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The hypertriton 1He? is considered with the inclusion of an S’ state ¥’ in the total wave function. For
¥’ the nucleons are in a singlet spin state and the space part is correspondingly antisymmetric with respect
to exchange of the nucleons. Only a spin dependence of the A- interaction can give a nonzero admixture
of ¢’ to the dominant component ¥, which is space-symmetric under exchange of the nucleons and which
is the only component that has been considered in previous investigations. Central, spin-dependent Yukawa
potentials were used. The most flexible trial function used was one with 16 parameters for which ¥ g has the
same 6-parameter form as used by Downs and Dalitz and ¥¢’ has a corresponding flexibility. In particular,
for an intrinsic range b=1.5 F (corresponding to a Yukawa interaction appropriate to two-pion exchange),
the effect of ¥’ is quite appreciable; the singlet strength is reduced, the triplet strength slightly increased,
and the spin dependence reduced by about a third. For a range corresponding to K-meson exchange
(b=0.84 F), the effect of ¥’ is considerably less. With inclusion of ¥’ (for a given b), the singlet strength is
found to be quite insensitive to the value of the triplet strength and is therefore almost entirely determined
by Ba(xH3). The resulting total A-N cross sections at low energies (20 MeV) are compared with the ex-
perimental values oexp. If it is assumed that the singlet scattering length a, and effective range 7, are most
reliably determined from hypernuclei, then for 5=1.5 F (for which the estimated values with a hard core of
radius 0.42 F are as~ —2.3 F, 7,~3.6 F), acceptable agreement with gexp can be obtained with only a modest
increase of |a;| (ae~—1.3 F, 7,~2.9 F) above the value obtained from hypernuclei. (The maximum value
consistent with the hypernuclear results is a;~ —0.9 F together with »,~3.3 F.) It is shown that an increase
of this order of magnitude could be obtained through suppression of the coupling with the =N channel in
AHe®. Results are also given for a Yukawa potential with 6=2.07 F, which is the intrinsic range for an inter-
action with a hard core of radius 0.42 F and an attractive Yukawa tail appropriate to an exchanged boson
with mass 3m,. Finally, it is argued that there is a tentative indication for the existence of a repulsive core
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in the A-N interaction.

1. INTRODUCTION

HE hypertriton ,H? is the lightest hypernucleus
that is bound and is of basic importance for
knowledge about the A-IV interaction. The lifetime of
AH? is also of considerable interest—in particular as a
test of the correctness of one’s ideas about its structure
and of the use of the A-N-r decay amplitudes for calcu-
lations of hypernuclear decays. (In fact, the experi-
mental lifetime! seems to be significantly less than the
calculated one.?)

The basic analysis of sH?® is that of Downs and
Dalitz® who considered charge-independent and central,
but spin-dependent, Yukawa interactions. The ground-
state wave function is then a pure s state with the
nucleons in a triplet spin state. Downs and Dalitz used
a flexible 6-parameter trial function, the space part of
which has the product form

Ys(ryre,rs)= f(r1) f(r2)g(rs) , 1)

where 71, 72, and 73 are triangular coordinates: 7; is the
neutron-proton separation and 7; and 7 are the A-
nucleon separations. The functions f(r) and g(r) are
each 3-parameter trial functions of the form

f(r)=e g, (1a)
g(r)=ebr+tyetr, (1b)

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1 See, for example, R. J. Prem and P. H. Steinberg, Phys. Rev.
136, B1803 (1964), where references to other work are also given.

2R. H. Dalitz and G. Rajasekaran, Phys. Letters 1, 58 (1962).

3B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).
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Here f(r) refers to the A-N pairs and g(r) to the n-p
pair. The function ¢g is symmetric with respect to
interchange of the space coordinates of the neutron
and proton, i.e., with respect to 7, <> 7s, 734> 7;3. The
total ground-state wave function Vg thus has the
isobaric spin 7'=0 since the nucleons are in a triplet
spin state. The experimental value of the total binding
energy is B=Bg+By=2.52540.15 MeV, where
Bg=2.225 MeV is the deuteron binding energy and
B;y=0.340.15 MeV is the A separation energy with
respect to the deuteron. The energy B then uniquely
determines an effective volume integral U, of the A-N
interaction for any assumed shape of this interaction.
In particular, if the singlet is more attractive than the
triplet A-V interaction as is known to be the case,® then
the total spin of \H?is /=% and one has U,=3U,+31U,,
where U, and U, are the singlet and triplet volume
integrals, respectively, of the A-V interaction.
Subsequent investigations® of 4H?® have been made
for A-N interactions with a hard core. These investiga-
tions have all used trial functions that are wholly

4R. Levi-Setti, Proceedings at the International Conference on
Hyperfragments, St. Cergue, Switzerland, 1963, edited by W. O.
Lock (CERN, Geneva, 1964).

5 R. H. Dalitz and L. Liu, Phys. Rev. 116, 1312 (1959) ; M. M.
Block, R. Gessaroli, J. Kopelman, S. Ratti, M. Schneeberger,
L. Grimellini, T. Kukuchi, L. Lendinara, L. Monari, W. Becker,
and E. Harth, Proceedings of the International Conference on
Hyperfragments, St. Cergue, Switzerland, 1963, edited by W. O.
Lock (CERN, Geneva, 1964).

6 B. W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev. 129,
2730 (1963); D. R. Smith and B. W. Downs, sbid. 133, B461
(1964); R. C. Herndon, Y. C. Tang, and E. W. Schmid, Nuovo
Cimento 33, 259 (1964); K. Dietrich, H. J. Mang, and R. Folk,
Nucl. Phys. 50, 177 (1964).
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spatially symmetric with respect to interchange of the
nucleons and most of them have also used the product
form (1).

If, with purely attractive interactions the results for
U, obtained from pH? are combined with the values of
the spin-averaged volume integral U=%(U+3U,)
which are obtained” from jHe® and also®® from ,Be?®
and ,CB, then for a given shape of the A-IV interaction
both U, and U; are determined. Thus, for Yukawa inter-
actions with a Yukawa range us,'=0.7 F and a corre-
sponding intrinsic range b= 1.484 I, appropriate to the
two-pion-exchange mechanism, one has U,=379_y48
MeV F3 and U,=220_y512% MeV F3. For us, there is thus
a strong spin dependence characterized by the volume
integral A=U,— U;= 159440 MeV F3. For a Yukawa
range ux =04 F (6=0.84 F), appropriate to the
exchange of a K meson, one has U,=219410 MeV F?
and U;=190417 MeV F3 and the spin dependence is
much smaller, namely, A=294-27 MeV F3.

With hard-core interactions of the same intrinsic
range (b=1.5 F) as for us,~Y, the scattering length and
effective ranges'® turn out to be not very different from
those obtained with purely attractive interactions.

For the bound-state nuclear three-body problem (H?
or He?) and spin-dependent central forces, it is well
known that in addition to the dominant, spatially
symmetric .S state there is also some admixture of
another s state, the so-called S” state.!! In this paper
we consider the effect of the analog of this state for
AH? which we denote by ¥g.

Thus the total wave function of 4H?® which we con-
sider is

Y= (1= p) Pt ps, @)

where ¥g and Vg are individually normalized. For
J=1 and T'=0, appropriate to the ground state, the
nucleons will be in a singlet spin state for ¥ s and corre-
spondingly the space part of ¥g must then be anti-
symmetric with respect to the interchange of the
nucleons.

Thus for J=4%, T=0 one has

Vs=ys(ri,rars)Xis™,

Ys(rarirs)=—+ys(rrars), 3)
Vo =Yg (r1,r2,73)X12™,
Vs (rarirs)=—ys (r1,72,73) 4)

where X1;5™ and Xy,,™ are orthonormal spin functions
with S=% and S;=m. The functions Xi/s™ and Xi;™
correspond to the nucleons in a singlet and triplet spin

7R. H. Dalitz and B. W. Downs, Phys. Rev. 111, 967 (1958);
A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 25 (1962).

8 A. R. Bodmer and Shamsher Ali, Nucl. Phys. 56, 657 (1964).

9 A. R. Bodmer and J. W. Murphy, Nucl. Phys. 64, 593 (1965).

0 R, C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev.
137, B294 (1965).

See, for example, G. Derrick and J. M. Blatt, Nucl. Phys. 8,
310 (1958); J. M. Blatt and L. M. Delves, Phys. Rev. Letters 12,
544 (1964).
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state, respectively. (Explicit expressions may be found
in Refs. 12 and 13.) Thus X;,»™ is symmetric with
respect to interchange of the nucleon spins whereas
Xy,9™ is antisymmetric. The functions ¥g and ¥g are
the only independent S states since for J=7% there are
only two independent spin functions for three spin-
particles.

Similarly as for H® and He?, one expects 520 only if
the interactions are spin-dependent. In fact, as will be
shown below, one has 0 only if the A~V interaction
is spin-dependent. Since this spin dependence is indi-
cated to be large for 5=1.484 F, the amplitude p may
not be negligible and there may be an appreciable effect
on the strengths deduced for the A-V interaction.

If the component ¥ is included in a variational
calculation for ,H3, then the resulting value obtained
for the volume integral U, will now depend on A. In
particular, to lowest order in A one expects p « A. Thus
if A is not too large one expects a relation of the form

Ua(A) = Us(0)—cA?. (5)

The volume integral U,(0) is the value for A=0 or,
equivalently, the value that is obtained for p=0 as is
the case for all previous investigations.

The central object of this paper is then to obtain the
relation between U. and A appropriate to Bx(aH?).
This relation, together with the value of U, will then
determine U, and U, Only (purely attractive) Yukawa
A-N potentials are considered for the hypertriton
calculation.

2. THE VARIATIONAL CALCULATION

For the variational calculation, to be described
below, we use unnormalized functions ¢ g(r1,72,73) and
Y (r1,72,73). The total wave function which thus is also
unnormalized, is

\I,=¢S(rl,72;r3)il/2+A\bSI (7’1,1’2,1’3))(1/2. (6)

The normalization integral is
N[¥]= / dr 2. )

In Eq. (7) and below, dr=8mryrorsdridradrs denotes the
volume element appropriate to the triangular coordi-
nates 71, 73, 73. The triangular inequalities 71472273,
etc., must be satisfied for the integrations. The spin
summations are implied in Eq. (7) and also in Egs. (8)
and (9) below.

For an S state, the kinetic energy integral is most
conveniently used in the form™

TV ]= / dr g K[(E’E)?—\If it ﬂ} )

an 671;2 7 (91’,'

2R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1953).

BT, T. Schiff, Phys. Rev. 133, B802 (1964).

4 B. W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev.
129, 2730 (1963).
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where K;=21#%%/91; are the inertial parameters in which
N; is the reduced mass of the sth pair. Thus
Ki=K,=K=1(Mr+My)/(AMsMy)
and
Ky=Ky=1/2My.

The values M y=938.9 MeV/c? and M ,=1115.4 MeV/c?
have been used.
The potential energy integral is

W=/d'r V2

with
V=Vt VantVap. 9
Here Vip, Van, and Va, are the relevant potentials.

These we take to be charge-independent and central
but spin-dependent. Thus, the spin dependence is given

by
Van=Vap=Van
1—oron 3+orcon
~ Ve(r)+ I Vi), (10)

l—0op0p

3+4o.0
Vap=——0.0)+— 0.,  (11)

where Vi(r) and V¢(r) are the singlet and triplet A-IV
potentials, respectively, and U,(r) and V,(r) are the
relevant singlet and triplet #-p potentials, respectively.
The coefficients of the singlet and triplet potentials in
Egs. (10) and (11) are the singlet and triplet spin-
projection operators, respectively.

With the wave function (6), one gets for the nor-
malization integral (7)

N[¥]=Ns[¥s]+ANs[¥s], (12)

where Ng[¢s] and Ng[¥s ] are given by Eq. (7) but
without the spin summations. For the normalized wave
function (1), the amplitude p in Eq. (2) is then given by

N s\~1/2
p=<1+A2 ) . (13)
Ng
Similarly for 7[¥] one has
T[Y]=Ts{¥s]+ATs[¥s], (14

where T's[¢s] and Ts/[s] are given by Eq. (8)—again
without the spin summation.

The potential energy integral (9) for the function (6)
is obtained by noting that

VXypo™= [V (r)+ 14 (r2)FVs(73) X1/2™

—3[Vo(rs)—Vo(r)IXys™  (152)
and
ijl/‘zm: %V2(7’1)+%V2(7’2)+'Ug(73)])_(1/2m
—3[Vo(rs) = Vo(ro) X1z, (15Db)
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where V(1)=1V.()+3V:(r), Va(r)=3V.()+3V.(r)
and where V,(r)=V,(r)—V(r) is the spin-dependent
part of the A-NV interaction. [ Equations (15a) and (15b)
are readily obtained with the use of the explicit ex-
pressions for Xi/2™ and Xy/2™ and the properties of the
Pauli spin operators. ]

The interaction V, is twice the effective A-N inter-
action appropriate to ¥y (i.e., for the nucleons in a
triplet state) ; V is the spin-averaged interaction, which
is the effective interaction appropriate to ¥4 (i.e., for
the nucleons in a singlet state). The diagonal parts of
(15a) and (15b) are then the corresponding total
effective interactions for ¥ and ¥, respectively. Then
for the total wave function ¥ one obtains the expression

WY ]=Ws[¥s]4+24W ss[¥sis]

+AWs[¥s], (16)

where
Wsl¥s]= / drysH5Va(r1)

3 +3Valre)+0.(r5)], (A7)
Wss'[¢s:¢s']=£ /dT Ysvs[Ve(ra)—V.(r)],  (18)

Welys 1= /dT

Xy [V (r)+V (r2)+0.(r) 1. (19)

From these expressions it is seen that an admixture
of ¥s and ¥y can arise only through Wggs. This de-
pends only on the spin dependence of the A-NV inter-
action (i.e., on the volume integral A for purely attrac-
tive interactions). It is to be noted that since ¥y is
spatially antisymmetric with respect to interchange of
the nucleons, the potential U, in Eq. (19) must be the
singlet potential appropriate to a spatially antisym-
metric state for the nucleons. The potential U, is of
course the triplet potential for a spatially symmetric
state, i.e., the triplet s-state potential.

For the binding energies appropriate to ¥g and Vg
individually, one has

Bs= e (Ts+Ws)/Ns,

By=—(Ts+Ws)/Ng. (20)
The binding-energy contribution due to Wgg is
Bgy=—Wgs/(NsgNg)2, (21)
The total binding energy is then
B=(1—p")Bs+2p(1—p")"*Bssy+p*Bs, (22)

where  is given by Eq. (13).

We take the shapes of the singlet and triplet inter-
actions to be the same. With purely attractive inter-
actions the normalized A-N and n-p potentials are then
denoted by vax(r) and v, (r), respectively. The volume
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integrals of the singlet and triplet #-p interactions are
denoted by U, and U, respectively.

For a given binding energy B, we then wish to obtain
the volume integral U, as a function of A. The relevant
variational principle is then

T[]~ W,[¥]—BN[¥]
‘ZU2[‘I/]

where T[¥] and N[¥] are given by Eqgs. (12) and (14),
respectively, and where

3[V]=

2Us,  (23)

wi¥]= / dr{[Uas*+ AU s Jvnp(73)

—3AMY sy s [van (72)—van (r1)]
. + A0 s [oan (r)+oan ()]},  (24)
wg[\I/]"—‘E /d'r W'+ A% s [oan (r)+oan (r2)].  (25)

Equation (23), together with Eqs. (24) and (25), is an
immediate consequence of the variational principle and
of the expressions previously given. The relation
U=1U+3U,=%(U.—A) has also been used. For any
given #-p interaction, given shape van(r), and given
values of B and A, the variational principle (23) then
gives an upper bound for Us.
The use of Yukawa shapes for the interactions leads
to
#2 e 1/2 e
nun()=—-—, tp()=——.
T 7 T 7

(26)

The parameters taken for the triplet #-p interaction U,
are the ones used by Downs and Dalitz.? These are
consistent with the low-energy scattering data and the
binding energy of the deuteron. The inverse range is
»y=1.428 F-! (corresponding to an intrinsic range
5=2.4995 F) and U;=1403.4 MeV F3. For the singlet
potential U, we used both an ordinary potential (i.e.,
without spatial exchange) which corresponds to the
s-state interaction used by Downs and Dalitz, namely
y=1.428 F! and U,=951 MeV F3 and also, more
realistically, a Serber potential. For the latter, U;=0
since V;=0 for a spatially antisymmetric state. In fact,
the results turn out to be quite insensitive to U, and
are almost the same for the two potentials U, considered.

The trial functions used for ¢ g are of the product
form (1) and those for ¢g- are of the form

U (riyra,rs)=[F (r)H (rs) —H (r))F(r2) 1G(rs). (27)

This has the required symmetry. In terms of the
functions occurring in Egs. (1) and (27) one readily
obtains, for example,

Wes[Wsps]=3 / dr fr)H () [ ()

Xgr)Grs)[Vo(ra)—Va(r)]l. (28)
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The analogous expressions for the other quantities are
obtained equally readily and will not be given.

The most flexible trial function used has 16 param-
eters and is denoted by ¥g 1% in which the left and
right subscripts refer to the numbers of parameters in
¥s and ¢ g, respectively. Thus, for y g we have used the
same 6-parameter function (1) to (1b) as was used by
Downs and Dalitz.® As emphasized by them, the
3-parameter functions (1a) and (1b) are sufficiently
flexible to take adequate account, on the one hand, of
the long tail of the wave function for large interparticle
separations and, on the other hand, of the strong short-
range correlations implied by the strong and short-
ranged interactions—especially the quite short-range
A-N interaction. Section 3 presents some results that
are relevant in this connection. For the same reasons,
in Eq. (27) we have used the three-parameter functions

F(r)=eortteor, (29)
G(r)=ePrtgebr, (30)
H(r)=e1r+nerr, (31)

The function ¢ is thus a 9-parameter function. In
addition to the 15 parameters entering through ¢ ¢ and
¥, the function ¥4 419 also contains the admixture
parameter 4 as a variational parameter.

Some calculations were also made for the related
10-parameter function ¥ 34 which is obtained from
V5,99 by imposing the constraints F(r)= f(r),
G(r)=g(r). Since Y5 will be the dominant component,
the values of the six parameters occurring in f(r) and
g(r) are variationally quite well determined, approxi-
mately independent of whether or not ¥ 5 is included in
the calculation. For ¥, ;1 the component g thus
effectively depends only on the three parameters v,
72, and 5 which enter through the use of Eq. (31) for
H(r).

Exploratory calculations were made with the 6-
parameter function ¥4;(® which is characterized by
Fi=jn=e, Gr)=g(r)=e+ye ™, and
H(r)=e [ie., by putting F= f,x=0,G=g, and y=0
in Egs. (1a), (1b), and (29)-(31)]. In contrast to
We,01% and ¥4 59 only 1-parameter functions are thus
used for the A-V correlations. In particular, ¥ is the
4-parameter function

Ys(r1re,rs) = e~ urigmorz(g=birsf yg—brs) - (32)
Finally, some calculations were also made for the
related 10-parameter function ¥, ;% which is ob-
tained from ¥,;® by letting F(r)=e > differ from
J(r)=e " and letting G(r), now given by Eq. (30),
differ from g(r).

With Yukawa interactions and the above type of
trial functions (which are effectively sums of products
of exponentials), all the triangular integrations which
occur may be done analytically and the results may all
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TasBLE I. Results for ys®, ys®, and ys® with B=2.526 MeV.
b a az b1 bz U2
vs (F) (E) () @ ) (F) y (MeV F¥)

Ys® 1.484 (ugx) 0.132 0.929 1.47 0.388 1.170 2.007 678.88
0.84(ux) 0.165 1.408 1.955 0.396 1.164 2.022 423.85
Ys® 1.484 (usx) 0.337 e e 0.3665 1.190 2.015 745.83
0.84(ux) 0.593 0.357 1.256 2.027 483.13

¥s® 1.484 (u2r) 0.383 0.65 o e 781.5
0.84(ux) 0.635 0.71 492.75

be expressed in terms of the algebraic expressions

Illo(x,y,z)=///exp(—xrl—yrg—zr?,)rlrzdﬁdmdm

=4[ (x+y) (x+y+2)+ (x+2) (y+2)]
XL+ (y+2)? (z4+=)° T,
Iu(x,y,2)= ///exp(— xr1— Yro— gr3)rirersdridradr;

=8[x(x+y) (x+2)+y(y+2) (y+x)
+2(z4%) (y+2)+2(@+y) (v+2) (a+4)]
X[ (a49)* (y+2)* (22T

These have obvious symmetries in the simultaneous
interchange of x, ¥, 2, and the corresponding indices.
The procedures are entirely analogous to those used by
Downs and Dalitz.? The final algebraic expressions are
straightforward to obtain but are very lengthy,
especially for the functions ¥g,6*® and ¥, 39 and will
not be given.

The parts of the various expressions which depend
only on ys (e.g., N, Ts, W, etc.) are clearly identical
for W 18 and ¥ ;1 while the parts depending only
on Yg are the same and differ only in that the param-
eters of F(7) and G(r) (i.e., a1, as, £ Bi, Be, {) that enter
for We 9@® are replaced by the parameters of f(r) and
g(r) (ie., ay, as, z, b1, by, y) for ¥, 307, Of course, the
terms depending on both ¥s and ¢s (e.g., Wgs:) have
a different structure for ¥g 1% and Ve ;1. Most of the
algebra is thus the same for W% and W31 and
comparatively little extra effort is required in using
W, 018 instead of W31, Completely analogous re-
marks apply to ¥, 51 and ¥,,1®.

In addition to the interchanges a1 <> @2 with x <> 1%,
etc., the value of ® is also invariant under F(r) <> H(7)
with 4 —A4 for ¥4 and ¥, ;9. These sym-
metries may of course be taken together in any com-
bination, or in any number up to the maximum possible.
More-restrictive obvious combinations of these sym-
metries apply to the expressions depending only on ¥s
or only on ¢g. All these symmetries provide a useful
check both for the algebra and for the numerical
calculations.

It is clear that associated with any particular local
minimum of ® there will thus be a whole class of equiva-

lent local minima. However, in particular for the very
flexible function ¥ ¢, several nonequivalent local
minima are to be expected and were indeed found.

The quantity ®[¥] was minimized numerically with
the aid of Davidon’s metric-minimization procedure!®
for obtaining local minima. For this, the derivatives
of & with respect to the variational parameters are
required. Although these derivatives may also be ob-
tained in closed algebraic form, it is much easier and
less subject to error to obtain the derivatives numeri-
cally from the difference of ® for neighboring values of
the parameters. However, calculations using the
analytic expressions for the derivatives were also made
for ¥y 1¢® and ¥y 549 and gave the same results as with
the use of the numerically obtained derivatives. The
minimization procedure finds that local minimum which
is ‘“nearest,” in the parameter space, to the point
corresponding to the initial guesses of the parameters.
These are a required input. The minimization program
has a facility that permits imposition of linear con-
straints between the parameters. Thus, for example,
the results for ¥ 3 may be obtained from a calcu-
lation for W41 together with the appropriate
constraints.

The values of p, Bs, Bg, and Bgs were calculated
after the minimum was found. As a check, B was then
calculated by use of Eq. (22) to see if this agreed with
the input value of B.

3. RESULTS AND DISCUSSION

Calculations were made for Yukawa A-IV interactions
with the range u'=u,,'=0.7 F (6=1.484 F), for
pwl=uxg =04 F (b=0.84 F), and for x'=0.977 F
(6=2.07 F). The last range was chosen so as to give the
same intrinsic range as an interaction with a hard core
of radius ,=0.42 F and an attractive Yukawa part
with a range p'=pu3, =047 F corresponding to an
exchanged meson of mass 3m,=419 MeV. Studies of
one-boson-exchange models of the N-N interaction
indicate a mass of about this value for the part of the
interaction that is due to a spin-isospin scalar boson
(¢ meson). This interaction would be responsible in
large part for the attractive tail of the A-NV force (K
meson exchange would also give a Yukawa tail of about

15W. C. Davidon, Argonne National Laboratory Report
ANL-5990 Rev. 1959 (unpublished).
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=0.

2.226 MeV (where indicated) and with s

2.526 MeV and with B

TasiE II. Results for Wg 46 with B

Bsr Bssr U,

(MeV)

Bs
(MeV)

vz

B2
(F1)

az b b2 a1 az
(F-1) F (FY (F)

ai

(MeV F3) (F-1)

(MeV) (MeV F3)

4
0.072
0.121

n

(F1) ¢ (F1)
1.874

(F-1

£
1.359

1.415

(F-1)

y

x

(F)
0.84s

7.39  410.67

—100.48

1.995
0.77

0.585 —0.747

1.201
1.174

0.445

0.447

0.721

0.108
0.107

2.550
2.424

0.737
0.717

2.271

0.372 1,120

1.881

1.468
1.634
0.603
0.627

0.168
0.178
0.049

50
100

346.80

14.43

—116.07

—1.163

0.521

1.946

0.941

2.093

1.129
1.129
1.130
1.129

0.361

1.737
2.116
1.972

621.05

2.226
2.16

2.213

0.380

0
100
200

1.484
(B=2.226)

2,11 590.82

—64.34
—70.44

0.032

—0.768

1.569 0.142 0.911 2.020 0.316 0.736 0.430
0.801 0.704
0.940

1.576
1.629

0.603 1.471
1.479

0.493

2.196

0.379
0.374

0.053

513.77

4.20
4.26

1.98
2.27

0.058

—1.205

0.470

0.297

2.028

0.145

2.203
2.021

1.845
1.521

0.664

0.868

0,057

—69.45 647.83

0.059

—0.608
—~1.129

2.000 0354 0.861 0.410

0.150
0.137

1.390
1.282

0.478

1.158
1.157
1.159
1.169
1.156

0.382

0.125
0.133
0.109
0.108
0.117

100

200

1.484s

1.65 —76.93 8.35 569.78

2.526
2.24

0.105

1985 0.368 0.889 0.414

1.620 1.014

0.368 1.996  0.445
2.007

1.380
1.356
1.370
1.238

0.951

909.89

0.385
0.378

0.648

0
200

2.07

848.30

3.91

—51.79

0.071

—0.634
—1.917

1.221  1.510 0.178 0980 2.000 0.286 0.990 0.395
1.158 0.990

0.519

2.000

0.650

689.37

—62.49 8.12

1.51

0.124

0.352 1.063  0.472

1.914

0.148

1.298

0.438

2.114

0.764 0.351

400

A. R.

a The results for A =0 are given in Table I.
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the same range!f). It may be hoped that the results for
the scattering length for a purely attractive interaction
are not too different from those obtained with a hard
core if both have the same intrinsic range 6=2.0 F. This
is true for 4~ 1.5 F but clearly needs confirmation for
a different value of 4. It should be noted that an inter-
action with a hard core of radius 7,=0.42 F and 6=1.5 F
(as used in previous studies of hypernuclei, e.g., Ref. 10)
corresponds to an attractive Yukawa part with a range
of only y'=0.23 F (i.e., corresponding to an exchanged
mass of 6.1m.).

We first discuss briefly some results obtained with
only ¥g. These are of interest in connection with the
question of the adequacy of various forms of trial func-
tions [all, of course, of the general product form (1)].
Table I shows results for B=2.526 MeV and for ue,
and ux for the 6-parameter function y5©® [Egs. (1)-
(1b)7], for the 4-parameter function ¢s® [Eq. (32)],
and for the 2-parameter function

Y@ =g arigarzg—birs (33)

which was used by Dalitz and Downs!” in their ex-
ploratory investigation of 4H3. The present results for
¥s® (and also those for ¥g 918 and W 3 with small
A, i.e., effectively with p=0) agree with those of Ref. 3
and the present results for ys® agree with those of
Ref. 16.

A comparison of the results for ¢ g® and ¢s® shows
that the (3-parameter) #-p function g(r) is very similar
for both. This is as expected in view of the relatively
small distortion of the deuteron by the A. Especially for
the shorter range ux™, the improvement in U, as a re-
sult of using Y s® instead of Y s® [i.e., as a result of the
greater flexibility of g()], is seen to be considerably less
than the improvement due to a corresponding greater
flexibility in the A-NV function f(r), i.e., corresponding
to the improvement in using ¥ s® instead of Y s®.

This clearly shows the importance of using a A-NV
function that has enough flexibility to take adequate
account of the strong short-range correlations as well
as of the long tail due to the small A separation energy.?
There seems less need for a flexible #-p function, pre-
sumably because of the longer range of the #-p inter-
action as well as of the larger separation energy of a
nucleon.

Complete results for calculations with the full wave
function ¥g,9@9 are shown in Table II for B=2.526
MeV (and for B=2.226 MeV for us, only) and for
U,=0, i.e., for a Serber potential for V,. These are the
results for the deepest local minimum found. The initial
guesses for the parameters of ¥ g were kept in the region
found for A=0. This is because these parameters are
not expected to change much as A is increased from
zero, in view of the fact that ¥g is expected to be the

16 B. W. Downs and R. J. N. Phillips, Nuovo Cimento 36, 120
(1965), discuss one-boson-exchange models for the A-N inter-
action.

17 R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 985 (1958).
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TasLE III. Results for Us [Eq. (34)] and p [Eq. (35)7].
B b U.(0) c d u v
(MeV) ¥) (MeV F3) (MeV1F-3) (MeV—2 F-6) (MeV-1 F-3) (MeV—2 F8)
2.526 0.84 423.85 1.004X 102 2.334X1075 1.676X 1073 —4.68X10°¢
1.484 678.88 3.482% 1073 3.775%X 1076 6.633X10™* —6.83X1077
2.07 909.89 1.701x 1073 8.075X 1077 3.98 X10 —2.19X1077
2.226 1.484 621.05 3.364X 1073 3.410X 1078 3.488X10 —2.93X1077

dominant component. Table IT shows that this is indeed
the case. Also, as expected, it is seen that the param-
eters of g(r) depend only slightly on u. Further, as
expected, U, varies quadratically with A and p varies
linearly with A for small A. Over the whole range of A
considered and for all cases, an almost perfect fit was
obtained with

Us=Us(0)—cA2HdA3
p=ulA+vA?.

(34)
(35)

(Results were also obtained for other values of A not
shown in Table II.) The results of these fits are shown
in Table III.

It is seen that, although the admixture of ¥
is rather small, the value of U, is quite appreci-
ably less than U,(0) for the values of A of interest,
especially so for us.. For a given A, the reduction is
proportionally larger the shorter the range. The rather
large energies E,= — B, result from the large kinetic
energies T's:/Ng of ¥g (typically of the order of 70
MeV). These are a consequence of the large curvature
of the #-p space correlation function which is implied by
the antisymmetry of ¥ with respect to the interchange
of the nucleon coordinates.

For ¥g,,9 a considerable number of nonequivalent
local minima were found corresponding to distinct re-
gions for 4 and the parameters of ¢ 5 (the initial guesses
for the parameters of ¥ s were always kept in the region
found for A=0 in view of the comments already made).
A number of these local minima are shown in Table IV
for per, B=2.256 MeV, and A=200 MeV F3 The
results of Table IV were in fact obtained with the
singlet s-state potential for U,. The topmost set of
results is for the deepest local minimum found and
corresponds to the local minima shown in Table II
(which are for V;=0). A comparison of the appropriate
entries in Tables IT and IV shows that the results de-
pend very little on U, and that even the use of a quite
strongly attractive U, (as in Table II) reduces the
value obtained for U, only slightly below that for V,=0.
This is because the spatial antisymmetry of ¥g with
respect to the nucleons keeps these apart and effectively
outside the range of their interaction. Thus, the con-
tribution to the expectation value of the potential
energy of ¥ due to U, (i-e., [ fdr ¢ s20Vs]/Ng) is only
about 2.5 MeV for the singlet s-state potential (and is
of course zero for the Serber potential). The correspond-
ing value for ¥g is about 20 MeV.

The results of Table IV for the distinct local minima
of W 919 are shown in order of increasing U,. It is seen
that the values of U, for the minima shown are only
slightly larger than for the deepest minimum (the
topmost) which was found. This result is presumably
due to the great flexibility of the function g which
has 9 parameters and which might therefore be ex-
pected to lead to a number of nonequivalent minima
with nearly the same value of Us. This is borne out by
the results for the two distinct minima of ¥g 3 shown
in Table IV. As remarked earlier, for ¥g,;3 the com-
ponent ¥g has effectively only 3 parameters whereas
Vs is the same as for ¥g 49, Nevertheless, the value of
U2(0)—U2(4) is only slightly less (by about 49, for
uer, A=200 MeV F3) than for ¥g @9, The additional
flexibility of yg for Wg,1® thus gives only a rather
slight improvement, although the functions F(r) and
G(r) [constrained to be the same as f(r) and g(7),
respectively, for ¥g 3¢9 ] are considerably different from
g(r) and f(r), respectively. It should also be noted that
the values of p are very similar for all the distinct local
minima, of ¥4, and ¥ 1 that are shown.

Table IV also shows, for interest, the results for
¥, 519 and ¥, 1(®. It is interesting to note that if the
results for Uz(A), even for ¥y (9| are normalized to the
value of Us(0) obtained with ¥g®, then the values
obtained for U, are quite close to those obtained with
W o019,

To obtain the values of U, and U, (and hence also
of U, and A), we use our results for Us(A) together
with the appropriate values of U and the relations
Us=3U+3U, and U=%(U,—A). From analysis of
AHe® (Refs. 7, 9), one has U=260=12.5 MeV F?® for
wer and U=197.5410 MeV F? for ug. These values are
also very close to those obtained from ,Be® (Ref. 8)
and AC® (Ref. 9). For y==0.977 T, analysis of ,He®
gave U=340+15 MeV F?. Then with By(4He?)=0.3
#+0.15 MeV one gets the results of Table V for U,=0.
(The results obtained with the singlet s-state potential
for U, are virtually identical with those of Tables V
and VI.) The results for p=0 (i.e., with only ¥g) are
also shown. The corresponding results for the low-energy
scattering parameters are shown in Table VI. The
scattering lengths, effective ranges, and well-depth
parameters are denoted by g, 7;, and s;, respectively,
for the singlet case and by ay, 7;, and s, for the triplet
case.

The effect of ¥y is seen to be largest and quite
appreciable for §=1.5 F. For =2 F the effect is some-
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1484 F and U,=951 MeV F3, »=1.428 F1,

2.526 MeV, A=200 MeV F3, b

TaBLE IV. Results for B

Bgss U2
(MeV) (MeV F3)

Bgr

Bs
(MeV)

Y1

B1 B2

a2
(F)

b1 b2

az

(F)

a1

(MeV)

b4

n

F  (F

¢

3 FH  FD
1.634
1.545
1.640
1.897
1.661
0.051

(F1) y (F-1)

(F1)

X

F

v

565.70

—74.32 8.37

1.61

0.109

0.1085
0.1107
0.1007
0.1077
0.1056
0.1079
0.1013
0.133

0.124

—1.141
—-1.070

0.409
—0.205

0.885

0.363
0.367

1.990

1.012

0.154
0.162
0.313

1.278

0.449
0.502

1.992
1.997
1.887
2.027

1.157

0.368
0.368
0.375

1.373
1.361

0.963

0.133
0.133
0.132
0.131

We,906)

565.90

8.336
8.132
9.037

—74.267

1.621

1.095
1.720

1.984

1.098

1.442
0.620

1.156

1.170

0.944
0.945

We,9(16)

566.09

—70.349

1.6185

1.276

1.078
0.989

0.567

—0.495

2.095

0.248
0.195
0.534

1.394
1.458
1.382
1.268
1.501
1.427

W, 9(16)

566.82

—86.415
—72.672
—80.624
—72.957

1.608
1.635
1.575

0.416

0.867 2.294

1.941
—0.645

0.505

0.189
0.312

0.717

1.158
1.1795
1.185
1.161
1.161
1.186
1.888

0.366
0.374

0.965

W,9(16)

567.60

8.185
8.893

—1.372

0.496
—0.483
—0.154

1.414

0.300

1.970
0.767

1.588
1.007

1.911

0.938

0.132
0.146
0.134
0.132
0.321

Wg.9(16)

568.07

—1.283

1.112
1.002

2.028 0.342
0.137

0.142
b1

1.209

1.869

0.376

1.089
1.076
0.953

W, (16)

575.47

8.234

8.856
10.77
11.32

1.628
1.633
1.08
1.11

—0.952

y

b2

ax az

2.010

0.365
0.366

\ps‘g(w)

570.28

—85.321
—77.85

b2 ¥ 0.812 1.938 1.056 0.861

0.966

b1

ai az

0.531

2.008

638.00

0.870

1.030
1.067

1.963

0.107

2.029

0.339

Wy ,500)

643.25

—88.11

0.698

ba ¥

b1

ax

2.026

0.336

0.326

YV1(®
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what smaller, while for $=0.84 F it is quite small.
There are in fact two competing effects; on the one
hand, A increases (for p=0) as the range increases
while, on the other hand, for a given A the value of
Us(0)— U, (A) decreases as the range increases.

Inclusion of ¥g reduces the singlet strength and
slightly increases the triplet strength. The effect is
larger on U, than on U, since U, enters much more
strongly into Us,. In particular, for us, the spin depend-
ence A is seen to be considerably reduced (by about a
third) below A(p=0). This will have a considerable
effect on the excitation energy of an excited state in
which the A spin is flipped with respect to the ground
state. Thus, for example, the binding energy of the
possible excited state (with J=1) of sHe? is increased
(for uar) from about 0.55 MeV (A=160 MeV F?) to
about 0.85 MeV (A=116 MeV F3).

It should also be remarked that when ¥ is included,
the value of U, is quite insensitive to the value of U
(since the value obtained for U, decreases as U in-
creases) and the error in U, is largely due to the un-
certainty in Bj(aHe?). Thus, for example, for us» and
Bx(,He?)=0.3 MeV one has U,=248 MeV F3 (U,=247
MeV F?) for U=272.5 MeV F?; and U,=346 MeV F?
(Uy=215 MeV F?) for U=247.5 MeV F3. The singlet
strength is thus almost entirely determined by B, (1 He?)
and a better experimental value for this would be very
valuable. It is also seen that the error in A (for a given b)
is considerably reduced if ¥ is included.

The value of p is seen to be rather small (=0.07 for
uzr). No detailed study has so far been made of the
possible effects of ¥g on the properties of pH3 in
particular on the lifetime. However, we may mention
that for the magnetic moment N of ,H? the cross term
(¥ 5, MY s), which is linear in p, is zero and the effect of
W is therefore very small, of order 2 (The term
linear in p would no longer be zero for finite momentum
transfers and would contribute to the magnetic form
factor—if this form factor could be measured.)

We now turn to a discussion of the A-NV total cross
section o at low energies (X20 MeV) where the s-wave
phase shift dominates. In the effective-range approxima-
tion,'® which we use, one has

o=}%0+40
T 3r
= + .
Bt[a—ink2 P B4[at—3r k2]

The experimental total cross sections oex, for A-p
scattering recently obtained by Zechi-Zorn ef al.’® are

(36)

18 For the scattering parameters of Ref. 10 (i.e., for an inter-
action with 4=1.5 F and with a hard core of radius 0.42 F) and
for c.m. energies 20 MeV, the values obtained for ¢ with the
use of Eq. (36) are within a few percent of the corresponding
exact values given in Ref. 10.

¥ B. Zechi-Zorn, R. A. Burnstein, T. B. Day, B. Kehoe, and
G. A. Snow, reported in an invited paper by R. A. Burnstein at
the American Physical Society meeting, Washington, D. C., April
1965 (unpublished), and (private communication). Earlier results
by these authors are given in Phys. Rev. Letters 13, 282 (1964),
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TaBLE V. Results for volume integrals with B (4H3) =0.34-0.15 MeV.
b U» Us U, U, A
(F) (MeV F?) (MeV F?) (MeV F3) (MeV F?3) (MeV F?)
0 424 ;5% 219 10 190 +16 29 27
0.84(uk) 197.5410
0.038_0.03510:025 419_;,+10 215.5+13 191.54+18 23.5_ 5,116
679_p4™16 379_,,+18 220 +23 159 +40
1.484 (u2x) 260 +12.5
0.06840.015 637 _p4110 348 _;, 120 231 +23 117 et
J 910_4*® 512.5_g+30 282.5+31 230 _got00
2.07(u1=0977 F) 340 =15
lO 065+0.012 859.5_371%0 474.5 5130 295 +31 179.5_49%37

a Values obtained from analysis of AHe5.

shown with errors bars and plotted against the c.m.
energy in Fig. 1.

We consider first the (purely attractive) Yukawa
interactions. The values of ¢ for the hypernuclear
results with 6=1.484 F (us.) are considerably less than
oexp- (In Fig. 1, curves A’ and A are for the central
values of the hypernuclear scattering parameters ob-
tained respectively with and without the use of ¥g:.)
If we consider a, and 7, to be more reliably determined
(for a given b) from hypernuclei (effectively from ,H?)
than a; and 7,, then to obtain reasonable agreement with
oexp, With due allowance for the errors in @, and 7,
requires —1.5 Sa $—1.2 F, 2.25 F<7:52.4 F (see,
for example, curve B), where the relation between a;
and 7, appropriate to a Yukawa interaction with
b=1.484 F has been used. For $=0.84 F (ux) it does
not seem possible to obtain a satisfactory fit to gesp at
both the lower and higher range of energies with any
reasonable values of the scattering parameters con-
sistent with the hypernuclear results (see, for example,
curve C) even if the triplet parameters are varied
outside the hypernuclear values. This indicates that
purely attractive interactions with S 1 F are ruled out.

b Errors are estimates.

For interactions with a hard core, we first consider
the results for 5=1.5 F (»,=0.42 F). Curves D’ and D
in Fig. 1 are for the central hypernuclear results ob-
tained with and without ¥4, respectively. (The results
for the former case have been estimated by use of the
results of Ref. 10 which are for ¥g only.) The values
of o are somewhat larger than for a Yukawa interaction
with $=1.5 F, but are still considerably below cexp.
Even for the maximum values of ¢ permitted by the
errors of the hypernuclear results, o is still below gexp
although the discrepancy is no longer too bal. If we
again suppose that a, and 7, are most reliably deter-
mined from the analyses of hypernuclei, then one finds
that the values —1.5 F<a:S—1.2 F, 2.557:53.0 are
required (see curves E and F in Fig. 1) for an acceptable
fit to oexp (the relation between a; and r; being appro-
priate to 6=1.5 F, ,=0.42 F). Thus for 5=1.5 F, both
with and without a hard core, only a rather moderate
increase in |a,| above the hypernuclear values is re-
quired to obtain agreement with ey, especially if it is
remembered that with ¥g the errors allow values
a;~—0.9 F and — 1.0 F, respectively, with and without
a hard core. [That only a moderate increase in |a,]| is

TaBLE VI. Results for the low-energy scattering parameters. The notation (H.c.) indicates that the results

are for an interaction with a hard core of radius ,=0.42 F.
Singlet parameters Triplet parameters
b —as 7s —a; T
(F) (F) (F) Ss (F) (6] St
084 only ¥g 1.44_ gt021 1.09_.0370%  0.68 +0.03 0.99_¢. 907028 1.21_9,¢77%  0.59 4-0.05
.8
with ¥ 1.365_0.257027  1.11_ 47005 0.67 +0.04 1.005_9.2:70%  1.20_0,0s1%%  0.60 =4-0.05
14 4 only ‘I’,s 245:}:041 1~93—0.06+0’09 O.675_0,o4+0'03 0.78_0,12+0'15 2.88_0.22+0'24 039 :E004
48
with g 1.934-0.31 2.05_¢.0st011  0.62 4-0.04 0.84_.1370-16 2.78_9.170%  0.41 +0.04
207 only ¥g 3.114+0.56 2.75_9.10%016  0.65_0, 0510 0.95_¢.177018 4.30_0.35M%  0.36 =+0.04
. with ¥ g 2.544-0.42 2.91_.1251917  0.60 +0.04 1.015 015701 425 42  0.38 4-0.04
15 (He) only ¥ga 2.89_g 4y 1059 1.944-0.08 0.865+0.017 0.714-0.06 3.7540.22 0.675+0.011
.S (Hec.
with ¥g. b 2.284-0.5 2.06+0.1 0.8 =+0.04 0.7740.15 3.624-0.3 0.7 =+0.04

a These are the values given in Ref. 10.

b Values estimated by use of the results of Ref. 10.
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Fi16. 1. Results for the A-IV total cross section ¢. The experimental values, marked with error bars, are those of Ref. 19.
The parameters used for the various curves are the following.
as 7s a 7t
Curve (F) (F) (F) (F) Interaction
A’ —1.93 2.05 —0.84 278 Yukawa, b=1.484 F, with ¥
A —2.45 1.93 —0.78 2.88 Yukawa, b=1.484 F, without ¥ s
B —1.93 2.05 —14 2.26 Yukawa, b=1.484 F and singlet parameters with ¥
C —1.365 1.1 —1.005 1.2 Yukawa, b=0.84 F, with ¥
D’ —2.28 2.06 —0.77 3.62 with hard core, b=1.5 F and with ¥ (estimated values)
D —2.89 1.94 —0.71 3.75 with hard core, b=1.5 F and without ¥ (central values of Ref. 10)
E —2.3 2.05 —1.2 3.0 with hard core, 5=1.5 F and singlet parameters with ¥
F —-23 2.05 —1.4 2.8 with hard core, 5=1.5 F and singlet parameters with ¥
G -3 3 -1 5.45 with hard core, 5=2.07 F and with ¥ 5, (estimated values)

necessary is a result of expression (36) being heavily
weighted in favor of the triplet contribution. ]

We discuss an interesting possibility which can give
an increase in the value of |a@; obtained from the
analysis of hypernuclei. This arises from a possible
difference, especially for the triplet case, between the
free A-N interaction and the effective interaction in
hypernuclei. Such a difference can arise from a modifica-
tion of the coupling of the AN with the ZN channel.
In the pion-potential model of de Swart and Iddings,®
which we use, there is, in particular, a strong coupling
for the triplet case due to the strong one-pion-exchange
tensor force. For the singlet case the coupling is quite
weak and relatively unimportant (see also Dalitz).*
With a hard core of radius 7,~0.4 F, the triplet interac-
tion is in fact effectively attractive only because of the
strong coupling. If, then, this coupling is appreciably
suppressed in hypernuclei, one may expect the effective
triplet interaction to become less attractive than the
free interaction, whereas the singlet interaction will not
be appreciably affected. This is in the required direction
since the free triplet interaction, relevant for o, will
then be larger than the effective interaction which is
the one obtained from analyses of hypernuclei.

One might expect such a suppression to be appreci-
able especially for pHe® since for this the (virtual)
process He*+A — He!+2 is forbidden because of iso-
spin conservation, and the coupling can occur only

2 J_ J. de Swart and C. K. Iddings, Phys. Rev. 128, 2810 (1962).
2t R, H. Dalitz, Phys. Letters 5, 53 (1963).

through He*+A — Z(T=1)42, ie., through T'=1
states of the 4 =4 nuclei. The relevant mean excitation
energy E* of these states relative to He* may reason-
ably be expected to be between 20 and 30 MeV. This
is an appreciable fraction of the =-A mass difference
(Ms—Mx=76.9 MeV) which (for a given AN,ZN
potential matrix) determines the importance of the
coupling between the AN and 2N channels. A proper
calculation of the effect would imply a variational
calculation for y,He® which includes +Z(T=1)—Z com-
ponents in the total wave function.

We have obtained an estimate for the effect in yHe®
by simply doing a coupled-channel calculation for the
free scattering case with the use of the potentials and
procedure of de Swart and Iddings but with an effective
> mass Ms+E* instead of with the actual mass M.
The suppression of the coupling will then be determined
by x= (M s+ E*—M,)/(Mz— M,). This has the values
1.26 <x < 1.39 for 20 MeV < E*<30 MeV. A hard core
of radius 7,=0.42 F was used. This with the meson-
theory potentials of Ref. 20 gives = 1.5 F for both the
singlet and triplet interactions.?? For x=1.3, 1.5, 2, and
3, one obtains the ‘“suppressed” scattering lengths
a;=—1.02, —0.91, —0.71, and —0.48 F for a free
scattering length (i.e., for x=1) of ¢,=—1.25 F; and
the values @,=—1.3, —1.15, —0.89, and —0.6 F for

2 The precise values used for the Z-Z-m coupling constant fss is
not important if it is small (] fzz| £0.15). For a given value of 7.
the value of the A-=-7 coupling constant fs, is effectively deter-
mined by the free scattering length a;.
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a,=—1.6 F. Even though, for plausible values of x, the
differences between ¢, and g, are not large (about 0.3 F),
it is nevertheless seen that the differences are of the
order of magnitude required to bring the hypernuclear
results into agreement with oep Wwithout excessive
straining. Thus a value of d,=—0.9 F is equivalent to
a,~—12 F, r,=2.8 F for the free interaction. This
would go some way towards reconciling the hyper-
nuclear results with oexp as is shown by curve E in
Fig. 1 (which is for the central values of @, and 7, ob-
tained with the use of ¥,/) and which gives a not un-
acceptable fit. (The values ¢;=—1.4 F, r,=2.8 F,
curve F, would lead to a reasonably good fit to gexp.) A
better calculation of the effect of the suppression of the
2N channel would clearly be of interest. The above
discussion, which rests on the assumption that the
hypernuclear analyses determine the singlet parameters
more reliably than the triplet ones would imply that
the spin dependence of the free A-N interaction is
considerably less than previously believed.

As has already been pointed out, for interactions
with a hard core and with quite plausible mechanisms
for the interaction, one can readily obtain intrinsic
ranges larger than 5=1.5 F. On the basis of the results
for a Yukawa interaction with $=2.07 F, one may
guess that reasonable values for an interaction with
b=2.07 F and with a hard core of radius 7,~0.4 F
might be ¢;=—3 F, 7,=3 F, a;=—1F, and »,~5.5 F.
Curve G in Fig. 1 shows o for these values. The agree-
ment with gex,, is no better than for 5=1.5F, 7,=0.42 F.
The failure to obtain any improvement for $=2.07 F
in spite of the larger values of |a,| and [a,| is due to
the large effective ranges. A more acceptable fit for
b=2.07 F with the same singlet parameters is obtained
for a;=—1.6 F, »,~ 3.95 F. It would again seem possible
to get a large part of such an increase in |a,;| from the
suppression of the 2N channel. Larger values of
|a;] (£4 F, which may well be considered permissible
in view of the uncertainties) do not significantly im-
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prove the fit t0 gexp. It would be desirable to have
analyses of hypernuclei for interactions with a hard
core and with larger values of & (about 2 F).

Our discussion of o does not enable one to choose
between interactions with and without a repulsive core
from a comparison of the hypernuclear results with
dexp- However, in this connection it is important to note
that 5=1.5 F is probably very much an upper limit for
purely attractive interactions on the basis of any plausible
mechanism for the A-V interaction. In fact, without a
hard core, either the uncorrelated two-pion mechanism
or a one-boson-exchange model with boson masses
2400 MeV (as seems likely), would give a value of &
considerably smaller ($1 F) than 1.5 F.2 If one adopts
this viewpoint, then our discussion shows that there is a
tentative indication for the existence of a repulsive
core in the A-V interaction.

Finally we emphasize the importance of even better
A-p scattering data and also of an improved determina-
tion of Ba(yH?). Further analyses of hypernuclear
binding energies would also seem very desirable. It
seems likely that the results of analyses of hypernuclei,
together with improved scattering data, could eventu-
ally lead to a much more detailed knowledge of the
A-N interaction.
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% In fact, S. Ali, A. R. Bodmer, and J. W. Murphy, Phys. Rev.
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range (1 1£0.4 F) of the attractive part from a comparison of the
calculated binding energy of the excited state of ,Be? with the
recently obtained experimental value [R. J. Piserchio, J. J. Lord,
and D. Fournet Davis, Bull. Am. Phys. Soc. 10, 115 (1965)].



