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Lee Model with an Unstable V-Type Particle*f
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(Received 30 August 1965)

The solution is given to a modi6ed Lee model in which there is a resonance having the quantum numbers
of the usual V particle. It is demonstrated that all channels having the same quantum numbers are coupled
by the integral equations; in particular, "unphysical" amplitudes involving unstable external particles are
coupled to the physical amplitudes through solutions to homogeneous integral equations of the Omnes-
Muskhelishvili type.

I. INTRODUCTION

'HE purpose of this paper is to present and discuss
the solution of a simple model in which an un-

stable baryon is present. We consider the Lee model, '
modified by adding to the usual V, E, and 0 particles
an unstable particle, E*,having the quantum numbers
of a V particle; this 1V* corresponds roughly to the (3,3)
resonance in pion-nucleon scattering. From this case,
one may readily generalize to the solution in the
presence of several unstable baryons.

Such a model is of some interest for at least two
reasons. One is that its solution may be used to test
and illuminate various predictions and approximations
made in less tractable models which, however, purport
to be more closely descriptive of the real world. Thus
the present model, being one in which both elastic
scattering amplitudes and production amplitudes may
be calculated exactly, proves to be a useful model for
studying such things as the predictions of the isobar
model of the higher resonances in pion-nucleon scatter-
ing, ' and for investigating the validity of the resonance
approximation used by various authors to simplify
three-particle states. '

A second interest is in the actual solution of the
equations of the model themselves. It is with this
aspect that the present paper is concerned. The solu-
tion is obtained in two ways: one, by calculating the
solution in the presence of a stable S* and then ana-
lytically continuing in the mass of the S*to an unstable
value; the other, by calculating directly with S* un-
stable. It is interesting that there are apparently major
differences in the dispersion relation calculations be-
tween the stable case and unstable case as a result of the
fact that in the latter case, states containing E*do not,
of course, appear in complete sets of states. The solu-
tions, however, are closely similar. The way this comes
about is that when 31* is stable amplitudes involving
it occur explicitly in inhomogeneous terms of the

Omnes-Muskhelishvili integral equations, 4' whereas
when E* is unstable these amplitudes turn up in pre-
viously inadmissible solutions to the homogeneous in-
tegral equations. Thus, stable and unstable particles
in this model appear on very much the same footing;
the integral equations couple not only the "physical"
channels containing stable particles but also the un-
stable particle channels.

In the following, Sec. II recalls some of the properties
of the Lee model and indicates precisely the modifica-
tions. In Sec. III, the solution is given for the lA and
Ve sectors when E* is stable. Since the Lee model has
been much discussed in the literature, many calcula-
tional details have been omitted; most of these details
may be found in the references, particularly Refs. 6
and 7. Section IV describes in some detail the analytic
continuation in the mass of the S* of the Vo elastic
amplitude; and Sec. V considers the nature of the
equations and solutions when we attempt to calculate
the VO elastic amplitude directly with E*unstable.

G. THE MODEL

The Lee model customarily describes a world con-
taining three types of particles: two heavy, spinless
ferrnions, E and V, and one light spinless boson, the 8.
There are no antiparticles; further, E and V are static
while 0 is treated relativistically. The basic interaction
is of the form V Xe. The present modilcation in-
volves the addition of a particle E* identical to V
except in mass; we have thus the additional basic
interaction E~~E0.

The model may be dered more precisely by specify-
ing the following currents:

(2~)'ts(2sr)sts tr d
I

—s—+~ la. (t) =i(t),
u(&o) k Ct J
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(0I~=o, (3c)

~h~re as(t), fiv(t), P*(t), g v (t) are the Heisenberg field
operators (the last two being renormalized) for the 0,
E, E~, and V particles. The static baryons have energies
equal to their masses while for the 0 we have
re = (k'+Ms')'i'. u(co) is a form factor chosen to remove
ghosts and to make all integrals converge. The C~ are
related to renormalization constants; they do not appear
in any physical scattering amplitude. The properties
(3) are satisfied, for example, by the usual Lee model
trilinear interaction described by the Hamiltonian:

H =Zvgv*gvMv+Z*g**f+M++frr $v Mrr

1
+ d ~ its &iei+Igv4'v +g~4'* 7

(2s )'"

with the properties:

Lj~~ts 7=I:ji~rs7={

jest'~)

=0' j=—j(0) «c

I fg, as*7=Cg|tivu(~e)/(2ei)'"(2s)'", (3b)

Re I- p

(cd�)

Fn. 1. Energy de-
pendence of the real
part of the function
1—P(~).

r'= lim (6* ~e)Tivs(~).

In the following, it is occasionally more convenient
to exhibit the pole at 6* explicitly. We de6ne a new
function which has neither poles nor zeros:

1-i( ) =l1-t8(-)7(-—o)~*/( —~*)- (9)

and write

T~s(~) = —LG'/~+&/(~ —~*)7/L1—P(~)7 (1o)d tt!u(ei)Qglgrr
+H.c.

(2~)'"

8=G'(LP —e~e)/tee.

where 8, determined by the condition that Tire(&vs) =0,
+z~,*p,m, +z.y.*p.8M. , (4)

where Zy, Z* are renormalization constants; g~, g* are
renormalized coupling constants; My, 6M* are mass
renormalization counterterms; Mz, M* are physical
masses.

III. SOLUTION FOR STABLE N*

NO sector. The solution for the SO sector has been
given elsewhere' and we simply quote the result. The
1V8 elastic scattering amplitude, Tiv&(e~), defined by

(Xe,"-~lXo,'-) = 8(u 1')—
+27rih(ar —cd')Lus(a)) Tive(te)/(2ei) (2w)s7 (5)

has the form
T~s(~) = —G'/~/I:(1 —P(~))7

Further, note that the E*EO coupling may be written

r =1~/L1 —P(a*)7. (12)

UO sector. For the solution to the UO sector, let us
first de6ne the following amplitudes:

T(te) = (V I ~ I
Vgs'") (2')'~'( 2)a'"/ (u~), (13a)

M(co) =(A*l gl vgs' )(2ir)'"(2ei)'"/u(cv), (13b)

E(~)= (0I fv I
Eep'") (27r)'t'(2ei)'i'/u(ei) (13c)

I.(te) = (0Ife
I
1Vt)p'") (2s)'"(2a~)'"/u((o), (13d)

~(, )=ye, , '-ljlv8. -)(2 )
)& (2~2ei')'t'/u(e~)u(co') . (13e)

where

1—~( )=1+
(2')s

Then, following Amado, 6 we contract the U and E~

p) from the left in T and M, respectively, and obtain the
coupled equations:

(For convenience, we have chosen Mv ——Miv and
Ms=1.)

The amplitude has a pole at co=0 with residue —t"'
and a branch point at co= I as in the usual I,ee model.
In addition, 1—P(ar) has a pole at co=cue and a zero at
tv=a* as in Fig. 1. Consequently, Tztt(e~) has a pole
at co=A* whose position and residue may be adjusted
by varying the (positive) parameters Ae and &vs. This
pole we interpret to represent the E* particle so that
6*=M*—M~ and the 2K*A 0 coupling constant is

s P. K. Srivastava, Phys. Rev. 128, 2906 (1962).

«lf. l~*)M(-)
T(~)=

(2ir)'

(ol f.l v)T( )

(2s.)'

dsk'us (ei')E(ei') F ((e',te)
(14)
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(23r)'

dsk'E (o~') Tiv4* (cd' )us (co')
(«)

240 (ce oi —ze)

and a siinilar one for L(~). These are standard Omnes-

In the above, the numbers (0 I fi I
N*) and (0 I f4 I V) do

not turn up in any physical scattering amplitudes so
they are not considered further. Thus a knowledge of
E, L, and F determines the physical scattering ampli-
tudes T and M.

The vertex functions E(cu), L(cu) satisfy the follow-
ing integral equations, obtained from Eqs. (13c), (13d)
by contracting the 8 particles:

~(01f.l~*)
E(cs) =Cv+ —Q)

Muskhelishvili equations whose solutions are4 ~

G+ &0 I fv I
&*)I'~[1—P (~*))/~*(~*—~)

E(o~) = (»)
L1—p(~)j

8/I'+(Ol f.
l
V)G(co—6*)/a&d*

I.(ce) =
I:1—p(~))

(18)

Note that, as will be discussed more fully later, these
are solutions to the inhomogeneous equations; when N*
is stable, there is no admissible solution to the homo-
geneous equations.

Finally, F(d,oi) which is closely related to the pro-
duction amplitude for the process t/0 —+N00 satisfies
the following equation:

2' (23r)3G5 (k—k') 1 1
F (o4',oi) = —GT (a&) —

I

—I'M (co)[1/ (co'—6*)—1/ (c4'+6 ' —co —is))
u'(a&) R c0 —ce—ze/

(2~)3

d'k, u'(coi) T~g (co,)F (coi,ce)
[1/(cei ce'+is)—+1/(cei co+co' —ic)]. —(19)

This equation and its solution, which follows, are obtained in a straightforward way by the methods of Ref. 6:
2ceG (23r) 3 43rGco Im[1—P (a&))F (co',co) = 5 ()'3—k')+

u'(ce) u' (co) (cps —1)'"c0' (co' —ce —ie) [1—P* (co'))[1—P (co—co')]

GcoT(cd) [1—P(co)) riff ( ) ( —2a*)[1—P(a*))[1—P( —a*))
+ +- . . . , , . (20)

~'(~' —~—ie)L1—P*(~')j[1—P(~—~')) (~'+~*—~) (~'—~*)[1—P*(~')j[1—P(~—~'))

The homogeneous equation for F (cv', c4) has a solution of the form' "
P(co ~cd)

Fs(ce',ce) =
L1—P ( ')j[1—P( —'))( '—1).( —' —1). (21)

where P is a polynomial in co and I=0 or 1. [For 33) 1, the integral of Eq. (19) diverges at the lower limit. ]P and
m may be determined only by the boundary conditions at the two singular points, cu'= 1 and co'= ~. If we require
F to be finite at a&'=1, we must have n=0 Then, in ord. er for the integral equations (14), (15), (19) to be well
defined, F(cd', ce) „, „'1/cd" so we have P=O.

Combining the results (17), (18), (20) with Eqs. (14), (15), we see that we have a pair of coupled algebraic equa-
tions for T(oi), M(a&) which may be solved for these two amplitudes. Expressed in terms of four integrals which
must be evaluated numerically, the amplitude of main interest T(co) may be written

T(ce) =X/D,
where

iV =Gs/[cv(1 —P (ce)))+[G'/c0+8/(co —LP))coIi+ (co—2lP) [1—P (ce—6*))[1—P (5*))

BI3/(co —6*)—G3I4/cs
+ [G'/ +~/( /*)j(I& I I.), (22a)— —

1—P(~)

D = 1—co[1—P(co))Ii+ (co—2A*)[1—P (co—5*))[1—P (6*))(co[1—P (cd)) (IiI4—I3I3) I4) . (22b)
' Note that F(co',c4) —t 2c4(23)3G5(k —k')/N3(cd)g, as given by Ecl. (19), is symmetrical under the interchange c4' —+ c4 —c4' so that the

solution must exhibit this same symmetry.' The criterion for an acceptable solution to the homogeneous equation, apart from the crossing requirement of footnote (9), is
that it consist of the product 1/( L1—p*(cd')gD —p(cd —c4')) J, which has the correct cuts, and a function which is analytic everywhere in
the ~' plane with the possible exception of poles at the singular points co —j., 1, ~.
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The integrals are given by

G2 d'k'u'(4e')

2e4" (e4' c—e i—e) i
1—P (e4')

i
'[1—P (4e—40')]

(23a)

I2 ——

(2~)'

Q2

(2n.)'

I4=
(24r)'

d'k'u'(ei')

(~ —&*)(~—~—ie) ~1—P(~) ~2[1—P(~—~)]
d'k'u'(40')

2(4"(e&' —6*)(4e' —4e+ LP—ie)
~
1—P (e4')

~
2[1—P (4e—4e')]

d'k'u'(4e')

2~'(e~' —a*)'(~'—~pa*—ie) )
1—P (~')

)
'[1—P (~—~')]

(23b)

(23c)

(23d)

FIG. 2. Singulari-
ties of the Ve scatter-
ing amplitude, T(~)

The expected analytic properties of T(ei), Fig. 2, are easily verified by the above. In particular, there is a pole
at cd =0 with residue G' [but no pole at &e =6*, since I2(h*) =Is(LV)]. The function 1—P (4e) and the integrals Ii, Ig

contribute to the branch point at co=1 which is the
cv plane threshold for elastic scattering while the function

1—P(ce—A4) and the integrals I4, I4 contribute to the
branch point at &v=1+6*, the threshold for the re-
action VO —+2V 0. Finally, each of the integrals has a"0

l f4g p branch point at co=2, the threshold for the process
VO —&iVOO. The singularity occurs when the branch
pOint Of 1—P(a&—a&') at 4e'=4e —1 mOVeS up tO the end
point of the integration contour at cv'=1.

IV. ANALYTIC CONTINUATION

To obtain the V8 elastic scattering amplitude in the presence of an unstable S*,we analytically continue T(ce)
in the mass parameter, 6*. Increasing the real parameter /I0, for example, " will move the zero in 1—J3(u) at
LV along the real axis to threshold at &v= 1 [where it will coalesce with a zero of 1—P(&u) on the second sheet].
Further increase in Ao will then cause one zero to move down onto the second sheet where it will produce a reso-
nance in the iVO scattering. Correspondingly, in the VO amplitude, the ~V 0 threshold will move up to the ZOO

threshold and thence down into an unphysical sheet.
In carrying out this continuation, it is convenient to use Eq. (9) to replace 1—P(&u) in the integrals by 1—P(4e)

since the latter remains a real analytic function when S* goes unstable. XVhen this is done, all the functions in

Eq. (22) retain their same form with the exception of the integral, I4. It may be written

der u
(24)

The singularities of the integrand and the contour Ci are indicated in Fig. 3(a).
The main point of interest is that this integrand, unlike the other three, has a pole at ~ =6*. Consequently,

when 6* moves past threshold onto the second sheet it drags the contour with it [Fig. 3(b)]. The continued

cu' plane

C,

(a) (b)

G. 3. Distortion of the contour of the integral I4 that results from the motion of the pole in the integrant onto the second sheet.

"In Fig. 1, note that
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I4 thus consists of two terms, corresponding to the two contours of Pig. 3 (c). One, I4, has the form of the original
I4 with, however, the pole at co =6*on the second sheet; the other is simply the residue resulting from integrating
around the pole. Thus we write

where
I4~I4 =I4'+»4,

» =(L1-~( -~*))(1-0"(~*)j(--»*)&-'.

1—P"(6*) is the continuation in 6* of 1—P(h*); it is not calculated since it cancels from the amplitude. Re-
turning to Eq. (22), we see that the first two terms of both E and D are exactly cancelled by the new»4 terms;
further, both E and D contain the factor (co—2h*)$1—P(&u —A*)]$1—Pri(LP) j which may therefore be cancelled
throughout. Finally, a few algebraic manipulations result in the cancellation of all explicit 6 s, so that we obtain
the following form for T(&o):

T((u) =E'/D',
where

The integrals are given by

G Mp((dIz Iz)—
Ã'= +G (M (dp)coo (I6I6 IzIS) y

~(~—»)L1—P(~)j
D' =Iz G tmo (—cg a& 0)$1 —P((a)j(—IzI6 IzIS) . —

d'O'N'(a ')

(26a)

(26b)

(27a)

l6=
(2zr)'

J7=
(2zr)'

J8=
(2zr)'

d'O'N'((u')

2'" (s&' —cv —ze) (2—coo)'(co—a&' —coo) i
1—P(&a') i'L1 —P (&u

—o&'))
d'k'N'((u')

2' (6& —Mp) (G)—(d —ciao) (
1—P(M ) ( L1—P(co—cv )g

d'k'N'(o&')

2i0" (a&' co ze)—(a&'——co,)'(~—~' —~o)
I
1—P (~')

I
'Ll —P (~—~0')j

(27b)

(27c)

(27d)

In this form, T(co) is manifestly a real analytic function in the plane cut from 1 to ~ except for the pole at co =0.
There is also the production threshold at co=2 arising from pinches in the integrands as before when Ã* was
stable. Finally, one may readily check that the former VO —+ X*0 threshold lies below the physical region on the
sheet reached by passing through the production threshold.

V. DIRECT CALCULATION

It is interesting to try to calculate directly the amplitude for Vo elastic scattering in the presence of an unstable
E* without going through the stable case calculation and analytically continuing in the S* mass as we have
done. Note that since N* is unstable,

~
V) and

~
IVY) or

~
Ve) and

~
)Vive) now constitute complete sets of states in

their respective sectors; therefore amplitudes involving i7* explicitly no longer appear in the equations and we
might expect solutions to these equations to have different forms from those previously obtained.

The equations of main interest are those for E (&u) and F(co,&o) since, when these two functions are known, we

may calculate the Ve elastic amplitude from

T(co) =
(2~)'

d'k'N'(co')E((o' )F(o&',a)

2Q)
(28)

Lwhich corresponds to Eq. (14)j.
Consider F(~,ca) first. It satisfies an equation identical to (19) except that the inhomogeneous term containing

M (~) is now missing. One may readily check that a solution is given by Eq. (20) except that the term containing
3f (cu) is again dropped. However, there now is a solution of the homogeneous equation of the form

Fo( ', )=A( )/L1 —&*( ')lL1 —P( —')j( '—o)( —'—o) (29)

where A (cv) is, at this point, a completely arbitrary function. Fo goes like 1/cv" as co' ~ ~ and is finite everywhere
in the ao' plane as desired. LNote that 1—P(cu') has a pole at co'=coo.j We may check that this is indeed a solution.
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Inserting Fp into the integral of Eq. (19), we have

27ri

dc']
((pter or +zp) + (oor —Or+or —zp) ) r (30)

where we have made use of the fact that, by Eqs. (6) and (7), T~p(or&) may be written

Tr!!|r(err)= —4rr Im[1—P(err))/No(oor) (orro —1)r!o[1—P(err)). (31)

C,
Q-Cd p Jf

CaP- I
3

Plan f.

C,

Pro. 4. Singulari-
ties in the integrand
of I, Eq. (30). The
contour C& is equiv-
alent to the sum of
C2, Cg, C4.

The behavior of the integrand at ~ permits the replace-
ment of the contour C& by the contours C2, C3, C4
(Fig. 4).
Thus we write symbolically

Then as a result of the symmetry of the integrand under the interchange a» ~ or —pr&, it turns out that Jz,——J'z,
and Jz, ———fz, so that I is simply A (&u) multiplied by the residue at or r'o, —say. Thus,

I=A (or)/[1 —P*(or'))[1—P (or —or' )) (or' —p!p) (pr —or' —or p) (32)

which indeed equals Fp(or', &a) itself.
For stable E*, a function of this type does not satisfy the homogeneous equation since in that case Fo has

poles on the physical sheet at co'=6*, cv'=co —6* whose residues, in a calculation of the type just performed,
yield an additional term. And of course if these poles are removed by including the factor (or' —LP) (or —or' —LV)
in the numerator of Ii 0, the new function will not have the correct behavior at ~.

The entire solution in the unstable case may now be written

F (o!,or) =
2prG(2rr)'8 (k—k')

4rl GGD 1m[1 p (pr)) (pr —lV) (Qr —or lV)ot!p (pr —orp)

u (or) (pr —1) r oo'(pr' —pr —ze)[1—p*(otr'))[1—p(or —or' ))(pr' —orp) (or —or' —orp)LV (oo—6*)

G~T(~) [1—p(~)) (~'—&*)(~—~' —~*)~o(~—~o)

or'(or' or pp—)[1—p*(or'—))[1 p(or —pr')) (p—r' orp) (or——or' —prp) A*(pr —5*)

A (or)
(33)

The meaning of the arbitrary function, A (oo), is clear if we compare the last terms of Eqs. (20) and (33) which
have the same or' dependence; evidently A (or) may be interpreted up to factors as the analytic continuation in
6*of M (or) which we recall is the amplitude for the process V8 ~X*8.Thus the unstable 1V* is introduced through
this homogeneous solution in the direct calculation. Finally, we recall that in the case of the analytically con-
tinued amplitude all explicit 6*'s could be eliminated; this may be done again in the direct calculation for the
appearance of explicit 6*'s is, in fact, spurious. This can be seen simply by splitting off two terms from the last
term of F (or', pr) as follows:

A (or)

L1—p*(~'))L1—p(~ —~')) (~' —~o) (~—~'—~o)

A'(or)

[1—p*(~'))[1—p (~—~')) (~'—~o) (~—~' —~o)

4rl pOG 1m[1—p(ptr))orp(or —prp)

I (~) (~ 1)' [1 p*(or'))[1 p(~ or' ))(or' pro) (or pr' pro)&*(oo —&*)

Gpr T (pr) [1—P (pr)) pr p (pr —orp)

[1—P*(pr')) [1—P (pr —pr')) (pr' —pro) A*(pr —rV) (pr —or' —prp)

(34)
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Combining the last two terms of (34) with the second and third terms of (33), we get

F (s&',co) =
2cuG(2zr)'3(k —k') 4zra&G 1m[1 P ((u)](op((o ppp)

zzs ((o) (sP—1)'~zoo' ((o' —(o—ze) [1—P*(a)')][1—P (a&
—(o')] (co'—(op) ((v —&u' —a) p)

(35)

The arbitrariness of F (cu', a&) is thus entirely characterized by the function A'(~).
Entirely similar arguments can be applied to the vertex function E'(&v). Again there is a solution to the homo-

geneous equation that was not admissible in the stable-case calculation and the function turns out to have the form

( [G/6*+A]a&po) —G(op)
E(a&) = (36)

compared to the previous result which may be written

&[G/~*—&0If l&*H'(1—P(~*))/~*'] o
—G o)

E((u) =
L1—P(~)](~—~p)

(37)

The constant A, which is arbitrary in the direct calculation, is thus closely identified with the analytic continua-
tion of (0~ fv(E*).

Note that at least, one author" has argued that, since states involving resonances are not to be included in

complete sets of states, one should be able to calculate the VO elastic scattering amplitude in the presence of a
resonance by using Amado's result, Eq. (38), directly:

(38)

where
d(v' Im[1—Pt (pp')]Pt (s)—co')

(39)

The only modification would be to change the factor

G's) "der'zz'(a&') ((v"—1)'"

(2zr)' t a&" (a)' —~—ze)
(40)

P(~)=0~(~)+ A~p/(~ ~p). — (41)

This can be shown to be equivalent in the present calculation to choosing A =A (~) =0 and putting all explicit
6*'s equal to coo. Clearly this procedure is not correct. It ignores the fact, demonstrated in the foregoing, that
although "unphysical states" such as

~

1V*H) are not included among sets of states, they are coupled to the "physical
states" through solutions to homogeneous equations.

To continue, we see that Eqs. (35) and (36) together with (28) permit us to calculate T(u&) in terms of A'(co)
and A. The problem is now to determine A' and A when we do not have an equation corresponding to (15). One

possible approach is to impose unitarity on T(a&), expressed in terms of these unknowns; another is to return to
F (a&',~) and contract a 8 from the right instead of from the left as was done previously. Both courses lead to what

appear to be entirely intractable sets of equations for A and A although these equations may, in principle, deter-
mine them.

Consequently, it appears that in practice Amado s method of solution for the VH sector breaks down in the

"P.K. Srivastava, Phys. Rev. 131,464 (1963).
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direct calculation of the unstable case in the sense that arbitrary functions turn up which can be determined
only by calculating the stable case solution and analytically continuing in the mass of the unstable particle. The
main interest in the direct calculation thus remains in the demonstrated coupling of the stable and unstable
particle channels.

P H YS I CAI REVIEW VOI UME 141, NUMBER 4 JANUARY 1966

An Analysis of Some Pion-Pion Scattering Models

R. K. KREPs*

Department of Pkysics, Un& ersity of California, Berkeley, California

(Received 15 July 1965)

A numerical investigation is made on some model calculations based on a suggestion of Blankenbecler.
The models satisfy threshold conditions, elastic unitarity, and nearest crossed-channel singularities exactly.
The internal parameters are chosen so as to minimize crossing dissatisfaction. No physically sensible result
emerges.

I. INTRODUCTION

'HIS paper is a report on an attempt to eliminate
certain unsatisfactory properties of a model

calculation first suggested by Blankenbecler' and later
modified by Brehm. ' The essential philosophy here is
the same as in I. It consists of setting up a model which,
a priori, satisfies certain general requirements for a
scattering amplitude (such as threshold behavior and
elastic unitarity) and then varying the free parameters
present in the model in order to satisfy crossing sym-
metry as well as possible. The central differences
between this calculation and the preceding ones are
that the complete crossing relations are used, that the
nearest crossed-channel singularities are given correctly,
and that the model is purely elastic.

Section II is a description of the general model form
chosen. Section III contains a discussion of crossing
symmetry and the criteria for its satisfaction. Section
IV contains the specific models and the results of the
calculations based upon them. And Sec. V is an overall
discussion of the calculation.
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Constant multiplicative factors in the phase-space
function have been absorbed in 3l, and the sum is over
even or odd j as the isospin T is even or odd. What now
remains to be determined is the exact form of »(s).
We shall choose for large j the form

»(s) =f(s)g(j;)9(s)3', (~)

where g(j,s) is a rational function of j. As before, this
choice will lead to the correct branch point in t.

The value of s(s) t and hence of t(s)j for which the
sum diverges and the manner in which it diverges
depend only on the large j form of E;, since as j
becomes infinite D; goes to one. For E; of the form
(5), we can do the sum using the generating function
of the Legendre polynomials, and the curve of singu-
larity is given by

II. GENERAL FORM OF THE MODEL
or

0= 1+h(s)'—2sh(s) (6)

We take the usual Mandelstam variables for the
pion-pion problem, ' and begin as in I by writing a
partial-wave sum in N/D form for the scattering
amplitude:

t(s) = (1—h') (s—4)/4h. (&)

If we want a Mandelstam-type cut-plane analyticity,
then t(s) = to is independent of s. This requires

where

~(s,t) =Z(2j+1)J';(s)»(s)/D ( ), (1)
h(s) =

t (s—4+1 )'"—(to)'"3/E(s —4+t )'"+(t )'"j (g)

This can be rewritten in the more faIniliar Khuri4 form

s = 1+2t/(s —4), (2)
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&,

cosh)=1 12 to/( s 4). —
For the particular case at hand to=4 and

h (s) = (s't' —2)/(s't'+2) .
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