagram and the lack of consideration of
crossing symmetry, may prevent this model from having
any physical significance. However, the model does yield
some interesting results and we consider that further
theoretical and experimental information is necessary
before either accepting or discarding it in whole or
in part.
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