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The hypertriton qHe' is considered with the inclusion of an S' state +8' in the total wave function. For
+z' the nucleons are in a singlet spin state and the space part is correspondingly antisymmetric with respect
to exchange of the nucleons. Only a spin dependence of the A.-& interaction can give a nonzero admixture
of +g' to the dominant component +g, which is space-symmetric under exchange of the nucleons and which
is the only component that has been considered in previous investigations. Central, spin-dependent Yukawa
potentials were used. The most flexible trial function used was one with 16 parameters for which +q has the
same 6-parameter form as used by Downs and Dalitz and +z' has a corresponding flexibility. In particular,
for an intrinsic range h= 1.5 F (corresponding to a Yukawa interaction appropriate to two-pion exchange),
the eftect of +z' is quite appreciable; the singlet strength is reduced, the triplet strength slightly increased,
and the spin dependence reduced by about a third. For a range corresponding to E'-meson exchange
(h =0.84 F), the effect of +e' is considerably less. With inclusion of Ne' (for a given b), the singlet strength is
found to be quite insensitive to the value of the triplet strength and is therefore almost entirely determined
by Bs(&H'). The resulting total A-X cross sections at low energies (&20 MeV) are compared with the ex-
perimental values 0., p. If it is assumed that the singlet scattering length a, and effective range r, are most
reliably determined from hypernuclei, then for h = 1.5 F (for which the estimated values with a hard core of
radius 0.42 F are a.= —2.3 F, r, =3.6 F), acceptable agreement with 0; ~ can be obtained with only a modest
increase of ~o&~ (o&= —1.3 F, r&=2 9F) a.bove the value obtained from hypernuclei. (The maximum value
consistent with the hypernuclear results is a& =—0.9 F together with r&=3.3 F.) It is shown that an increase
of this order of magnitude could be obtained through suppression of the coupling with the ZE channel in
qHe'. Results are also given for a Yukawa potential with b =2.07 F, which is the intrinsic range for an inter-
action with a hard core of radius 0.42 F and an attractive Yukawa tail appropriate to an exchanged boson
with mass 3m~. Finally, it is argued that there is a tentative indication for the existence of a repulsive core
in the A.-g i.nteraction.

1. INTRODUCTION

'HE hypertriton zH' is the lightest hypernucleus
that is bound and is of basic importance for

knowledge about the A-X interaction. The lifetime of
qH' is also of considerable interest —in particular as a
test of the correctness of one's ideas about its structure
and of the use of the A-E-m decay amplitudes for calcu-
lations of hypernuclear decays. (In fact, the experi-
mental lifetime' seems to be significantly less than the
calculated one. ')

The basic analysis of zH' is that of Downs and
Dalitz' who considered charge-independent and central,
but spin-dependent, Vukawa interactions. The ground-
state wave function is then a pure s state with the
nucleons in a triplet spin state. Downs and Dalitz used
a Qexible 6-parameter trial function, the space part of
which has the product form

lf's(rt t »rs) = f(rt)f(rs)g(rs) (1)

where r~, r2, and r3 are triangular coordinates: r3 is the
neutron-proton separation and r~ and r2 are the A-

nucleon separations. The functions f(r) and g(r) are
each 3-parameter trial functions of the form

(1b)

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' See, for example, R. J. Prem and P. H. Steinberg, Phys. Rev.
136, B1803 (1964), where references to other work are also given.' R. H. Dalitz and G. Rajasekaran, Phys. Letters 1, 58 (1962).' B.W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).
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Here f(r) refers to the ft;E pairs and g(r) to the Ip-
pair. The function its is symmetric with respect to
interchange of the space coordinates of the neutron
and proton, i.e., with respect to r~+-+r~, ra+-+ra. The
total ground-state wave function +8 thus has the
isobaric spin T= 0 since the nucleons are in a triplet
spin state. The experimental value of the total binding
energy is B=B&+B&=2.52 +50.15 MeV, where
Bg——2.225 MeV is the deuteron binding energy and
8~——0.3~0.15 MeV is the A separation energy with
respect to the deuteron. 4 The energy 8 then uniquely
determines an effective volume integral U2 of the A-E
interaction for any assumed shape of this interaction.
In particular, if the singlet is more attractive than the
triplet A-E interaction as is known to be the case, ' then
the total spin of qHs isJ= s and one has Us ——s U,+-', Ut,
where U, and U~ are the singlet and triplet volume
integrals, respectively, of the A.-E interaction.

Subsequent investigations' of ~H' have been made
for A-Ã interactions with a hard core. These investiga-
tions have all used trial functions that are wholly

4R. Levi-Setti, Eroceedhngs ot the International Conference on
Hyperfragments, St. Cergle, Smtzerland, 1963, edited by W. O.
Lock (CERN, Geneva, 1964).' R. H. Dalitz and L. Liu, Phys. Rev. 116, 1312 (1959);M. M.
Block, R. Gessaroli, J. Kopelman, S. Ratti, M. Schneeberger,
L. Grimellini, T. Kukuchi, L. Lendinara, L. Monari, W. Becker,
and E. Harth, Proceedhngs of the International Conference on
HyPerfragments, St. Cergle, Switzerland, 1963, edited by W. O.
Lock (CERN, Geneva, 1964).' B.W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev. 129,
2730 (1963); D. R. Smith and B. W. Downs, ibid. 133, B461
(1964); R. C. Herndon, Y. C. Tang, and E. W. Schmid, Nuovo
Cimento 33, 259 (1964); K. Dietrich, H. J. Mang, and R. Folk,
Nucl. Phys. 50, 177 (1964).
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spatially symmetric with respect to interchange of the
nucleons and most of them have also used the product
form (1).

If, with purely attractive interactions the results for
U2 obtained from ~H' are combined with the values of
the spin-averaged volume integral U= 8 (U,+3U8)
which are obtained~ from ~He' and also' ' from ~Be'
and ~C", then for a given shape of the A.-E interaction
both U, and U& are determined. Thus, for Yukawa inter-
actions with a Yukawa range p2 '=0.7 F and a corre-
sponding intrinsic range 5= 1.484 F, appropriate to the
two-pion-exchange mechanism, one has U, =379 24+"

MeV F' and U~= 220 23+" MeV F'. For p2 there is thus
a strong spin dependence characterized by the volume
integral 6= U,—U&

——159~40 MeV F'. For a Yukawa
range /3/c

' ——0.4 F (b=0.84 F), appropriate to the
exchange of a E meson, one has U, = 219~10 MeV F'
and U, =190+17 MeV F', and the spin dependence is
much smaller, namely, 6=29+27 MeV F'.

'lA'ith hard-core interactions of the same intrinsic
range (b=1.5 F) as for /82 ', the scattering length and
effective ranges" turn out to be not very different from
those obtained with purely attractive interactions.

For the bound-state nuclear three-body problem (H'
or He') and spin-dependent central forces, it is well

known that in addition to the dominant, spatially
symmetric S state there is also some admixture of
another s state, the so-called S' state. " In this paper
we consider the effect of the analog of this state for
&H' which we denote by

Thus the total wave function of qH' which we con-
sider is

(1 p2)1/211r +p+s' (2)

where %z and %8 are individually normalized. For
J=-,' and T=O, appropriate to the ground state, the
nucleons will be in a singlet spin state for %8 and corre-

spondingly the space part of %z must then be anti-
symmetric with respect to the interchange of the
nucleons.

Thus for J=-,', T=O one has

+S QS(rl, r2 rs)~1/2

les(r2 rl r3) +ps(rl, r2 rs)

+S' QS'(rl r2 rs)xl/2

fs'(r2 rl, rs) $s'(rl r2 r3)

(3)

where X,ii2 and X~i2 are orthonormal spin functions
with S=~ and Sa=m. The functions X~i2 and Xii2
correspond to the nucleons in a singlet and triplet spin

R. H. Dalitz and B.W. Downs, Phys. Rev. 111,967 (1958);
A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 25 (1962).

' A. R. Bodmer and Shamsher Ali, Nucl. Phys. 56, 657 (1964).
' A. R. Bodmer and J. W. Murphy, Nucl. Phys. 64, 593 (1965).
"R.C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev.

137, 3294 (1965).
"ISee, for example, G. Derrick and J.M. Blatt, Nucl. Phys. 8,

310 (1958);J. M. Blatt and L. M. Delves, Phys. Rev. Letters 12,
544 (1964).

2. THE VARIATIONAL CALCULATION

For the variational calculation, to be described
below, we use unnormalized. functions ps(rl, rs, rs) and
|ps (rl, rs, rs). The total wave function which thus is also
unnormalized, is

pS(rl r2, rs)+1/2+AQS (rl, r2,r3) Xl/2.

The normalization integral is

&7[4j= dr 42. (7)

In Eq. (7) and below, dr = 82rrlrsrsdrldrsdrs denotes the
volume element appropriate to the triangular coordi-
nates rl, r2, rs The tri.angular inequalities rl+r2&~rs,
etc. , must be satisfied for the integrations. The spin
summations are implied in Eq. (7) and also in Eqs. (8)
and (9) below.

For an S state, the kinetic energy integral is most
conveniently used in the form"

8%' 2%' 84
T[@j= dr + E; —e —,(8)

8t'; Br,2 r;
"R. G. Sachs, 7t/Nclear Theory (Addison-Wesley Publishing

Company, Inc. , Reading, Massachusetts, 1953)."L.I. Schift, Phys. Rev. 133, B802 (1964).
'4B. W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev.

129$2730 (1963).

state, respectively. (Explicit expressions may be found
in Refs. 12 and. 13.) Thus Xl/2 is symmetric with
respect to interchange of the nucleon spins whereas
X&i2 is antisymmetric. The functions %z and %z are
the only independent S states since for J=—,

' there are
only two independent spin functions for three spin- —,

'
particles.

Similarly as for H' and He', one expects pWO only if
the interactions are spin-dependent. In fact, as will be
shown below, one has p&0 only if the A-X interaction
is spin-dependent. Since this spin dependence is indi-
cated to be large for b= 1.484 F, the amplitude p may
not be negligible and there may be an appreciable effect
on the strengths deduced for the A-3l interaction.

If the component 0'q is included in a variational
calculation for ~H', then the resulting value obtained
for the volume integral U2 will now depend on h. In
particular, to lowest order in 6 one expects p ~ A. Thus
if 6 is not too large one expects a relation of the form

U2(d, )= U2(0) —cd'. (~)

The volume integral U2(0) is the value for 6=0 or,
equivalently, the value that is obtained for p=O as is
the case for all previous investigations.

The central object of this paper is then to obtain the
relation between U2 and 6 appropriate to Ba(aH').
This relation, together with the value of U, will then
determine U, and U, . Only (purely attractive) Yukawa
A-E potentials are considered for the hypertriton
calculation.
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where K;= 4'/5K, are the inertial parameters in which

BR; is the reduced mass of the ith pair. Thus

and
Kl =K2= K= h2 (M/, +M//)/(4M/, M//)

Kl =K//= 6'/2M//.

with
V= V/, &+U/. +V.p. (9)

The values MN 9——38.9 Mev/c2 and M/, ——1115.4 MeV/c2
have been used.

The potential energy integral is

where V(r) = 4 V, (r)+~ Vl(r), U2(r) =
2 V.(r)+2 Vl(r)

and where V.(r) = U, (r) —V&(r) is the spin-dependent
part of the A Pin-teraction. [Equations (15a) and (15b)
are readily obtained with the use of the explicit ex-
pressions for gj~~ and gj~2 and the properties of the
Pauli spin operators. )

The interaction V2 is twice the effective A-A' inter-
action appropriate to %s (i.e., for the nucleons in a
triplet state); V is the spin-averaged interaction, which
is the eRective interaction appropriate to %s (i.e., for
the nucleons in a singlet state). The diagonal parts of
(15a) and (15b) are then the corresponding total
effective interactions for 4'z. and 0'&, respectively. Then
for the total wave function%' one obtains the expression

Here V2,~, Vq„, and V „are the relevant potentials.
These we take to be charge ind-ependent and central +~'Ws'[4's), (16)
but spin-dependent. Thus, the spin dependence is given

by'
V..=V..=V.- dr A'[2 V2(rl)

+2V2(r2)+«(r2)) ~ (17)

[&,4 )=- d &4 LU. ( )—U. ( )),
2

1—e&'e& 3++„o„
«()+ ~ (), (11) Ws [tPs )= dr

Pt, )—1/2

p = (&+A'
Xs&

(13)

Similarly for TP%) one has

2'f+) = ~sBs)+~'&s Bs ), (14)

where Ts(gs) and Ts Pfs.) are given by Eq. (8)—ag»n
without the spin summation.

The potential energy integral (9) for the function (6)
is obtained by noting that

Vxl/2 = [V(rl)+V (r2)+0 (r2))xl/2
—2[U.(r2) —U. (rl))xl/2 (15a)

and

VX1/2 [ V2 (r1)+—' V2 (r2)+ 0 2 (ra) )X1/2

——,[V.(r,)—V,(r,))X„,-, (15b)

where V, (r) and V, (r) are the singlet and triplet JtE-
potentials, respectively, and 'U, (r) and 'U&(r) are the
relevant singlet and. triplet 22-p potentials, respectively.
The coeScients of the singlet and triplet potentials in

Eqs. (10) and (11) are the singlet and triplet spin-

projection operators, respectively.
With the wave function (6), one gets for the nor-

malization integral (7)

&/+) =&s[4s)+~'&s [4s ), (12)

where Ps[Ps) and Xs gs ) are given by Eq. (7) but
without the spin summations. For the normalized wave
function (1), the amplitude p in Eq. (2) is then given by

&s= —P's+Ws)/Ns,
&s = —P's'+Ws )/&s (20)

The binding-energy contribution due to 8'8& is

j3ss = —Wss /(1VslVs )'/'.

The total binding energy is then

(21)

f3= (1 p')f3.+2p(1 p')'—/'~ss+p'f3, ,—(22)

where P is given by Eq. (13).
We take the shapes of the singlet and triplet inter-

actions to be the same. With purely attractive inter-
actions the Nor2/lalised A-X and 22-p potentials are then
denoted by uzi (r) and v„„(r), respectively. The volume

&&4 '[U'( )+U( )+V.(,)). (19)

From these expressions it is seen that an admixture
of %q and +s can arise only through 8 ss' T»s de-
pends only on the spin dependence of the A-/ inter-
action (i.e., on the volume integral 6 for purely attrac-
tive interactions). It is to be noted that since %s. is
spatially antisymmetric with respect to interchange of
the nucleons, the potential 'U, in Eq. (19) must be the
singlet potential appropriate to a spatially antisym-
metric state for the nucleons. The potential 'U& is of
course the triplet potential for a spatially symmetric
state, i.e., the triplet s-state potential.

For the binding energies appropriate to 0 ~ and 0 8.
individually, one has
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integrals of the singlet and triplet n pi-nteractions are
denoted by %L, and 8,&, respectively.

For a given binding energy 8, we then wish to obtain
the volume integral U2 as a function of h. The relevant
variational principle is then

(23)

where T$+$ and ELHI. jare given by Eqs. (12) and (14),
respectively, and where

Equation (23), together with Eqs. (24) and (25), is an
immediate consequence of the variational principle and
of the expressions previously given. The relation
U=4U3+4U3=9(U2 —6) has also been used. For any
given I-p interaction, given shape 2lbbl(y), and given
values of 8 and 6, the variational principle (23) then
gives an upper bound for U2.

The use of Yukawa shapes for the interactions leads
to

+2 ~ pr

&xxr =—
4m r

) &nyr =— (26)

The parameters taken for the triplet yb-p interaction U3

are the ones used by Downs and Dalitz. ' These are
consistent with the low-energy scattering data and the
binding energy of the deuteron. The inverse range is
3 = 1.428 F ' (corresponding to an intrinsic range
b= 2.4995 F) and 'LL3= 1403.4 MeV F'. For the singlet
potential 'U, we used both an ordinary potential (i.e.,
without spatial exchange) which corresponds to the
s-state interaction used by Downs and Dalitz, namely
p=1.428 F ' and %l,,=951 MeV F', and also, Inore
realistically, a Serber potential. For the latter, %L,=O
since 'U, =0 for a spatially antisymmetric state. In fact,
the results turn out to be quite insensitive to 'U, and
are almost the same for the two potentials 'U, considered.

The trial functions used for Ps are of the product
form (1) and those for fs. are of the form

O'S (yl y2, y3) =PF (yl)H (y2) —H (yl)F (y2) )G(yb) . (27)

This has the required symmetry. In terms of the
functions occurring in Eqs. (1) and (27) one readily
obtains, for example,

ass LA,483=3 dy f(yl)H(yl)f(y2P'(y2)

Xg(yb)G(yb)LV, (y2) —V, (yl)j. (28)

O'
t K= dy(P&hk8'+A2'Llirs')v„, (y,)

3A&p—sos pbbs (y2) —lib~(y&))

+A'~Ps 'Llbbj (yl)+lbb (y2))), (24)
1

m9$+) =— dr (li's'+A'Ps') $&bv (rl)+vbx(y2) j. (25)
2

The analogous expressions for the other quantities are
obtained equally readily and will not be given.

The most flexible trial function used has 16 param-
eters and is denoted by 469&"&, in which the left and
right subscripts refer to the numbers of parameters in
$8 and Ps, respectively. Thus, for if' we have used the
same 6-parameter function (1) to (ib) as was used by
Downs and Dalitz. ' As emphasized by them, the
3-parameter functions (1a) and (1b) are sufficiently
flexible to take adequate account, on the one hand, of
the long tail of the wave function for large interparticle
separations and, on the other hand, of the strong short-
range correlations implied by the strong and short-
ranged interactions —especially the quite short-range
A-E interaction. Section 3 presents some results that
are relevant in this connection. For the same reasons,
in Eq. (27) we have used the three-parameter functions

F(y) =e 2"+pe

G(y) = g &lr+f—q P2r-

H(y)=e»r+yle»r.

(29)

(30)

(31)

The function Ps is thus a 9-parameter function. In
addition to the 15 parameters entering through Ps and
ps. , the function %3 9&"& also contains the admixture
parameter A as a variational parameter.

Some calculations were also made for the related
10-parameter function 46 3("& which is obtained from
%3 9

&lb& by imposing the constraints P(y) —=f(y),
G(y) —=g(y). Since Ps will be the dominant component,
the values of the six parameters occurring in j(r) and
g(y) are variationally quite well determined, approxi-
mately independent of whether or not $8 is included in
the calculation. For F3,3&29& the component $8 thus
effectively depends only on the three parameters p&,
y2, and g which enter through the use of Eq. (31) for
H(y).

Exploratory calculations were made with the 6-
parameter function %4 &('~ which is characterized by
()=f()= "" G()=g(y)=~ ""+y~ '"

H(y) =e»" Li.e., by putting F= f, x= 0, G= g, and 21=0
in Eqs. (1a), (1b), and (29)—(31)j. In contrast to
46 9(") and 46 3&"), only 1-parameter functions are thus
used for the h.-lV correlations. In particular, $8 is the
4-parameter function

$8(y& y2 yb)
—lr

—alrle —alr2(g blr3+~y b2r3)— —
(32)

Finally, some calculations were also made for the
related 10-parameter function 4'45(:"& which is ob-
tained frOm 0'3 2&3& by letting F(y)=e air differ frOm

f(y) =e "" and letting G(y), now given by Eq. (30),
differ from g(y).

With Yukawa interactions and the above type of
trial functions (which are effectively sums of products
of exponentials), all the triangular integrations which
occur m.ay be done analytically and the results may all



H YP E RTR I TON W I TH S' STATE A. —N I N TE RA C T I ON 1391

TABLE l. Results for Pz( ), Pp( ), and Pp( ) with B=2.526 MeV.

b

(F)

1.484(y, s )
0.84(&&)
1.484(ps )
0.84(ps)
1.484(&,.)
0.84(~ )

0.132
0.165
0.337
0.593
0.383
0.635

(F-)
0.929
1.408

1.47
1.955

bl
(F-)

0,388
0.396
0.3665
0.357
0.65
0.71

b2

(F-)
1.170
1.164
1.190
1.256

2.007
2.022
2.015
2.027

U2

(MeV Fg)

678.88
423.85
745.83
483.13
781.5
492.75

be expressed in terms of the algebraic expressions

Iup(x, y,s) = exp (—*ri—yrs —«s) rsr Ar Ars«s

=4L( +y) ( +y+ )+ ( + ) (y+ )1

exp( xri yrs s—rs)rir—srsdr—sdrsdrs

=8Lx(x+y) (x+s)+y(y+s) (y+x)

+s(s+*)(y+s)+2(~+y) (y+s) (s+~)j
x l ( +y)'(y+ )'( +.)'$ '.

These have obvious symmetries in the simultaneous
interchange of x, y, s, and the corresponding indices.
The procedures are entirely analogous to those used by
Downs and Dalitz. ' The final algebraic expressions are
straightforward to obtain but are very lengthy,
especially for the functions 46, 9&"& and 0 6 3&"& and will

not be given.
The parts of the various expressions which depend

only on 4's (e.g. , &s, 2 s, Ws, etc.) are clearly identical
for 46 9&"& and 0'6 3&") while the parts depending only
on Ps are the same and differ only in that the param-
eters of F(r) and G(r) (i.e., n~, ns, $, P~, Ps, f) that enter
for %'s, s&"& are replaced by the parameters of f(r) and.

g(r) (i.e. , as, as, x, bs, bs, y) for %s s"'&. Of course, the
terms depending on both Ps and 4's (e.g. , ~ss ) have

a different structure for %6 9&") and %'6 3&").Most of the

algebra is thus the same for %6 9&"& and 4'6 3&"' and

comparatively little extra effort is required in using
%69&"& instead of +6,3&"). Completely analogous re-

marks apply to 44, 5&"& and 0'4, &&'&.

In addition to the interchanges a~+-+ a2 with x +-+ x—',
etc. , the value of C is also invariant under F(r) &-+ II(r)
with A ~ —A for 46,9&") and +4,5&"&. These sym-
metries may of course be taken together in any com-

bination, or in any number up to the maximum possible.
More-restrictive obvious combinations of these sym-
metries apply to the expressions depending only on Ps
or only on Ps . All these symmetries provide a useful

check both for the algebra and for the numerical
calculations.

It is clear that associated with any particular local
minimum of C there will thus be a whole class of equiva-

lent local minima. However, in particular for the very
flexible function 0'6 9&"', several nonequivalent local
minima are to be expected and were indeed found.

The quantity C L4$ was minimized numerically with
the aid of Davidon's metric-minimization procedure"
for obtaining local minima. For this, the derivatives
of 4 with respect to the variational parameters are
required. Although these derivatives may also be ob-
tained in closed algebraic form, it is much easier and
less subject to error to obtain the derivatives numeri-
cally from the difference of C for neighboring values of
the parameters. However, calculations using the
analytic expressions for the derivatives were also made
for%'4 ~&'& and%'4 5&"' and gave the same results as with
the use of the numerically obtained derivatives. The
minimization procedure finds that local minimum which
is "nearest, " in the parameter space, to the point
corresponding to the initial guesses of the parameters.
These are a required input. The minimization program
has a facility that permits imposition of linear con-
straints between the parameters. Thus, for example,
the results for 0'6 3&' & may be obtained from a calcu-
lation for %6 9"'& together with the appropriate
constraints.

The values of p, Bs, Bs, and Bss. were calculated
after the minimum was found. As a check, 8 was then
calculated by use of Eq. (22) to see if this agreed with
the input value of B.

3. RESULTS AND DISCUSSION

Calculations were made for Yukawa A-X interactions
with the range p '=ps ' ——0.7 F (b=1.484 F), for
p, '=px —' ——04 F (b=0.84 F), and for p '=0977 F
(b= 2.07 F). The last range was chosen so as to give the
same intrinsic range as an interaction with a hard core
of radius r,=042 F and an attractive Yukawa part
with a range p, '=@3 '=0.47 F corresponding to an
exchanged meson of mass 3m =419 MeV. Studies of
one-boson-exchange models of the E-X interaction
indicate a mass of about this value for the part of the
interaction that is due to a spin-isospin scalar boson
(0 meson). This interaction would be responsible in
large part for the attractive tail of the A-Ã force (E
meson exchange would also give a Yukawa tail of about

C. Davidon, Argonne National Laboratory Report
ANL-5990 Rev. 1959 (unpublished).
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the same range"). It may be hoped that the results for
the scattering length for a purely attractive interaction
are not too different from those obtained with a hard
core if both have the same intrinsic range b =2.0 F. This
is true for b=1.5 F but clearly needs confirmation for
a difterent value of b. It should be noted that an inter-
a,ction with a hard core of radius r, =0.42 F and b = 1.5 F
(as used in previous studies of hypernuclei, e.g. , Ref. 10)
corresponds to an attractive Yukawa part with a range
of only p '= 0.23 F (i.e., corresponding to an exchanged
mass of 6.1r&I„).

We first discuss brieQy some results obtained with
only 4 s. These are of interest in connection with the
question of the adequacy of various forms of trial func-
tions fall, of course, of the general product form (1)j.
Table I shows results for 8=2.526 MeV and for p~
and &Irr for the 6-parameter function &Ps~'& [Eqs. (1)—
(1b)), for the 4-parameter function its&4& [Eq. (32)],
and for the 2-parameter function

.I. (2)=g ~lily ~1~2' ~1~3yS (33)

which was used by Dalitz and Downs" in their ex-
ploratory investigation of gH'. The present results for
p &'& (and also those for 4'I I&"& and @ &"& with smaH

6, i.e. , eRectively with p= 0) agree with those of Ref. 3
and the present results for &Ps&'& agree with those of
Ref. 16.

A comparison of the results for Ps&I& and IPs&I& shows
that the (3-parameter) II-P function g(r) is very similar
for both. This is as expected in view of the relatively
small distortion of the deuteron by the A.. Especially for
the shorter range p~ ', the improvement in U2 as a re-
sult of using &Ps"' instead of &Ps"& [i.e., as a result of the
greater flexibility of g(r)$, is seen to be considerably less
than the improvement due to a corresponding greater
flexibility in the h.-lV function f(r), i.e. , corresponding
to the improvement in using IPB&'& instead of IPs&I&.

This clearly shows the importance of using a A.-Ã
function that has enough flexibility to take adequate
account of the strong short-range correlations as well
as of the long tail due to the small A separation energy. '
There seems less need for a flexible rl Pfunction-, pre-
sumably because of the longer range of the rI-p inter-
action as well as of the larger separa, tion energy of a
nucleon.

Complete results for calculations with the full wave
function 'k6 9~ ~ are shown in Table II for 8=2.526
MeV (and for 8=2.226 MeV for &tls only) and for
%,,=0, i.e., for a Serber potential for 'U, . These are the
results for the deepest local minimum found. The initial
guesses for the parameters of &Ps were kept in the region
found for 6=0. This is because these parameters are
not expected to change much as 6 is increased from
zero, in view of the fact that 0's is expected to be the

"B.W. Downs and R. J. N. Phillips, Nuovo Cimento 36, 120
(1965), discuss one-boson-exchange models for the h.-E inter-
action."R. H. Dalitz and B.W. Downs, Phys. Rev. 110, 985 (1958l.
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TA&&LE III. Results for Us $Eq. (34)g and p LEq. (35)g.

1393

'I3

(MeV)

2.526

2.226

b

(F)

0.84
1.484
2.07
1.484

Ug (0)
(MeV F')

423.85
678.88
909.89
621.05

C

(MeV ' F ')

1.004X10 '
3-482X10 3

1.701X10 '
3.364X10 '

(MeV 'F ')

2.334X10-5
3.775X10 6

8.075X10 '
3.410X10 '

(MeV ' F ')

1.676X 10-3
6.633X10 4

3.98 X10 4

3.488X10 4

(MeV ' F ')
—4.68X10 '
—6.83X10 7

—2.19X10 7

—2.93X10 7

dominant component. Table II shows that this is indeed
the case. Also, as expected, it is seen that the param-
eters of g(r) depend only slightly on &i. Further, as
expected, Us varies quadratically with 6 and p varies
linearly with 6 for small A. Over the whole range of 6
considered and for all cases, an almost perfect 6t was
obtained with

Us ——Us(0) cLV+ddP—,

p uk=+ r&dP (35)

(Results were also obtained for other values of d, not
shown in Table II.) The results of these fits are shown
in Table III.

It is seen that, although the admixture of 0'~
is rather small, the value of U~ is quite appreci-
ably less than Us(0) for the values of 6 of interest,
especially so for p2 . For a given 6, the reduction is
proportionally larger the shorter the range. The rather
large energies E, = —8,. result from the large kinetic
energies Ts/Ns. of +8 (typically of the order of 70
MeV). These are a consequence of the large curvature
of the ri-p space correlation function which is implied by
the antisymmetry of +z with respect to the interchange
of the nucleon coordinates.

For 46 9('" a considerable number of nonequivalent
local minima were found corresponding to distinct re-
gions for A and the parameters of &ps (the initial guesses
for the parameters of lt 8 were always kept in the region
found. for 6=0 in view of the comments already made).
A number of these local minima are shown in Table IV
for p,2, 8=2.256 MeV, and 6=200 MeV F'. The
results of Table IV were in fact obtained with the
singlet s-state potential for 'U, . The topmost set of
results is for the deepest local minimum found and
corresponds to the local minima shown in Table II
(which are for U, =O). A comparison of the appropriate
entries in Tables II and IV shows that the results de-

pend very little on 'U, and that even the use of a quite
strongly attractive 'U, (as in Table II) reduces the
value obtained for U2 only slightly below that for 'U, =O.

This is because the spatial antisymmetry of %z with
respect to the nucleons keeps these apart and effectively
outside the range of their interaction. Thus, the con-
tribution to the expectation value of the potential
energy of 4'8 due to 'U, (i.e., L fdr &Pa''U, )/Ns. ) is only
about 2.5 MeV for the singlet s-state potential (and is
of course zero for the Serber potential). The correspond-
ing value for 0 q is about 20 MeV.

The results of Table IV for the distinct local minima
of 0'6 9("~ are shown in order of increasing U2. It is seen
that the values of U2 for the minima shown are only
slightly larger than for the deepest minimum (the
topmost) which was found. This result is presumably
due to the great flexibility of the function $8 which
has 9 parameters and which might therefore be ex-
pected to lead to a number of nonequivalent minima
with nearly the same value of U2. This is borne out by
the results for the two distinct minima of 0 6 3&"~ shown
in Table IV. As remarked earlier, for %6,3&' ' the com-
ponent &ps. has effectively only 3 parameters whereas

l(s is the same as for %s,s&"&. Nevertheless, the value of
U2(0) —Us(h) is only slightly less (by about O'Po for
ps &= 200 MeV F') than for 4s s &"&

~ The additional

flexibility of Ps for %s s&is& thus gives only a rather
slight improvement, although the functions F(r) and
G(r) )constrained to be the same as f(r) and. g(r),
respectively, for @s s &"&$ are considerably different from

g(r) and f(r), respectively. It should also be noted that
the values of p are very similar for all the distinct local
minima of 0'6, 9&"& and %6,9&"~ that are shown.

Table IV also shows, for interest, the results for
% 4 5(' & and 44 g&'). It is interesting to note that if the
results for Us(h), even for @4 i&'&, are normalized to the
value of Us(0) obtained with ps&'&, then the values
obtained for U2 are quite close to those obtained with

(16)

To obtain the values of U, and U, (and. hence also
of Us and 6), we use our results for Us(h) together
with the appropriate values of U and the relations
Us ——sU, +-', U& and U= —', (Us —6). From analysis of
qHe' (Refs. 7, 9), one has U=260&12.5 MeV F' for
ps~ and U= 197.5&10 MeV F' for p&r. These values are
also very close to those obtained from &iBe' (Ref. 8)
and &iC" (Ref. 9). For p '=0.977 F, analysis of ~He'
gave U=340&15 MeV F'. Then with Bq(&iHes) 0.3
~0.15 MeV one gets the results of Table V for 'U, =O.
(The results obtained with the singlet s-state potential
for 'U, are virtually identical with those of Tables V
and VI.) The results for p=0 (i.e., with only %s) are
also shown. The corresponding results for the low-energy
scattering parameters are shown in Table VI. The
scattering lengths, effective ranges, and well-depth
parameters are denoted by a„r„and s„respectively,
for the singlet case and by u&, r&, and st, for the triplet
case.

The effect of 4'8. is seen to be largest and quite
appreciable for b= 1.5 F. For b= 2 F the effect is some-
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what smaller, while for b=0.84 F it is quite small.
There are in fact two competing effects; on the one
hand, 6 increases (for p=O) as the range increases
while, on the other hand, for a given 6 the value of
U2(0) —U2(h) decreases as the range increases.

Inclusion of 0'q. reduces the singlet strength and
slightly increases the triplet strength. The effect is
larger on U, than on Ut since U, enters much more
strongly into U2. In particular, for p2 the spin depend-
ence 6 is seen to be considerably reduced (by about a
third) below A(p=O). This will have a considerable
effect on the excitation energy of an excited state in
which the A spin is apped with respect to the ground
state. Thus, for example, the binding energy of the
possible excited state (with J= 1) of qHe is increased
(for p2 ) from about 0.55 MeV (6=160 MeV F') to
about 0.85 MeV (5= 116 MeV F').

It should also be remarked that when 0'q is included,
the value of U, is quite insensitive to the value of U
(since the value obtained for U2 decreases as U in-
creases) and the error in U, is largely due to the un-
certainty in Bz(&He'). Thus, for example, for 122 and
Bit(qHes) =0.3 MeV one has U, = 248 Me V F' (U,= 247
MeV F') for U= 272.5 MeV F'; and U, =346 MeV F'
(U, =215 MeV F') for U=247. 5 MeV F'. The singlet
strength is thus almost entirely determined by Bz(&Hes)
and a better experimental value for this would be very
valuable. It is also seen that the error in 6 (for a given b)
is considerably reduced if 0'z is included.

The value of p is seen to be rather small (=0.07 for
tu2 ). No detailed study has so far been made of the
possible effects of +q on the properties of ~H', in
particular on the lifetime. However, we may mention
that for the magnetic moment I of 2HI the cross term

(Vs,gt@s ), which is linear in p, is zero and the effect of
%s. is therefore very small, of order p'. (The term
linear in p would. no longer be zero for finite momentum
transfers and would contribute to the magnetic form
factor—if this form factor could be measured. )

We now turn to a discussion of the A-E total cross
section a at low energies (&20 MeV) where the s-wave
phase shift dominates. In the effective-range approxima-
tion, ' which we use, one has

1 l 30 = 4&8m4&t
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$2+[o —1 tr $2]2 $2+[Ii —1 &l $2]2

The experimental total cross sections Ir,„n for A.-P
scattering recently obtained by Zechi-Zorn et al." are

"For the scattering parameters of Ref. 10 (i.e., for an inter-
action with b=1.5 F and with a hard core of radius 0.42 F) and
for c.m. energies &20 MeV, the values obtained for o- with the
use of Eq. (36) are within a few percent of the corresponding
exact values given in Ref. 10."B.Zechi-Zorn, R. A. Burnstein, T. B. Day, B. Kehoe, and
G. A. Snow, reported in an invited paper by R. A. Burnstein at
the American Physical Society meeting, Washington, D. C., April
1965 (unpublished), and (private communication). Earlier results
by these authors are given in Phys. Rev. Letters 13, 282 (1964).
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TAnrz V. Results for volume integrals with Bi(sH') =0.3+0.15 MeV.

b

(F)

1484(v )

2.07(p '=0.977 F)

Ua

(Mev F)

197.5+10

260 +12.5

340 ~15

P 038 M 025

0.068+0.015

IO

l 0.065+0.012

U2

(MeV F')

424 7 5+6

419 +10

679 24+16

637 24+"

910 4p+80

859.5 87+'p

U,
(MeV F')

219 ~10

215.5a 13

379,4+18

348 24+"

512.5 87+8p

474.5 85+'p

U]
(MeV F8)

190 ~16

191.5a18

220 ~23

231 +23

282.5~31

295 +31

(MeV F')

29 ~27

23 5 +16

159 +40

117 2p+1

23p zp+60

179.5 4g+'7

a Values obtained from analysis of gHe&. b Errors are estimates.

shown with errors bars and plotted against the c.m.
energy in Fig. 1.

We consider first the (purely attractive) Yukawa
interactions. The values of 0- for the hypernuclear
results with b 1.4=84 F (ps ) are considerably less than
o; ~. (In Fig. 1, curves A' and A are for the central
values of the hypernuclear scattering parameters ob-
tained respectively with and without the use of +s..)
If we consider a, and r, to be more reliably determined
(for a given b) from hypernuclei (effectively from i,H')
than a& and r~, then to obtain reasonable agreement with
0 p with due allowance for the errors in a, and r„
requires —1.5 &a & —1.2 F, 2.25 F&ri&2.4 F (see,
for example, curve 3), where the relation between a~
and r& appropriate to a Yuk.awa interaction with
&=1.484 F has been used. For b=p 84 F (px). it does
not seem possible to obtain a satisfactory fit to 0-, ~ at
both the lower and higher range of energies with any
reasonable values of the scattering parameters con-
sistent with the hypernuclear results (see, for example,
curve C) even if the triplet parameters are varied
outside the hypernuclear values. This indicates that
purely attractive interactions with b& 1 F are ruled out.

For interactions with a hard core, we 6rst consider
the results for b= 1.5 F (r,= P.42 F). Curves D' and D
in Fig. 1 are for the central hypernuclear results ob-
tained with and without 4'8, respectively. (The results
for the former case have been estimated by use of the
results of Ref. 10 which are for Ns only. ) The values
of o- are somewhat larger than for a Yukawa interaction
with b=1.5 F, but are still considerably below 0; ~.
Even for the maximum values of 0- permitted by the
errors of the hypernuclear results, 0- is still below 0-, ~
although the discrepancy is no longer too bal. If we
again suppose that a, and r, are most reliably deter-
mined from the analyses of hypernuclei, then one finds
that the values —1.5 F&a~& —1.2 F, 2.5&r~&3.0 are
required (see curves E and F in Fig. 1) for an acceptable
fit to o.,„u (the relation between a, and ri being appro-
priate to 6= 1.5 F, r, =0.42 F). Thus for fi= 1.5 F, both
with and without a hard core, only a rather moderate
increase in ~a, t

above the hypernuclear values is re-
quired to obtain agreement with 0; ~, especially if it is
remembered that with %q the errors allow values
a&= —0.9 F and —1.0 F, respectively, with and without
a hard core. I That only a moderate increase in

~
a, (

is

TABLE VI. Results for the low-energy scattering parameters. The notation (H.c.) indicates that the results
are for an interaction with a hard core of radius r,=0.42 F.

(F)

Singlet parameters

(F) ss

Triplet parameters
—Cg fg

(F) (F) Sg

0.84

1.484

2.07

1.5 (H.c.)

only ep

with +g

only 4's

with +g

only +s

with +g

only +z

with+g b

1 44 +0.21 1.09 p p8 0.68 &0.03

2.45~0.41

1.93+0.31

3.11~0.56

2.54~0.42

2-89—o 41~ &g

2.28~0.5

1 93-o.o6~' ' 0 675—o.o4~' 8

2.05 p p8+P' 0.62 ~0.04

2.75—010+0 16 0.65 p p&+' "
2.91 p. 12&~' 0.60 ~0.04

1.94~0.08

2.06&0.1

0.865&0.017

0.8 ~0.04

1.365 p. 22
' 1.11 p p4

' 5 0.67 +0.04

0.71&0.06

0.77&0.15

3.75~0.22 0.675~0.011

3.62~0.3 0.7 ~0.04

0 99-0 20~' 8 1.21 p pz~ 08 0 59 ~0.05

1 005-o. ~' 1 20-o.oz+ ' 0 60 ~005

0.78 o 12 '5 2.88 o.22~' 039 +004

0.84 p 18 ' 2.78 p 21
' p.41 ~0.04

P.95 o.17+» 4.3P o.85+'8o P.36 ~0.04

015 p.1&~» 4.25 o.4o+o» P.38 ~0.04

a These are the values given in Ref. 10. b Values estimated by use of the results of Ref. 10.
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a&= —1.6 F. Even though, for plausible values of x, the
differences between a, and a, are not large (about 0.3 F),
it is nevertheless seen that the diRerences are of the
order of magnitude required to bring the hypernuclear
results into agreement with 0-, ~ without excessive
straining. Thus a value of e~= —0.9 F is equivalent to
a~= —1.2 F, r~=2.8 F for the free interaction. This
would go some way towards reconciling the hyper-
nuclear results with 0,„~ as is shown by curve E in
Fig. 1 (which is for the central values of a, and r, ob-
tained with the use of 4;.) and which gives a not un-
acceptable fit. (The values ai ———1.4 F, r,=2.8 F,
curve F, would lead to a reasonably good fit to o.,„n.) A
better calculation of the eBect of the suppression of the
ZS channel would clearly be of interest. The above
discussion, which rests on the assumption that the
hypernuclear analyses determine the singlet parameters
more reliably than the triplet ones would imply that
the spin dependence of the free A-E interaction is
considerably less than previously believed.

As has already been pointed out, for interactions
with a hard core and with quite plausible mechanisms
for the interaction, one can readily obtain intrinsic
ranges larger than b= 1.5 F. On the basis of the results
for a Yukawa interaction with b=2.07 F, one may
guess that reasonable values for an interaction with
b=2.07 F and with a hard core of radius r, =0.4 F
might be c,= —3 F, r, =3 F, a~= —1 F, and r~=5.5 F.
Curve G in Fig. 1 shows cr for these values. The agree-
ment with 0-, ~ is no better than for b = 1.5 F, r,=0.42 F.
The failure to obtain any improvement for b=2.07 F
in spite of the larger values of (a, (

and. (ai~ is due to
the large effective ranges. A more acceptable ht for
b=2 07 F with t.he same singlet parameters is obtained.
for a&= —1.6 F, r&=3.95 F. It would again seem possible
to get a large part of such an increase in

~
ai( from the

suppression of the ZÃ channel. Larger values of

~
a,

~
(&4 F, which may well be considered permissible

in view of the uncertainties) do not significantly im-

prove the fit to 0, , It would be desirable to have
analyses of hypernuclei for interactions with a hard
core and with larger values of b (about 2 F).

Our discussion of 0- does not enable one to choose
between interactions with and without a repulsive core
from a comparison of the hypernuclear results with
cT,„~.However, in this connection it is important to note
that b= 1.5 F is probably very much an upper limit for
Purely affracfi ne interactions on the basis of any plausible
mechanism for the A.-X interaction. In fact, without a
hard core, either the uncorrelated two-pion mechanism
or a one-boson-exchange model with boson masses
&400 MeV (as seems likely), would, give a value of b

considerably smaller (& 1 F) than 1.5 F."If one adopts
this viewpoint, then our discussion shows that there is a
tentative indication for the existence of a repulsive
core in the A-X interaction.

Finally we emphasize the importance of even better
A.-p scattering data and also of an improved determina-
tion of B&(&Hs). Further analyses of hypernuclear
binding energies would also seem very desirable. It
seems likely that the results of analyses of hypernuclei,
together with improved scattering data, could eventu-
ally lead to a much more detailed knowledge of the
A-g interaction.
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