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In order to do a reasonably simple relativistic three-meson calculation, we examine a relativistic analog to
the Faddeev equations proposed by Alessandrini and Omnes. An explicit angular-momentum decomposition,
following the method of Omnes, is given. Some remarks are made about suitable approximations for the
relativistic off-shell two-body amplitude, and a separable form of this is used to reduce the equations to their
final form. As an example, the explicit equations are written in the three-pion /=0, J?=1" case.

I. INTRODUCTION

T is our purpose in this series of papers to examine
the usefulness of the Faddeev formulation of the
three-body problem in studying meson states. In fact,
systems of three pseudoscalar mesons are quite interest-
ing. There has been recently a great deal of experimental
data showing enhancements in the invariant mass dis-
tributions of such particles. If we look at the three-pion
system, for instance, there is some evidence! for the
existence of the so-called H(975), 41(1080), and 4,(1230)
mesons, besides the well-known «. In the KK system,
we can find the D(1285) and E(1415) mesons, and in the
Krm system the C(1220) meson. In many cases, the
experimental situation is not very clear, and obviously
it is highly desirable to have a model which allows us to
understand these three-body resonances—or enhance-
ments. Also, in a general understanding of all strongly
interacting particles as composite, it is well known that
the lowest-lying channels communicating with the = and
K mesons themselves consist of three pseudoscalar
mesons.

The existence of three-particle resonances and the
fact that most of them appear to decay primarily via
two-particle modes in which one of the products is itself
unstable have led very naturally to the necessity of
understanding states consisting in a stable particle and
an unstable one. From a “two-body” point of view,
however, this is a very difficult problem. Such a scatter-
ing amplitude contains many singularities which are not
encountered in the scattering of two stable particles,
and only a serious calculation using S-matrix techniques
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can be believed at present.? Thus it has become more
and more important to study three-particle states as
such. This has been explained very thoroughly by
Lovelace,3and in nonrelativisticand semi-nonrelativistic
cases the Faddeev equations,* which are well known by
now, have led to very encouraging results.®

All the systems that we have mentioned are highly
relativistic and therefore we will not use the Faddeev
equations themselves, but their relativistic generaliza-
tion, which has been given by Alessandrini and Omnes.®
These equations have all the important properties and
also all the drawbacks of the Faddeev equations, except
that their solution is relativistically invariant and that
they have relativistic kinematics and unitarity built in.
Let us summarize briefly the properties of these
equations.

(a) They deal with the scattering of three stable
particles and exhibit exact three-body elastic unitarity.

(b) They describe systems of particles interacting by
pairs and do not take into account three-body forces.
By three-body forces, we mean the contribution of
three-body graphs which cannot be separated into suc-
cessions of two-body graphs, such as the one shown in
Fig. 1. The fact that in these equations the particles
are treated as interacting by pairs is very appealing,
since, as said previously, many three-body resonances
seem to decay in states where the two-body subsystems
themselves resonate. Also such a model enables one to
study systems where a virtual state is important, as it is
in the == s wave. As the particles are treated sym-
metrically, the coupled-channel treatment, which would
be necessary in a quasi-two-particle approach, is em-
bodied in three-body equations.

2 See, for instance, I. T. Drummond, Phys. Rev. 140, B482
(1965).

3 C. Lovelace, Phys. Rev. 135, B1225 (1964).

4L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)].

5 See, for instance, Lovelace (Ref. 3); R. Aaron, R. D. Amado,
and Y. Y. Yam, Phys. Rev. 136, B650 (1964) and Phys. Rev.
Letters 13, 579 (1964) ; H. A. Bethe, Phys. Rev. 138, B804, (1965) ;
M. Bander, Phys. Rev. 138, B322 (1965); T. L. Trueman, Phys.
Rev. 137, B1605 (1965).

( ﬁ\g. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, B167
1965).
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(c) They are off-the-energy-shell equations and in-
volve as input quantities the off-shell two-body ampli-
tudes. The fact that the original potentials do not appear
at all must be considered as important, since very little
is known about them, but at least the physical ampli-
tude is known. On-shell equations have been recently
derived by Mandelstam,” and their mathematical com-
plication is greater than that of Faddeev-type equations,
although it is undeniable that they have more physical
content.

(d) The drawbacks of the equations we use are well
known. In the first place, no attention is paid to crossing
symmetry, although this is believed to be a very im-
portant ingredient in relativistic theories. Secondly,
only elastic processes are considered, both in the two-
body and three-body systems, and this might be a great
handicap in treating very energetic states.

In this paper, we will explain the general method that
we use, and particularize it to the three-pion channel
with =0 and J?=1-, since the practical calculations
and numerical solutions of this channel will be dealt
with in the following paper. This channel is interesting
for many reasons. First, a certain number of resonances
have the same quantum numbers; the w, the ¢, and also
the E(1415) meson whose existence is not well estab-
lished. Secondly, we want to know if our model exhibits
the idea of Chew? that the strong forces which are
responsible for the existence of the p in the two-pion
system should also be responsible for an isoscalar three-
pion resonance as the w. Lastly, the problem has the
advantage of a great symmetry; as we will show, the
three-body equations reduce to a relatively simple form,
and this calculation can be considered as an example of
three-meson calculations. In future papers, we shall
examine other three-pion states without going into the
details contained here.

In Sec. II, we recall briefly the Alessandrini-Omnes
equations and explain how we use them; we show how
they reduce when angular momentum, parity, and
isospin are separated, in Sec. III. Finally, in Sec. IV,
we explain which off-the-energy-shell extension we take
for the two-body scattering amplitude. As remarked
previously, this is the physical input quantity entering
our equations. It is not a quantity available through
experiment, and therefore it is defined through an
integral equation. For many reasons, the most important
of which is the ignorance of the two-body potentials,
we cannot use the exact form of the two-body off-shell
amplitude, but an approximate one. We will follow
Lovelace? in using the fact that poles dominate the
physical amplitude in order to represent the off-shell
dependence by phenomenological form factors. Thus we
will exploit our experimental knowledge of the two-body
systems to perform semiphenomenological calculations
in the three-particle sector.

7S. Mandelstam, Phys. Rev. 140, B375 (1965).
8 G. F. Chew, Phys. Rev. Letters 4, 142 (1960).
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Frc. 1. A diagram not ]
included in Faddeev-type -
equations. -\1\‘

It should be emphasized that this is far from being a
fundamental relativistic theory of three-body processes;
we have pointed out several drawbacks of the method
that we use. Therefore, these calculations must be
understood as models which will be successful only if the
effects of overlapping resonances together with three-
body unitarity are sufficient to build up three-body
resonances and bound states in the channels in which
they are observed experimentally.

II. STATEMENT OF THE EQUATIONS

Alessandrini and Omnes® have recently proposed a
set of equations which are a relativistic analog of the
Faddeev equations. These equations—(11.12) of Ref. 6
—involve six amplitudes instead of the usual three in
the Faddeev equations. Another difficulty is that the
two-body amplitudes appear to depend on the energy
of the third particle in a complicated way. Alessandrini®
has pointed out that this latter problem can be elimi-
nated as follows: Let us define our two-body amplitude
to be relativistically invariant and unitary in the two-
body Hilbert space. For example, we shall use a
Blankenbecler-Sugar?® type of equation to define it.
We choose to normalize one-particle states by

{p|p")=(27)*2w(p—p"), (2.1)

where w=(p?>+m?)1/2. Then we define the two-body
amplitude in the three-body Hilbert space by

(p1p2ps | t1(0) | p1'p2ps")
= (2m)%2w16(p1— pr)(peps| 1(0) | p2'ps’) . (2.2)

The derivation of the three-body equations proceeds
exactly as before, and the final amplitude still satisfies
three-body unitarity exactly. However, now we can
choose a set of variables such that the energy of the
third particle appears in the two-body amplitude only
through the expression of the two-body invariant energy
o in terms of the three-body invariant energy s, by
means of the equation

(2.3)

To return to the first difficulty, the reason that there
are six amplitudes is that the kernel of the three-body
equations involves all the two-body amplitudes with one
initial interacting particle and one final one off the mass
shell. For each noninteracting particle, there are four
such amplitudes, which are in general all distinct.

g93=8§— 2(.0181/2"—1%12.

9V. A. Alessandrini (private communication).
1 R. Blankenbecler and R. Sugar, Phys. Rev. (to be published).
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However, if one makes assumptions about the symmetry
of the defining equation (for example, by taking a
symmetric potential), one can obtain relations between
some of these amplitudes. We shall make the much
more drastic assumption that the completely off-shell
amplitude is a symmetric function of the c.m. off-shell
initial momenta. This implies that the amplitude, when
expressed as a function of the relative initial and final
momenta and the invariant energy, is independent of
which initial particle is off the mass shell. This reduces
the six coupled equations to three. Our reasons for
making this assumption, aside from the increased
simplicity attained, stem from our general ignorance of
the off-shell amplitude and our reluctance to introduce
more than an absolute minimum of arbitrary functions.
We shall also make a similar assumption on the final
variables, so that our three coupled equations reduce to
a Faddeev-type system:

T1=11—'L‘1E(T2+T3) 5
T2=lz—t2E(T1+T3) )
T3=l3—t3E(T1+ TZ) 5

where E is the three-body propagator used in Ref. 6.
In the momentum-space representation, we have

(2.4)

(p1p2ps | T2(s) | py'p2'Ps’) = (p1pops| 11(0) | P2 'Ds)

1
'—(2 ) /dmd(hd(Ia(plepa[fl(a)|q1q2q3>
™ (Xe

D
oron (5 @)P—s (0:295| 72(s)+T%(s) | pi'p2'ps’)
(2.5)

where the momentum-conservation § functions have not
been factored out.

In sum,® Eq. (2.5) and the associated equations for
T? and 7% are a system of equations that (a) are rela-
tivistically invariant, (b) guarantee three-body elastic
unitarity, (c) have the same relationship to the three-
body multiladder diagrams as the Blankenbecler-Sugar
equation does to the two-body ladder diagrams, (d)
reduce the Faddeev equations in the nonrelativistic
limit.

III. REDUCTION OF THE EQUATIONS

In order to reduce the equations to a usable form, we
write them in terms of eigenstates of the total angular
momentum, J. To do this, we can either use the tech-
niques developed by Omnes,!! or we can use the more
common method of coupling two particles first and then
coupling the third to the pair. However, in the general
case, the latter method has several defects not shared
by the former: It does not explicitly preserve any
inherent symmetry of the interactions; it leads to com-

11 R. Omnes, Phys. Rev. 134, B1358 (1964).
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plicated kinematics; and it involves recoupling angular
momenta. For these reasons, we shall follow Omnes,
even though in the present case, where it will turn out
that we keep only one partial wave in each two-body
subsystem, the other method is not more difficult.

We use his notation for the angular momentum states
and his convention for their normalization, so that

8(P) <‘*’]M#P [ P1D2p3> =A56(P)é(p1+p2+ps) 5DuM*J(Ol,3‘Y)

x1j15<wi—<pi2+1)1/2), (3.1)

4 =|:(2H;1)(27r)9i|1/2’

™

where

(3.2)

where w; is the c.m. energy of particle 7, P is the total
three-momentum, J is the total angular momentum, u is
the projection of J on the space-fixed z axis, and M is
the projection of J on the body-fixed z axis. In this and
all that follows, the three masses are taken equal to
unity. The body-fixed axes with respect to which the
Euler angles are defined have the z axis parallel to p; X p.
and the x axis parallel to p;. The two-body interaction
thus has the representation for M =M'=0

. drrd(wi—wy)
(w]O]tl{w J0)=——————3 D,5*7(0,7/2,0)

4?1(27\')6 v
2m
X Do (0;7/2,0) / 8 eF(6), (3.3)
0

where F(0) is the two-body scattering amplitude, 8 is
the scattering angle, and # is the angle between the
planes defined by (ps, p2) and (ps, p2’). Equation (3.3)
is easily obtained by following Ref. 11, allowing for the
different normalizations and kinematics.

In order to do the integration over #, we expand F in
partial waves and make use of the well-known identity*2

2T
f e?*P(cosy cosy’+siny siny’ cosu)du
0

82

Y7(v,0)Y2(v,0).
2141

(3.4)

These formulas essentially give the projections of a
two-body state of definite angular momentum onto the
various possible three-body angular momentum states.

We also need to known how to express the total
parity of the state in terms of the angular momentum
eigenstates, and, in the case of identical particles, how
to take into account the proper statistics. This can easily
be derived from the known effects of the corresponding
operators in momentum space.

2 Qur conventions follow A. R. Edmonds, Angular Momentum
in Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1957).
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For parity, for example, if the Euler angles in Eq.
(3.1) are (a,8,v), then it is known that

8(P)(p1,p2,ps| ®| S M uP)
=8(P)(—p1, — P2, —Ps| 0T MuP)ereres
=A46P)6(2 po) Dpn? (e, B, y+)

3
X H B(w,-— (pﬁ_}_ 1)1/2)616263

=1

=(=1)M5(P)(p1p:ps |0 MuP)eeses, (3.5)

where ee€; are the intrinsic parities of the particles.
So, finally,

®|wJ MuP)= erese3(— 1) ¥ |wT MuP). (3.6)

Note that the parity depends only on A for this choice
of body-fixed axes.

The statistics can be treated in the same way, and for
the isospin zero, J=1~ three-pion state the statistics
imply that (w10|7"|»’10) is symmetric separately in the
primed and unprimed energies. Parity requires that only
the M =0 component is nonzero. The exchange of two
particles then gives a factor (—1) from isospin, and a
factor (—1)7 from angular momentum. Combining
these statements, we have, in our case,

(wiwaws| T | wi'ws'ws")
=—(—1){wwiwz| T | wi'ws'ws’),

3.7)

where T is the total three-body amplitude. This state-
ment and the two others corresponding to other
exchanges, give the stated symmetry.

We can now write Eq. (2.5) after separation of total
angular momentum; taking /=1, M=M’'=0, and, for
instance, u=0, we obtain

(w109ws | T1(s) | wy'wy'ws”)

R
T(wlyw2yw3: Wy ,Ws ,Ws S)

= %) —w
ips(2m)0 ored)
1 / dwl”dw2"dw3/'(z wi”)
2p1(2)? X w)*=s

X T(w1,w2,03; w1’ ,ws” w35 §)8(w1—w1”’)
X{wr wo w3 | T*(s)+ T3(s) | wi'ws'ws),

where the inhomogeneous term is the angular mo-
mentum projection of the two-body amplitude as
defined in Eq. (3.3).

For our particular case, because the total isospin is
zero, each pion pair must be in an /=1 state, and there-
fore only odd angular momenta contribute. If we assume
that the J=1 part dominates, which seems to be
essentially the case experimentally, we have

(3.8)

3.9

. ., . ;o
7= 3 siny, sinyy’ flw,we,ws; w035 s) ,
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where v, is the angle between (p;—ps) and py, so that

€08y1= €05V (wy,wa,w3)

w32_w22
= . (3.10)
(w12__ 1)1/2[2(w22+w32)_w12_3]112

The function f appearing in Eq. (3.9) is the /=1 partial
wave of the two-body off-shell amplitude. It actually
depends on three variables, which are the two-body
off-shell energy o defined in Eq. (2.3) and the magni-
tudes of the initial and final off-shell momenta

p23=p(w1,w2,w3) = [2(w22+w32) —wlz— 3]1/2/2 .

The isospin dependence has yet to be extracted. Let
(e,8yy) and («/,8';y’) be the initial and final isospin
indices of particles 1, 2, and 3. The two-body interaction
is I=1, so the inhomogeneous term in the equation for
T! has the dependence %8aq/(8ps/0yy— 054704p') while
those for 72 and 7' have the indices interchanged. The
projections of all these on the (totally antisymmetric)
isospin zero state just give coefficients of one. In general,
not only will 7 be a mixture of several states with the
same isospin, but also the recoupling coefficients will not
be one. However, for this particular case Eq. (3.8) is
correct as it stands, even after the isospin extraction.

In order to decouple the equations, we define the

kernel
1 Z wi”
25120 (T wi)2—s

X T(wy,wz,ws; w1’ w3’ §)8(w1—ws’) .

(3.11)

R /PRI
K (w1,02,03; w1 @ w3”; 5)

(3.12)

Let us note that this is not exactly the kernel which
appears directly in Eq. (3.8), and that it is symmetric
in (w2,w3) and in (w/,ws”). We also note that 77 is
symmetric in (ws,ws;) and similarly for 7% and 7'%. We
define new amplitudes V' by

Vl(wl,wz,wg) = (w1w2w3| TI(S) [wl'wz'w3’) y
V2(w1,w2,03) = (wawiws | T2(s) |wi'wsws’),  (3.13)
V3(0r1,02,w3) = {wiwawy | T3(s) | w1/ ws'ws”) .

The o’ variables are regarded as parameters, and occur

in the same order in each of the 7 defining the Vi We
may now rewrite Eq. (3.8) as

dewy" dws" dws”" K (w,0")

XLV + V"],

with 72 and V?® given by cyclic permutations. The
inhomogeneous terms I; from Eq. (3.8) are

Vl(w) = I1(w) -
(3.14)

I(w) = T(w1waws; wy'ws'ws’; 5)8(w1—w’)/4p1(2T)°,
Io(w) = T(wiwows; we'wi'ws’; §)8(wi—wy’)/4p1(27)8, (3.15)
I3(0) = T(w12w3; w3'wi'ws’; §)8(w1—ws") /4p1(2m)8.
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It is now trivial to decouple Egs. (3.14), since they may
be written as

011
M=U)—|1 0 1|KWV). (3.16)
110

The three-by-three matrix appearing in Eq. (3.16) has
eigenvalues 2, —1, —1, and corresponding eigenvectors

Z@)=V'+V+V?, Adw)=Vi=Vi. (3.17)

These eigenvectors satisfy the decoupled equations

E(w)=éIi—2/dw”K(w,w”)2(w”), (3.18a)

Ai(w)=T;—I;+ / o K (00")A#(”) . (3.18D)

Re-expressing 7 in terms of 2 and A%, we obtain

3(wiwaws| T(s)|w”)
= Z(w1waws)+ Z(wawiws) + = (wswawr)
+ A2 (010905) — AL2(wawiw3) + Al3(wiwaws)
— AB(wswew;) + A2 (wawiws) — A28 (wawaw; ) .

(3.19)

Now it is obvious that the statistics, which require that
T be a symmetric function of its variables, imply that
the A# terms give no contribution, and only Eq. (3.18a)
need be considered.

One could attempt to decouple the equations by
observing that

{w1waws| T(s) | wi'wa/ws")
= (wzwlw;;[ T2(S) ]wg/wl'ws’) .

(3.20)

The trouble is that, unless one sets w;’'=ws'=wj, the
result of substituting Eq. (3.20) into Eq. (3.8) is not an
integral equation, since the parameters o’ of 71 are then
different on the two sides. It happens, in the present
case, that one is allowed to choose w;'=w,'=wj;’, and
that this procedure does give the correct equation.
However, in many channels this cannot be done (for
example, because 7=0 at this point).

IV. TWO-BODY AMPLITUDE

The input to our kernel (3.12) is the off-energy-shell
two-body J=1 partial-wave amplitude. This amplitude
is, of course, not available directly from experiment. In
the nonrelativistic case it is defined as the solution of the
Lippmann-Schwinger equation. Similarly, in our case,
it is defined to be the elastic part of the Bethe-Salpeter
amplitude (in the ladder approximation this is just the
Blankenbecler-Sugar® amplitude), and is taken to satisfy

1 p()
fpps )=V (p,p)—~ / PR

4 X—ao

V(pk) f(k,p'; ),
4.1)
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where £=%(x—4)!/2, ¢ is the invariant energy, p (or p)
is the magnitude of the c.m. incoming (or outgoing)
off-shell momentum, p is the phase-space factor, and V
is the input for the particular partial wave.

Nonrelativistically, V is just the potential, and Love-
lace,® among others has investigated the properties of
the resulting amplitude. We shall use those of his results
which seem appropriate to our relativistic problem.

Since we have little knowledge of V for our case, we
shall construct an amplitude satisfying the more general
requirements of Eq. (4.1), principal among which is
elastic unitarity,

1 fo—d\12
Imf(ﬁ,P’;0)=~—< ) ;

o) () ]
% f*{(“j)uz,p'; a] . (@4.2)

We shall require our amplitude to satisfy Eq. (4.2),
exactly, and not just in a limited region, for two reasons.
First, we want our three-body amplitude to be exactly
unitary to ensure, among other things, that residues
have correct signs. Second, the region in energy where
we want to know the amplitude runs from (s'/2—1)? to
— o, as can be seen from Eq. (2.3), since the energy of
the third particle runs from 1 to . If our amplitude
were not unitary and had singularities in o on the
negative axis, our kernel would be completely wrong
and would, for instance, have complex eigenvalues in
the three-body bound-state region.

Perhaps the major approximation that we shall make
in the two-body amplitude is separability. We shall

assume
f(p,p'; 0)=g(p)g(p")/D(a). (4.3)

It is known that in the vicinity of a resonance or bound-
state pole, the amplitude is separable, and Lovelace?
has argued that to the extent that we expect the ampli-
tude to be dominated by a pole, Eq. (4.3) should be a
good representation.

However, the main reason for the assumption of
separability is that it reduces the three-dimensional
equations (3.18) to a one-dimensional form.'® It not
only eliminates the & functions of the kernel but also
converts the equations from something impossible to do
reliably on present computers, because of storage
limitations, to something relatively tractable.

Our further reason for using Eq. (4.3) is that basically
what we want is an off-shell two-body amplitude that
is the best approximation, when used in the three-body
equations, to the ‘“‘correct” amplitude. There is no
particular reason with our present knowledge to think
that in this sense the separable form will be worse than
any other arbitrary form we could pick. By giving up
separability, one loses the benefit of a great simplifica-
tion and gains only a hypothetical feeling of generality.

13 J, L. Basdevant, Phys. Rev. 138, B892 (1965).
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When we take the separable form and require that it
satisfy Eq. (4.2), we find that D(s) has the form

ax
(4.4)

1 0
D)= P+ [ —pla)g®),

TJ4 X—0
where P(c) is any polynomial with real coefficients. The
fact that P(o) is not determined by unitarity is essen-
tially the well-known Castillejo-Dalitz-Dyson (C.D.D.)
ambiguity. If the amplitude satisfied Eq. (4.1), then as
() >, f(p,p';0) = V(p,p’). Thus if our input func-
tion is not dependent on the off-shell energy, our
polynomial must be a constant.

On the other hand, taking P(¢) linear has certain
advantages: It is the natural generalization of the Breit-
Wigner form D(¢)=0—0,+1(s,)1/?T for a resonance of
width T and mass (c,)!/2; and it allows us to put an
explicit zero of D(¢) anywhere on the second Riemann
sheet. Further, if the compactness of the kernel restricts
the effective range of w in Eq. (2.3) enough so that the
range of variation of ¢ where we need to know D(o) is
relatively small, then one might argue that the asymp-
totic behavior in ¢ of D(¢) would not matter, and one
could use the linear form. Actual calculations will
clarify this point.

We come now to the question of the function g(p).
Its most natural identification is as a resonance form
factor, and if V were known, we could trivially extend
Eq. (4.1) to the second sheet and obtain an equation
for g(p). Alternatively, if the N function of an N/D
calculation were known, one could make the choice?
g(p)=(N)'2, as then Egs. (4.4) and (4.3) give f its
desired on-shell form.

We also know® that, for a nonrelativistic problem
with a Yukawa potential or for a Blankenbecler-Sugar
amplitude in the /th partial wave, we have

glp)~pt as p—0, (4.5a)
and

g(p)~p~ 2 as (4.5b)

p——)oo.

Relativistically, while we still expect Eq. (4.5a) to be
true, Eq. (4.5b) is in some doubt. For good convergence
of our three-body equations, g(p) must go to zero faster
than 1/p at infinity, and what we shall actually do is to
take a family of functions satisfying (4.5a, b). Since g(p)
gives the detailed structure of the resonance, we can
hope that the gross three-body results will be more or
less independent of the exact form of g(p), and will
depend only on the position and width of the two-body
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resonance. Alternatively, we may be able to find a g(p)
which gives consistent results in all the relevant three-
body channels. If neither of these proves to be the case,
a drastic re-examination of our model will be necessary.

Finally, having chosen a form factor that involves a
certain number of free parameters, we will impose the
condition that D(¢) give us the experimentally observed
resonance.

When we use the separable form of f and apply the
methods of Ref. 13, we obtain from Eq. (3.18a) a one-
dimensional equation. We define

> orons =3 siny (wiwsws) g(p(wie203) ) B(w1) e

2 (wlz— 1)1/2(21r)3D(0'(S,OJ1))
Then

()= I(x)+ / K(y)eG)dy, @7

where I(x) is obtained from the inhomogeneous term of
Eq. (3.18a) in the same way as @ is obtained from 2 in
Eq. (4.6). The kernel in Eq. (4.7) is given by

1
K ) )=_
) o = )DLt )]
at
X [u ) da(x(ij—%:—)Z—)—s siny(y,x,a) siny(x,y,a)
Xglp(x,y,0)Jelp(y,x,0)], (4.8)

where siny(#,y,a) and p(x,y,a) can be read from (3.10)
and (3.11), and where the limits of integration are given
by the triangle inequality as

ak =[1H((— DL (= 1D, (49)

As mentioned previously, the following paper will be
anumerical investigation of the properties of this kernel,
aimed at finding eventual resonances. Other three-pion
channels will yield very similar kernels, and we will
study the mathematical difficulties associated with such
kernels.
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