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direct calculation of the unstable case in the sense that arbitrary functions turn up which can be determined
only by calculating the stable case solution and analytically continuing in the mass of the unstable particle. The
main interest in the direct calculation thus remains in the demonstrated coupling of the stable and unstable
particle channels.
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A numerical investigation is made on some model calculations based on a suggestion of Blankenbecler.
The models satisfy threshold conditions, elastic unitarity, and nearest crossed-channel singularities exactly.
The internal parameters are chosen so as to minimize crossing dissatisfaction. No physically sensible result
emerges.

I. INTRODUCTION

'HIS paper is a report on an attempt to eliminate
certain unsatisfactory properties of a model

calculation first suggested by Blankenbecler' and later
modified by Brehm. ' The essential philosophy here is
the same as in I. It consists of setting up a model which,
a priori, satisfies certain general requirements for a
scattering amplitude (such as threshold behavior and
elastic unitarity) and then varying the free parameters
present in the model in order to satisfy crossing sym-
metry as well as possible. The central differences
between this calculation and the preceding ones are
that the complete crossing relations are used, that the
nearest crossed-channel singularities are given correctly,
and that the model is purely elastic.

Section II is a description of the general model form
chosen. Section III contains a discussion of crossing
symmetry and the criteria for its satisfaction. Section
IV contains the specific models and the results of the
calculations based upon them. And Sec. V is an overall
discussion of the calculation.
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Constant multiplicative factors in the phase-space
function have been absorbed in 3l, and the sum is over
even or odd j as the isospin T is even or odd. What now
remains to be determined is the exact form of »(s).
We shall choose for large j the form

»(s) =f(s)g(j;)9(s)3', (~)

where g(j,s) is a rational function of j. As before, this
choice will lead to the correct branch point in t.

The value of s(s) t and hence of t(s)j for which the
sum diverges and the manner in which it diverges
depend only on the large j form of E;, since as j
becomes infinite D; goes to one. For E; of the form
(5), we can do the sum using the generating function
of the Legendre polynomials, and the curve of singu-
larity is given by

II. GENERAL FORM OF THE MODEL
or

0= 1+h(s)'—2sh(s) (6)

We take the usual Mandelstam variables for the
pion-pion problem, ' and begin as in I by writing a
partial-wave sum in N/D form for the scattering
amplitude:

t(s) = (1—h') (s—4)/4h. (&)

If we want a Mandelstam-type cut-plane analyticity,
then t(s) = to is independent of s. This requires

where

~(s,t) =Z(2j+1)J';(s)»(s)/D ( ), (1)
h(s) =

t (s—4+1 )'"—(to)'"3/E(s —4+t )'"+(t )'"j (g)

This can be rewritten in the more faIniliar Khuri4 form

s = 1+2t/(s —4), (2)
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h=e—
&,

cosh)=1 12 to/( s 4). —
For the particular case at hand to=4 and

h (s) = (s't' —2)/(s't'+2) .
4 N. N. Khuri, Phys. Rev. 130, 429 (1963).

(10)
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M&(s, t) = p (2j+1)p,(s)$, (s)
j=o

(12)

=L2f(s)(4 ()"'/(s—'t'+2). (13)

The simplest choice for f(s) which gives the Born term
the correct analyticity and is a1so complicated enough
not to be totally unreasonable is

f()=—l('"+2)~(1/(+ )—~/(+ )) (14)

where A, E, si, and s2 are undetermined constants
vrhich are, in general, different for each isospin channel.

Ke have considered so far only the large j behavior
of A;(s); it is consistent with all the preceding com-
ments to choose any finite number of partial waves to
have any form desired, so long as the threshold behavior
is kept correct. It is also possible, as in I, to introduce
inelastic states and do a multichannel analysis, or to
make special requirements between the parameters in
order, for example, to insure the existence of a
Pomeranchukon or the vanishing of a ghost residue.

Independent of the values of the parameters, any
model of the type described above will, after appropriate
symmetrization, have the correct threshold behavior in
s, will have the nearest singularities in t and m correctly
represented, and will satisfy elastic unitarity. There
remains now the question of crossing symmetry.

III. CROSSING SYMMETRY

The well-known pion-pion crossing relations are

M'(t, s) -', 1 -,'Mo(s, t)
M'(t, s) = -,'—,' —-' Mi(s t), (15)

i

M'(t, s) —', ——,
'

—,
' M'(s, t),

where the superscript refers to the isospin. If vre define

Ar(s, t) =Mr(s, t) Mr(t, s), —(16)

we may replace (15) by the equivalent set

;6'(s,t) = Lv (—s,—t)=6'(s, t)
= —,'t 5M'(s, t)+3M'(s, t) —2M'(s, t)j. (17)

Note that the form (8) gives the correct threshold
behavior in s for any value of to, and also introduces a
left-hand s cut into Ã. It is possible to extend the
preceding discussion, as in I, to give the higher singu-
larities as well, and in particular to give the Mandelstam
spectral boundary.

It is the function g(j,s) which governs the type of
singularity at to. In particular, if we want a singularity
like (to—t)"2, we must choose

g(j ~) =L2j(h' —1)—(h'+3) j/
(2j+3)(2j+1)(2j—1) . (11)

In I, the choice g(j,s) =1 was made, which resulted in
a (to—t) +' singularity.

In order to see what to choose for f(s), let us look
at the Born term for the choices (10) and (11):

In the earlier papers" only the first two of these equali-
ties were used. When the complete equations (17) are
used, one is faced vrith the necessity of varying all the
parameters simultaneously, which makes the minimi-
zation much more difficult.

Our models will, of course, never satisfy (17) exa,ctly,
so we must decide upon a criterion of dissatisfaction.
In order to do so, let us consider each quantity ap-
pearing in (17) as the coordinates of a vector in a
Euclidean four-space. Then if (17) is satisfied exactly,
the vector vrould lie on the ray passing through the
origin and the point (1,1,1,1). In order to have a
criterion independent of the actual magnitude of the
vector, we choose the square of the sine of the angle
between it and the ray as our function. Our procedure
will be to evaluate this function for a series of values
of s and t, and then to minimize the average with
respect to the free parameters. Other functions are
possible, but they lack the essential simplicity and

symmetry between the elements of (17) of this function;
and in fact the others tried did not vrork as well in the
minimization procedure.

Where can we evaluate the crossing functions We
would prefer to work in the physical s and t regions.
Unfortunately, although our amplitude (1) is known
for all values of s, it can be continued in t to t)4 only
with great difficulty, and the convergence for s(0 is
very slow. The symmetrization in t and u will also
require 1&4, and thus the region where the amplitude
can be evaluated relatively easily is the nonphysical
region 0&s, t&4. Note that because of our choice of
the correct singularity strength at t=4, we are actually
able to go right up to the boundary, as opposed to the
procedure in I.

There is, of course, no guarantee that our approxi-
mate satisfaction of crossing in the unphysical region
means that physical-region crossing is satisfied and
that the physical results obtained from this procedure
(such as phase shifts) will be accurate. However, the
true amplitude must have a partial-wave expansion in
the unphysical region with the general properties of the
model, and it must satisfy crossing there. We view the
minimization as forcing the model into its best approxi-
mation of the true amplitude, and hope that the ap-
proximation will still be good in that section of the
physical region nearest the unphysical region; i.e., at
low energies. This hope is not unreasonable if the
nearest singularities (which separate the regions) are
given correctly, as they are; and if we actually can get
a small and sharp minimum of the crossing function,
vrhich will depend on the specific models considered.

IV. SPECIFIC MODELS AND RESULTS

For all the models under consideration, we must have
some way of doing the integrals involved in D;. One
reason for the pole approximation of (14) is that the
integrals can be represented explicitly as hypergeo-
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metric functions, and these can easily be continued into
the physical region to compute quantities of interest.
The relevant integral is

s—4 " dx(x''+2) ~x 4~—'~' x'~' —2 &'

I(7,s) = (1g)
8 4 (x—s)(x—4) k x 1 x'"+2

= Q(1+y)/(2 j+1)(y+1/2)]

where
+»(1, 1, j+-:,—y)&, (»)

y= —,'(s'"—2).

For s&4, the real part of I is given by

(20)

Re(I) = Ly/(y+~)]{L(1+y)/(2 j—1)]
XIi(1, 2

—j, —' —j, y/(1+y))Ly/(2 j+1)]
XF(1, —',+j, -,'+j, y/(1+y))) . (21)

For esthetic reasons, for reasons of credibility, and
for reasons of machine capability our guiding principle
is to use the simplest model possible. Thus, for all the
models we shall keep the pole positions the same in all
three isospin channels and vary only the coupling
constants A~ and R~ independently. I.et us consider
the models in order of increasing complexity.

A. Single-Pole Model

This corresponds to the choice R~=O. If we keep
the choice (11) for all j, we have

D, (s) =1-
m (s+sy)

I(j+2, —0,)—I(j+2, s)

2j+3
I(7' —s,)—I(J,s)

(22)
2j—1

The difhculty with this model becomes apparent if
we ask for the width of a T= j=1 resonance at s=29,
as a function of the pole position. For s~(220, no
resonance at s=29 is possible. At s~=220, the width is
2.3&(10' MeV, many orders of magnitude too large.
As we increase s&, the width gradually decreases, but
never comes within several orders of magnitude of the
experimental value, even for s~=10.

If in spite of this fact we use this model with the
incomplete crossing relations used in I, we discover that
there is an excellent fit for small values of the coupling
constants along the line —pA A A

p
and nowhere

else. In particular, for s~=4000 and A~=10 we get a
value of the crossing function 30 times better than that
in I. C~ne can view this result as indicating that a correct
treatment of the singularities is of great assistance in
satisfying the crossing relations, and that the use of the
full crossing relations is necessary to obtain something
physically sensible.

When we try to satisfy the complete crossing relations
with this model, we 6nd that there is no acceptable
minimum. This is in accord with our expectation that
one needs at least a short-range attractive pole and a
long-range repulsive pole in order to get a decent
resonance.

sin8= L5(f—0.15)]'", (23)

where f is the value of the crossing function. We are
looking for a minimum of the order of f=0.2.

During the fjrst part of the calculation, the poles were
chosen at s~——100 and s~=40, and a minimization was
done on the other six parameters. It was found that in
general f had a rather large value —between 0.5 and
0.9. However, there were several broad, deep minima
near zero coupling. For example, f=0.15g (8=6') at

A'= —91.3, R'= 0.414,
A'= 57.3, R'=0.348, (24)

A'= 150, R'= 0.402.

' See the comments at the end of I.

B. Two-Pole Model

Once we are forced into the form (14) for f, the
simplest form to take for g is again (11)for all j, making
no special treatment of the low partial waves. Besides
simplicity, this choice has the advantage of explicit
continuability in j, which in this case leads to both the
possibility of computing Regge trajectories explicitly,
and the possibility of doing a Sommerfeld-Watson
transformation to show the existence of a Mandelstam
representation for the amplitude. The unpleasant
feature of this model can be phrased in a number of
ways: (1) Although the amplitude itself has no pole
at j=-', , both 1V and D do. (2) The Regge trajectories
must go to infinity near j=-', . (3) The j=0 phase shifts
will almost surely have a different sign from the higher
partial waves. This type of result was also found in I,
and although it is perhaps not totally impossible, it
certainly is in disagreement with most of the current
thinking on the subject. 5

With two poles it is possible to obtain an exact p
meson for most values of the pole positions. For s~= 100
and s2 ——40, the corresponding values are A'=387 and
R'= 0.533. We shall use these numbers as a guide to the
orders of magnitude for physically reasonable values
when we look for a minimum of the crossing function.

The function itself deserves slightly more comment at
this point. For randomly distributed points in four-
space, its value is 0.75. For points where s=t, three of
the four quantities in (17) are exactly zero, so its value
at these points is also 0.75. Thus, for our grid of the
twenty-fj. ve points s, 1=0, 1, 2, 3, 4 the function cannot
be less than 0.15. The average angle for points not on
the symmetry line s= t is given by
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It was also found that away from this small-coupling
region there was only one deep minimum, which was
also very sharp. It occurred at

A'= —206.8, R'= 0.4437,
A'= 327.2, R' =0 3755

22.12, R'= 1.426,

(25)

Ao= —511.9,
804.5,

A'= 0.857,

R'= 07447

0.7152,
R'= 33.73.

(26)

All the values had the j=0 and j=1 ghosts previously
mentioned.

At the same time, another solution appeared, which
seemed to be the extension of the previous srnall-

scattering solutions, although we were unable to obtain
it from them. It was characterized by a sine about 3
of the above values, by a large A', and by a moderate
A'. It also had an actual minimum in s~ and s2. The
minimum was again somewhat broad, so the localization
of the pole positions was not very satisfactory, but it
centered about the point s~=109.8 and s2 ——78.7. At
these pole positions (and within &5 of them) f= 0.1617

at which point f=0.1911.A 10% change in any of the
T=O or 7=1 parameters put f up to 0.4 or more. We
identify this minimum as the "physical solution" on
the basis of the depth and sharpness of the minimum;
and on the fact that since the p exists, we must have A'
large enough to give a resonance. For these particular
values, both the T=j=0 and T=j= 1 partial waves
have zeros of the D functions below threshold: the
former at s= —12.1, the latter at s= —23.6. Since a
variation of the pole positions was yet to come, the
presence of these ghosts was not exceptionally alarming.

The preceding was based on a series of minimizations
starting from points on a grid in parameter space. We
also attempted to follow an analog of the procedure
in I:We started from the exact values of the p, mini-
mized on the other parameters, and then freed the
isospin-one parameters. This procedure proved fruitless.

We next varied the pole positions and followed the
physical solution as it moved under the minimization
of the parameters. The change in f as si and s2 varied
was very small, but there was a definite tendency for
s2 to increase. Unfortunately, as we moved in the s&-s2

plane the valley we were following became very broad
and Rat, so the pole localization was very poor: values
of s2 differing by &15 gave essentially the same f. At
the same time, A' and A' increased more or less pro-
portionally to s2, so they could not be determined to
better than +75 for 2' and &150 for A' (although for
any given values of s& and s2, A' and A' were determined
to about 2%). A typical set of values is s =i11 70,

s2=80.41, f=0 1770, and.

Ao= —522.9,
350.0,
5.907,

0 0 7358

R' =0.7769,
R'=3 795

(27)

The T=j=0 has a ghost at s= —29.5, but the
T= j=1 D-function does not vanish; its minimum is
about 0.60 at s= 50. There is almost no T=2 scattering.
This solution is unsatisfactory for two reasons —the
ghost in T=O and the lack of a resonance in T= 1. One
might hope that curing the former would help the latter.

C. Ghost-Elimination Model

As mentioned previously, we can constrain A and R
to make the g function vanish at the position of a
ghost. If the ghost is at s= —s„ then

R'(s ) = (s2—s,)/(si —s,)
and 2'(s, ) is determined by the equation

Do(—s,)=0.

(28)

Unfortunately, this model has nothing corresponding
to the physical solution of the previous model; for
si ——100 and s2 ——40 all values of f exceed 0.4. This can
be understood in terms of the sharpness of the minimum
of the model B in the parameters A and R'. The curve
2'(s, ) versus R'(s, ) just does not come close enough
to the physicalsolution points to drop into the
minimum.

Thus, we must try some other way to ameliorate the
original model. The most obvious thing to do is to
modify the low partial waves.

D. Modi6ed 8-Wave Model

If we are willing to give up the good behavior in j
by changing the s wave, we can eliminate the awkward
sign change discussed in Sec. IIIB. This can be done,
for example, by adding to g(j,s) a term of the form
Ct sin(j)/jj. In order to keep the number of new
parameters at a minimum, we introduce the form

g(o ~) = V'/3) —Q (30)

with g(j,s) as before for j/0. Q= —1 is the previous
model, and now we hope to have Q 1, in order to get
a reasonable relation between the s- and d-wave phase
shifts.

If we start from the solution (25) and let Q vary
(keeping the poles fixed), we end up with a ininimum
at Q= —1.644, f=0 1774, and.

A'= —128.8,
A'= 308.1,

2.310,

R'= 0.4377,
8' =0.3831,
R'= 6.327.

(31)

However, we are interested in Q 1, and it turns out
that the way to get to this region is to continue Q
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through infinity. There is, in fact, a local minimum at
Q=0.9249, f=0.2053, and

A =302.9, E'= 0.4245,
A'=327.9, R'=0.4403)
A'= —7.869, E'= 5.059.

(32)

0=382.0, E'= 0.6)53
A'= 643.4, E'= 0.6828,
A'= —3.169, R'= 10.66.

(33)

Again, T=j=0 had a zero at s= —1.33, and T=j=1
had a zero at s=5.99 with a width" of —0.060.

IV. DISCUSSION

The objection to all the above models is obvious:
they give extremely nonphysical results, when they
give results at all. The encouraging feature is that it
is possible to And a minimum in the coupling constants
which is sharp, deep, and strong, and which can thus
be identi6ed as the "physical solution. "

The T=j=0 again has a zero at s= —1.026. The
T=j=1 D-function has a zero at s=5.772, but the
Ã function is negative there, so the "width" has the
wrong sign. It is, however, small: —0.065.

When the pole positions are varied, the same sorts of
phenomena as observed in Sec. IIIB occur. The function
decreases only slightly as s& and s& vary; s& and the
coupling constants tend to increase; and the minimum
is very broad with consequent poor pole localization.
In fact, no true minimum was ever found. There was,
however, a very local minimum at s&

——105.2 and
s~ ——69.45 for which f=0 1953.a,nd Q=1.368. The other
parameters were

Two features seem to be generally true. First, the
T=2 state seems to have very little scattering, while
the T=O and T=i states show strong scattering.
Second, the variation of the pole positions seems to
have little efIect on the value of the crossing function,
or on the general nature of the physical solution. This
might be partially expected on the basis that for large
values of sj and s~, the essential dependence of the E
function is on the ratios A/sr and AE/sq and not on the
individual parameters.

There are three types of modiication which could be
used to improve the calculation. First, one could modify
the low partial waves more drastically. This has the
double disadvantage that not only will one probably
have to introduce even more parameters, but also if
one changes the s dependence of the g functions, one
has to make explicit guesses with little u priori infor-
mation. Second, one could introduce inelastic states
and do a multichannel 1V/D calculation. Again, this
introduces more parameters, and it is not clear that
the presence of inelastic state is not reasonably well
represented by simply having two (or more) poles in K
Third, one could go away from the pole approximation
altogether, and introduce some other function such as a
Q, , as Brehm' has done. One feels, however, that a small
number of poles should be a reasonably good approxi-
mation for most such functions.

In sum, although the general technique seems to
hold promise, it is difficult to envision exactly what
must be done to make it deliver.
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