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Polarization Potentials for Low-Energy Scattering: e+-H and e—-Li
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Polarization-potential calculations are given for positron scattering by hydrogen and for electron scatter-
ing by lithium. The potentials are obtained in the adiabatic approximation by a simple variational calculation
of the energy of the disturbed atom. This approach is more general than perturbation theory and is valid even
for the large interactions typical of the alkali elements. The l =0 phase shifts are calculated for positron-
hydrogen scattering with differing numbers of excited states included in the coupling. First, only the 2p state
is considered, next, all p states, and finally all p states plus the 2s state. Phase shifts and cross sections of
Gve partial waves (l=0 to l=4) are calculated for the lithium problem when the interaction of the Grat
excited state (2p) is considered. This accounts for all of the experimentally observed polarizabiTity. Com-
parison with close-coupling results in both cases shows the present method to be of similar accuracy when
coupling with the same excited states is included. The adiabatic approximation, inherent in the polarization
potential, is therefore not a serious limitation and the method can be used with confidence for more com-
plex atoms.

I. INTRODUCTION

sCATTKRING by an atomic system can be reduced
to an essentially exact one-electron problem by use

of the optical-model potential. ' In practice, this poten-
tial is intractable and approximations to it are neces-
sary. "Coupled equations" procedures, such as the
strong-coupling approximation, are often used for
hydrogen. ~ They require solving a set of coupled
differential equations (integrodifferential equations
when exchange is included) and have been shown' to be
the first approximation to a modi6ed set of optical-
potential equations.

A second procedure that is frequently used is the
adiabatic approximation to the optical potential. ' '
The result is a polarization potential, and it is usually
determined by perturbation theory. However, when
considering heavy atoms or scattering from excited
states, perturbation theory may not be valid. This is
because coupling to the other atomic states may be
large and the interaction is not a small perturbation
whose higher order terms can be neglected. Such was
the situation in cesium' and is found here to be the
situation in lithium.

An adiabatic approximation can still be employed
even though the interaction is large. The essence of
adiabatic theory is that the target atom establishes new
wave functions for each position of the scattered
particle. If perturbation theory is invalid, some other
procedure must be used to determine the wave func-
tions. Of course, a large interaction is accompanied by
large particle acceleration and eventually the particle
moves so fast that atomic wave functions cannot be
established. In such cases, adiabatic theory breaks
down

The purpose of the present paper is to show that
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adiabatic theory does not break down as easily as might
be expected and that polarization potential methods
are of comparable accuracy to coupled equations
methods. The greater simplicity —especially when many
atomic states are closely coupled —and comparable
accuracy suggest their use for heavy-atom scattering.

Two elastic-scattering calculations are performed:
the scattering of positrons from hydrogen' and electrons
from lithium. The positron problem is an excellent
theoretical test of an approximation because symmetry
of the wave function is not required (no exchange).
Moreover, the polarization forces are opposed to the
nuclear force and are consequently of much greater
importance than in the electron-hydrogen problem.
Scattering from lithium is a simple example of heavy-
at,om scattering. Coupling to only one state represents
nearly all the polarizability, and it is too large to be
treated by perturbation theory. In both problems,
coupled equations calculations are available for
comparison.

The polarization potential is determined here in the
same way as was previously done for cesium. 4 This is a
procedure where the atomic wave function is assumed
to be of the form given by perturbation theory. The
coefficient giving the coupling of higher states is chosen,
however, by minimizing the energy of the atom. This
procedure is valid when the interaction is large and
reduces to the perturbation theory result when the
interaction is small (e.g., at large scattering distances).
The cesium calculation gave reasonable agreement with
the scattered experimental results but there were no
coupled equations or variational results to compare
with. Consequently, little could be said of the generality
of the method.

Section II discusses the positron problem and Sec.
III discusses the lithium calculation. Section IV is a
short statement of conclusions.

II. POSITRON-HYDROGEN SCATTERING

Many calculations have been performed for this
process but there is still no satisfactory treatment short

s P. M. Stone, Bull. Am. Phys. Soc. 10, 186 (1965).
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of the extensive variational calculations. ' The reason
for this seems to be that the attractive polarization
force opposes the repulsive force of the shielded nucleus.
As a result, the total interaction is sensitive to the
polarization, and it must be accurately determined.

It is clear that without polarization the phase shift
will be negative (repulsion) and can become positive
only when polarization or some other attractive inter-
action is included. The elaborate variational calculation
of Schwartz' shows that the phase shifts are indeed
positive at low energies ((0.36 Ry).

A series of calculations by Cody, Lawson, Massey,
and Smith have included polarization by means of the
Temkin-Lamkins polarization potential (often referred
to as the polarized orbital or P.O. method). Cody e1 al. ,
have also redone calculations neglecting polarization
entirely (just the mean static interactiono), and have
done a coupled-equations calculation using the is, 2s,
and 2p states. They have also considered positronium
formation (virtual) both with and without the Temkin-
Lamkin polarization. Their paper compares phase
shifts with the variational calculations' and gives a
rather complete summary of earlier work on scattering-
length calculations. Additional works that should be
emphasized are the calculations of Rotenberg, ' using
an expansion of the total wave function in Sturmian
functions, and the nonadiabatic s-wave scattering
calculations of Temkin. " Both of these give phase
shifts larger than the variational results of Schwartz,
though as many as 50 variational parameters had been
used. The calculation of Cody et al. ,

7 that includes
positronium formation and polarization also gives phase
shifts greater than those of Schwartz.

All that can be said conclusively of positron-hydrogen
scattering from the earlier work is that polarization is
the most important addition to the static approximation
and that without it the phase shifts remain negative at
low energies. Virtual positronium formation is of next
importance. The actual phase shifts are probably close
to the variational values of Schwartz.

It is clear from the above discussion that positron-
hydrogen scattering serves as an ideal test of a polari-
zation potential. By comparison, the electron-scattering
problem is very poor because polarization is in that case
a small effect.

The Temkin-Lamkin' polarization potential includes
the contribution of all P states of hydrogen (including
the continuum) in a perturbation-theory calculation of
part of the interaction potential. The part included is
the long range or "inside" part of the dipole term in the
expansion of the inverse of the electron-electron distance

& C. Schvrartz, Phys. Rev. 124, 1468 (1961).
7 ~.J. Cody, J.Lawson, H. Massey, and K. Smith, Proc. Roy.

Soc. (London) 278, 479 (1964).
A. Temkin, Phys. Rev. 116, 358 (1959);A. Temkin and J. C.

Lamkin, Phys. Rev. 121, 788 (1961).
o K. Smith and P. G. Burke, Phys. Rev. 123, 174 (1961);

L. Spruch and L. Rosenberg, Phys. Rev. 117, j.43 (1960).
'o M. Rotenberg, Ann. Phys. (N. Y.) 19, 262 (1962).
n A. Temkin, Proc. Phys. Soc. (London) 8D, 1277 (1962).

(or electron-positron distance in this case). It becomes
correct only at large scattering distances. It nevertheless
represents an important improvement over previous
treatments of polarization because it successfully
includes all excited states. The restrictions to pertur-
bation theory are not important for hydrogen but limit
the usefulness of the method for the alkalis.

The calculations here' neglect positronium formation
and compare the results with the corresponding calcu-
lations of Cody et a/. ' A series of calculations is per-
formed that attempts to include more and more of the
contribution of excited states. The numerical results
clearly show that the accuracy is comparable to other
methods (coupled equations, Temkin-Larnkin polari-
zation potential) that include contributions from the
corresponding number of excited states.

where
aZ /aP=0,

go+Wtl& +V lgo+pp )

0 1 0 1

(2)

(3)

The Hamiltonian for the atom is H~ and the interaction
of the atomic electron with the positron is V(rt, ro).
Matrix elements are over the electron coordinate r~.
The coefficient P chosen by (2) for positron scattering
is given by

1 P' &t—&o+—Voo—Vrt

A. Equations Including the 2p State

The equations have been introduced previously' and
will only be outlined here. Atomic units are used; i.e.,
energy in Ry (13.6 ev) and length in Bohr radii. The
approximation arises by taking the two-particle wave
function as (neglect positronium formation)

0(rtrs) =I A(rt)+P(rs)A(rt) jJ'"(rs), (1)

where r~ is the coordinate of the atomic electron and r2
is the positron coordinate. The scattered positron func-
tion F (rs) is to be determined. The term in brackets is
the wave function of the atomic electron when the
positron is a distance rs away. When rs ——~, p becomes
zero and the atom is in the unperturbed ground state
go. Only the 2p excited state Pt is used to describe the
change in the wave function as the positron approaches.
It is well established that such an approximation will
include 65.8%%uo of the long-range polarization.

The procedure is adiabatic in that it is assumed that
an altered atomic wave function is established for each
position of the scattered particle. It is not required,
however, that the change in the atomic wave function
be small. It turns out that the change is small in hydro-
gen and perturbation theory could be used to calculate
p(").

The procedure that is followed here is to choose P(rs)
so that the energy E~ of the atom is a minimum. Thus,
the requirement is that
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where
V' ( )= 9'I V(r r ) I 0 )

V.()=P(r) Vo (). (10)

V„is positive at all distances and Vpp is negative. Equa-
tion (9) is solved by the usual procedure of expansion
in partial waves (Legendre expansion of angular
coordinates). Only the zero-order partial waves (1=0)
contribute significantly for hydrogen.

The potentials and atomic wave functions that enter
in (4), (9), and (10) can be written down explicitly. In
atomic units they are

1'= (gx)-'e-', 1s state

p~=~(2m) ' cosere "" 2p, m=0 state (11)
Voo

———2(1+1/r)e '",
v2 256 1 (256 1 128 1 32 4 )

Voi= — ——
I

—+ -+—+-~ Ie ""'
3 81r' (81r' 27r 9 3)

(12)
24 24 24 14 ii 3 i

Viz= —— + + + +-&+~' e "
r' r' r2 r 2 2 4

At large distances the polarization potential becomes

V~=-o4VoP=2.96/r'. (13)

The polarizability here is 2.96 and is 65.8%%uo of the value
obtained (4.5) when all p states are included.

V (»ro) = 2/r—o+ 2//I r~ —ro I
. (6)

The neglect of angular dependence in V;;(ro) is the
mathematical statement of the adiabatic approximation.
E~ and Ep are the binding energies of the 0 and i states.
The interaction energy of the positron with the un-
perturbed ground-state atom is —Vpp and is positive at
all distances. Similarly, —V» is the interaction energy
when the atom is in the 2p state. At large positron
distances, Voo and V~~ are negligible and P' is small.
Expression (4) then gives

Vo~/(a-~o) =-:Vo~, (7)

which is precisely the perturbation-theory result. The
expression in (7) could be used at all distances with no
signi6cant loss of accuracy because P is always small.
However, for alkali scattering, the value of P given by
(7) becomes greater than one at small distances and
perturbation theory is no longer valid. In such cases, the
expression (4) must be used.

The equation for the scattered particle is obtained by
using (1) in the two-particle Schrodinger equation.

I Bg(rg)+ Vo'+ V(ryro)+&jf(ra'o) = 0 (8)

where the Laplacian operator V'2' operates on r2. If this
equation is premultiplied by fo and integrated over r&,

the equation for F (r) is (use r instead of ro now)

fV'+F. Fo+Voo+ V—~)F(r) =0, (9)

with the polarization potential V~ given by

with
~("")=«.(")+p(").( )X(,),

q (r) =r (1+-,'r) cosoiPo(r) .

(14)

This y(rq) has the rq dependence that perturbation
theory gives' for the correction to the wave function
when the summation is performed over all l= 1 states
for hydrogen. To agree further with perturbation
theory, P (r&) must become ro

—' at large values of ro.
The method of evaluation of P follows as before and

the same scattering equation (9) results. The polariza-
tion potential is

V.()=P()V.(),
with P(r) determined by

Vp„

(16)

2—(43/4)P' 9+ (43/4) Voo—2 V~ p

The potentials here are

Vo.(~) =9o I V(»r) I o )

l9
—,
' —+—+9+Sr+r' Ie

'" (18)i
V-(~) =(o I V(»r) I ~)

=48/r' —(48/r +96/r +106.75/r+71. 25

y45r+18ro+ 8+ r4)e '"—. (1—9)
At large r, Vpp and V» become negligible and the polari-
zation potential becomes

P ~ (2/9) Vo~= 1/r',

(2/» I
Vonl'= o1/r4. (20)

This method includes all the long-range polarization.

C. All p States and the 2s State

The p states do not contribute to polarization at
small radii so that the polarization potential in the two
cases above is zero at the origin. The s states give the
polarization potential a 6nite value and this subsection
estimates the contribution by adding the first excited
s state to the p states already considered. The small
radius behavior of V„ is not expected to be significant
because the static potential LVoo in (9)j becomes large
and dominates.

The total wave function is taken as

where go is the 2s state. The

coefficient+

is chosen in the
same way as has been. discussed for P. However, a
further simplification is introduced: 0, is calculated as if
p were zero, and. p is calculated as if 0. were zero.

B. All p States

The approximation (1) for the two-particle wave
function can be extended in a manner analogous to the
"polarized orbital" method of Temkin' to include
contributions of all p states. The form is
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Clearly, the same P as in the previous subsection is
obtained —Eq. (17)—and a is given by

l.O

V02

&s &o+—Voo Vos—

The polarization potential is then

Vs =PVor+c Vos.

The new potentials are

Vos=(4o~ V(rtr) (Ps)
(32/81) &/s(r+ z)e—(s/s) r

Vss= Qs ~
V(rtr) (6)

=—or '(r'+2r'+6r+8)e '.

(22)

(23)

(24)

O.l

LU

4l

LLJ

O
cL o)

It would be more correct to solve for n and P simul-

taneously, i.e., to minimize the energy of the atom when

the p states and 2s state are included together in the
interaction. However, the 2s-state correction is im-

portant at small distances ((uo) while the p-state
corrections are important at larger radii. It is then not
a severe simplification to calculate the correction
separately.

D. Results and Discussion

The zero-order positron-hydrogen phase shifts have
been calculated for each of the polarization potentials
discussed above. Summarizing, these are

V„,=P,Vo,, 2p state

V»=Ps V», all p states

V&s= V&s+uVos all P states plus 2s state.

These potentials are shown in Fig. 1 with &.e static
potential Uo() and the Temkin-Lamkin' or "polarized
orbital" (P.O.) potential for p states (/=1). The P.O.
potential and V» are nearly the same at large radii and
become identical at infinity. This is because both
include the p states in the same way at large radii. At
small distances, the P.O. potential is larger, and then
both become zero at zero radius. V~3 is greater than

V„2 at small distances because of the 2s-state contri-
bution. They are identical beyond 3ao. The difIerences

of the potential at small radii are not of major impor-
tance because Uoo dominates the interaction.

The zero-order phase shifts ((=0) are shown in Fig. 2

and listed in Table I. The calculation that includes all

p states gives phase shifts very close to the P.O. results.
The addition of the 2s state is seen to have only a small

effect. Similarly, the calculation using the 2p state
differs only slightly from the 1s-2s-2p coupled-equations
calculations of Cody, I.awson, Massey, and Smith. ' The
slopes of the curves at k =0 come from scattering-length
calculations. All the values are below the variational
results of Schwartz. '

The numerical work. was done in the same manner as
previously reported. Power series expansions were used

.00I
2 '5 4 5

BOHR RADll

Fro. 1. Positron-hydrogen potentials. t/'00 is the static potential
and repels the positron. The three polarization potentials cor-
respond to coupling with the 2p state (V„q), coupling with all p
states (V„s), and coupling with all p states plus the 2s state
(V„3). The polarized orbital potential of Temkin and Lamkin
(Ref. g), that couples to all p states, is also shown.

TABLE I. Positron-hydrogen zero-order (l =0) phase shifts in
radians compared with other calculations. k is in Ry'/'2. The k=0
values are scattering lengths.

All p
2p All p +2s

Polarizeda
1s-2s-2pa Schwartzb orbitals

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

—0.3
0.006-0.024—0.072—0.125-0.178-0.227—0.270

—1.239
0.095
0.105
0,073
0.021—0.037-0.095-0.149-0.199

—1.276
0.102
0.111
0.078
0.031-0.02 7-0.082—0.135

0.0-0.0054—0.0426-0.0931—0.1472-0.1990-0.2461

—2.10
0.151
0.188
0.168
0.120
0.062
0.007-0.054

-1.276
0.0803
0.0853
0.0528
0.0048-0.0476-0.0989-0.1467

4 Reference 7.
b Reference 6.

to start the solutions and the integration was carried
forward by the Numerov procedure. At 20uo the solution
was matched to a linear combination of spherical Bessel
functions and the phase shifts determined from the
coefficients. A mesh spacing of 0.1ao was used from 0 to
Sao and a spacing of 0.2ao was used thereafter. Nu-
merical checks were made by using a mesh twice as fine
and by integrating to 30ao in some cases. No significant
changes in phase shif ts were obtained. An over-all check
was obtained by comparing static calculations (V„=O)
with the literature. The numerical results are estimated
to give phase shifts accurate to better than 0.001 radian.

It is possible to divide (1) by Li+P'(rs)$'/' so that
the disturbed atomic wave function is normalized to
unity. Numerical tests in the cesium calculation4 have
shown that the results are not sensitive to the normali-
zation. In the present case there is no exchange and it
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FIG. 2. Zero-order phase shifts in radians for positron-hydrogen
scattering. k is in rydbergs. The 2p, all p, and all p plus 2s curves
are the present calculations with the indicated coupling. The
1s-2s-2p curve is a coupled equations calculation (Ref. 7) and the
polarized orbital curve uses the Temkin-Lamkin (Refs. 7, 8)
potential for p states (f=1).The variational results of Schwartz
(Ref. 6) are shown to indicate the values that are probably nearly
correct. The curves indicate that the number of excited p states
included in the coupling is more important than the computational
model.

becomes clear that the lack of normalization is com-
pletely unimportant. With normalization the function
determined by the wave equation (9) would be F(r)/
L1+P'(r)j' ' instead of F(r). Since P becomes negligible
at large distances, the phase shifts calculated with and
without normalization are insigni6cantly diferent. For
instance, at 20uo, where the phase shifts have been
calculated, Ps is only 2.5&&10

—s.

Figure 2 shows clearly that the results are primarily
dependent on the number of states included in the
calculation. By including more states —particularly s
states —the phase shifts will approach the values of
Schwartz. "The main point here is that the polarization
potential method gives phase shifts equivalent to the
more involved coupled equations method. The "extra"
assumption of adiabatic interaction that is inherent in
polarization potentials does not appear to be a serious
limitation. This suggests that these simpler procedures
can be used with conddence for scattering by heavy,
many-electron atoms.

III. ELECTRON-LITHIUM SCATTEMNG

It is well established'"" that polarization is impor-
tant for scattering by alkalis. Moreover, it must be
treated carefully because the results are sensitive to
both the magnitude and shape of the potential. Vin-
kalns, Karule, and Obedkov" have reported a calcula-
tion of scattering by lithium using a polarization
potential obtained from coupling with the 6rst excited

p state (2p) by perturbation theory. The wave function
was taken spatially symmetric and then antisymmetric

rs R. J. Drachman, Phys. Rev. 158, A1582 (1965).This refer-
ence has included all hydrogen states in a perturbation-theory
calculation and 6nds that the phase 'shifts greatly exceed those
of Schwartz!

+ A. Salmons and M. J. Seaton, Proc. Phys. Soc. (London) 77,
617 (1961).

r4 W. R. Garrett and R. A. Mann, Phys. Rev. 155, A580 (1964)."I.Zh. Vinkalns, E. M. Karule, and V. D. Obedkov, Opt. i
Spektroskopiya 17, 197 (1964) fEng. transl. : Opt. Spectry.
(USSR) 17, 105 (1964)g.

so as to include the effects of exchange. Exchange with
core electrons and polarization of the core were
neglected.

A coupled equations calculation has also been re-
ported" that uses the 2s and 2p states. The cross
sections were calculated in the 2.0- to 3.0-eV range and
give elastic scattering results below the polarization
potential values by 15 to 40'Po. Moreover, the partial
cross sections diGer considerably.

The lithium polarization calculation is redone here
with the atomic orbitals determined by minimizing the
energy of the atom rather than by using perturbation
theory. This is necessary because the interaction is large
and higher order terms in the perturbation expansion
are not negligible. The formulation is analogous to the
treatment in Sec. IIB above. Exchange is also included.
The results agree much better with the coupled equa-
tions results than do the perturbation calculations of
Vinkalns et al. , but all the cross sections are below
experiment. '~

The effect of polarization and exchange interactions
with the core is expected to be small because of the
large binding energies of core electrons relative to the
valence electrons. In fact, the self-consistent-6eld
(SCF) calculations of Ivanova and Ivanova" have
shown that the core wave functions are hardly aGected
by such interactions. This helps justify the neglect
of interactions with core electrons in the present
calculations.

The lithium wave functions used are the same as used
by Vinkalns et al. These are analytic SCF results of
Clementi, Roothaan, and Yoshimine" for I'~, and I'2,
orbitals and the analytical function of Gailitis' for the
2p orbital:

Ps„(r)=0.22805r'e s '"r" (26)

where P(r)/r is the radial part of the wave function.
The orbitals agree well with the SCF values of the
Ivanovas. "

lf'0(rlrsr3) +1 (r2)N1 (rs)N2 (rl) (27)

~6 E. M. Karule and R. K. Peterkop, Opt. i Spektroskopiya 16,
958 (1964) LEng. transl. :Opt. Spectry. (USSR) 16, 519 (1964)j."J.Perel, P. Englander, and B.Bederson, Phys. Rev. 128, 1148
(1962).

» A. V. Ivanova and A. N. Ivanova, 0 t. i Spectrokopiya 16,
917 (1964)./English transl. :Opt. Spectry. USSR) 16,499 (1964)j."E.Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127, 1618 (1962).

~ Quoted in Ref. 16.

A. Equations

The scattering equations follow from the develop-
ment previously reported for cesium. 4 In that case, a
one-electron potential and the associated wave functions
were available for the valence electron. The present
calculation uses SCF orbitals for the core and valence
electrons, and the formulation of the static potential is
therefore slightly different. The atomic ground-state
wave function is written as
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where r~ is the coordinate of the valence electron and
r2, r3 are the core electron coordinates. For brevity, the
core electron functions are written as g, (r,) so that

Po ——u, (r,)us, (rg) .
The 6rst excited state is accordingly

(r2) p(r2) Vol(rs)

2 1 "2

Vog(rs) =—— Ps,Ps„rdr
%3 rs' o

1
Ps,Ps„dr, —(33)

r'
'IPy =

u~usp (ry), (29)

and clearly indicates that it is the valence electron that
is in the excited state.

The wave function, including valence-electron ex-
change, for the system of ground-state atom plus
scattered electron is written as

lp(r rtrs) = (lpo(1 r1)+p(rs)4'1(1 r1)}F(2r)&$ (0r 2r)F( lr) ~

(30)

The coordinate r2 now refers to the scattered electron,
consistent with the notation in Sec. II. The upper sign
describes the singlet state and the lower sign describes
the triplet state.

The wave function (30) does not quite have the
proper symmetry because the unaltered atomic wave
function is used in the ~ term. Exchange has thus been
introduced as if the atom were not polarized, while
polarization is included as if exchange did not gage

place. This is done for simplicity of calculation and
because it should not introduce significant error. If the
full symmetry were included (see Appendix), the wave
equation for the tth partial wave of F(r) would be
coupled to the I+1 and t—1 partial waves s' and
considerable complexity would be introduced into the
numerical solutions. The error involved in the omission
is small because the polarization to the wave function
j,s small at djstances below 3a0 where exchange is most
important. Numerical estimates suggest that the error
in calculated phase shifts is less than 10%.

The scattering-electron wave equation resulting from
the use of (30) is

P —Vot

1—P Et—Eo+ Vu —Voo
(34)

The function p(r) is always negative so that the polari
sation contribution in (31) is positive, just as it was in
the positron case; i.e., polarization always causes
attraction of the particle. The static potential enters
with diferent sign in the electron and positron cases,
representing an attractive force and a repulsive force,
respectively.

The lithium potentials are shown in Fig. 3. Also
shown is the perturbation theory (P.T.) potential
obtained when

Pp T = —V.ot./(Et —Eo). (35)

1.0

Figure 4 compares the p's, and it is evident that pertur
bation theory is invalid (jp j

& 1) over a large region of
space. When the denominator of the right side of (34)

I-
O. l

O
CL

10

lo
13

I'& IN BOHR RADII

FIG. 3. Electron-hthium potentials. The static potential V00
attracts the electron. The polarization potentials are also attrac-
tive and include coupling to the 2p state. The variational theory
curve results from Eq. (34) and the perturbation curve results
from Eq. (35).The polarizability constants in the asymptotic form
indicated on the curves were calculated at.r =25up.

ere appears to be confusion on this point as both Vinkaln
et cg. (Ref. g5) and J. C. Crown and A. Russek, Phys. Rev. . 138,
A669 (1965), use incorrect exchange terms.

(&'+E Eo Voo Vr )—F (&)— —
=~(u„jko'—Eo—(2/jr& —rj) jF)us, (r), (31)

where the matri~ element is an integration over the
electron coordinate rt (integration over r.

already done). The potentials Voo and U~ are of the
same form as in the positron case, but use the atomic
wave functions (28) and (29). These are $P(r)/r is the
radial part of u(r)$

V;;(rs) = Q, j 2/rs+ (2/—jr' —rsj) jP;),
2Z 4

Voo(rs) =— +— Pts'dr+4 Pg, 'dr-
r2 r2 0 r2 r

&2 oo ]
+— Ps,'dr+2 Ps/ dr, (32)—

r2 0 rs r
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TAsz.E II. Lithium phase shifts and cross sections from the
variational potential. The last column is the total cross section
(plotted in Fig. 5) obtained by summing Qr over partial waves.
The next to last column is the summation of the partial waves
listed. The di6erence is the e6ect of partial waves not included in
the table.
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FIG. 4. The parameter P that gives the 2p-state correction to the
ground-state lithium wave function when the scattered electron
is at r. Perturbation theory (Eq. (35)j gives values larger than one
in magnitude at small radii and is invalid. (Higher order terms are
not negligible. ) The minimum energy (or variationai theory) curve
is from Eq. (34).

3. Results and Discussion

The scattered electron wave function F(r) has been
expanded in Legendre polynomials in the usual way and
the resulting partial wave equations4 solved numeri-
cally. The phase shifts are given in Table II.Five partial
waves (3=0 to /=4) have been calculated for each
energy though not all are shown. Phase shifts for higher
values of 1 have also been calculated but are so small
that they are not presented. Their contribution to the
cross section is less than 3%.

The cross sections are shown in Fig. 5 along with
other calculations and with experimental results. Also
shown are the present calculations using perturbation
theory LEq. (35)g to obtain the potential. The difference
between perturbation theory results and variational
theory results is seen to be considerable. In particular,
the variational theory agrees much better with the
2s-2p coupled equations calculations. "This is true of
the partial waves as well as the total cross section.

The polarization-exchange calculation of Vinkalns

~ G. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677
(1963).

~ D. Parkinson, Proc. Phys. Soc. (London) 475, 169 (1960)."R.M. Sternheimer, Phys. Rev. 127, 1220 (1962).

is zero, the value of P is —1. Figure 4 shows that this
occurs at a radius of 0.25ao.

The long-range behavior of the polarization potential
1s

V„—p or/r4. —
Evaluation of this potential from (33) and (34) at
r=25ao gives +=165.3ao'. This compares with the
experimental value" of 149&14 and is in close agree-
ment with other calculations that use similar wave
functions" (cr= 169).It also agrees with the calculation
of Sternheimer" (a=168) that obtains the correction
to the ground-state wave function directly from the
differential equation for the perturbation.

k'
(eV)

0.02

0.05

0.10

0.15

0.20

0.30

0.40

0.50

1.0

1.5

2.0

2.5

3.0.

l by+

(rad)

0 5.965
1 0.044
2 0.0034
0 5.750
1 O.iii
2 0.0163
0 551
1 0.198
2 0.036
0 5.34
1 0.262
2 0.055
0 5.195
1 0.310
2 0.073
3 0.0236
4 0.0103
0 4.98
1 037
2 0.108
0 481

0.402
2 0.140
0 4.67
1 0.418
2 0.169
0 4.212
1 0.430
2 0.273
3 0.115
4 0.054
0 3.94
1 0.439
2 0.331
3 0.159
0 3.752
1 0.475
2 0.363
3 0.194
4 0.101
0 3.619
1 0.536
2 0.389
3 0 222
4 0.122
0 3.507
1 0.612
2 0.406
3 0.245
4 0.139

~s

(rad)

6.406
3.153
0.0034
6.3355
3.140
0.0164
6.22
3.087
0.037
6.12
3.03
0.056
6.026
2.968
0.077
0.0236
0.0103
5.87
2.86
0.117
5.75
2.77
0.159
5.64
2.69
0.199
5.227
2.398
0.389
0.119
0.055
4.94
2.21
0.542
0.171
4.712
2.064
0.652
0.219
0.103
4.536
1.945
0.728
0.260
0.126
4.376
1.867
0.779
0.294
0.146

96.84
4.69
0.16

72.60
10.06
1.46

68.03
19.44
3.69

67.33
28.96
5.69

66.54
37.08
7.86
1.06
0.26

63.74
48.89
11.95
60.33
55.99
15.98
56.76
60.21
19.71
41.38
63.26
34.24
5.27
1.45

30.44
57.87
40.94

7.14
22.62
51.76
41.90
8.47
2.59

16.94
46.36
40.05
9.38
3.03

12.73
41.84
37.07
9.96
3.36

&Qr
(s rrpp)

Q
(prrrps)

101.69 101.74

84.12 84.35

91.16 91.72

101.98 103.05

112.80 112.80

124.58 126.73

132.30 135.15

136.68 140.26

145.60 145.60

136.39 138.46

127.34 127.34

115.76 115.76

104.96 104.96

et at. ," is identical in principle to the perturbation-
theory calculations done here. The difference in results
shown in Fig. 5 is because of the different exchange
terms that have been used. Vinkalns et a/. , have added
an additional term on the right side of (31) that is
presumably meant to arise from the use of full symmetry
in the total wave function (3).However, it is shown in
the Appendix that their additional term is incorrect.

The theoretical values are considerably below experi-
ment'~ and some effort has been made to understand
this. It becomes clear that agreement can be obtained
throughout the energy region when the contribution of
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exchange to 65uo. The phase shifts are determined at
that point. The integrity of the computer code has been
established by comparing electron-hydrogen results with
the literature and by comparing lithium perturbation
theory results without exchange with the values given
by Vinkalns et aL" Essentially exact agreement was
obtained in all cases. Calculations using smaller mesh
sizes (0.02ao increasing to 0.08ao) and integrations to
larger distances (90ao) at 0.2, 1.0, and 2.0 eV give phase
shifts that differ from Table II by less than 0.001 radian.

a
O
I-

zoo
PERTURBATION

IV. CONCLUSIONS

IOO

ATIO N

TIARA

I

I.O
!
2P EXCITATION

I

2.0

k IN eV

FxG. 5. Lithium cross sections including exchange. All the calcu-
lations are below experiment (Ref. 17) and the variational poten-
tial values are below the perturbation theory results. The pertur-
bation-potential calculation of Ref. 15 diBers from the present
perturbation-theory curve because of the diBerent exchange terms
used. The variational potential gives the best agreement with the
2s-2p strong coupling calculation of Ref. 16.

l=3 partial waves is considerably increased. Evaluation
of the addition to the polarization potential resulting
from coupling with the 3s state (Po, from Ref. 18) and
from the 3d state (Poz from hydrogen) shows their
contributions to be too small at radii where l=3
scattering is important (~10ao). The contribution of
all s and d states together may, however, be signi6cant.
Polarization of the core electrons alters the potential
only at small radii (&2ao) and detailed calculations
show that it changes the cross sections by less than 7'Pz

(mostly /=0 waves affected). Coupling with higher p
states is not expected to help significantly because the
first p state includes nearly all the theoretical long-range
polarizability. Moreover, the polarizability is already
greater than experiment so that perhaps the long-range
potential should really be lowered. This would decrease
the L=3 contribution even further.

The eBect of the neglected exchange terms has not
been accurately evaluated and may contribute to l= 3
scattering. They are smaller than the exchange terms
that are included but may not be negligible. It would
be desirable to have further experimental verification.

As in the case of positron scattering, it is clear that
adiabatic polarization potentials give numerical results
in good agreement with coupled equations calculations
when the same excited states are considered.

The numerical work was done in the same manner as
previously described5 and discussed in Sec. II above.
Mesh spacing starting at 0.05ao and increasing in two
steps to 0.20co are generally used. The integrations with
exchange are done to 25uo and continued without

The two elastic-scattering calculations performed
here indicate that, with proper use, the adiabatic
approximation is not a serious limitation. More impor-
tant is the eGect of coupling to states that are usually
not included and the proper treatment of exchange. It
has been emphasized that perturbation theory is not
always valid for calculating distorted atomic wave
functions and that a simple variational calculation can
be used instead.

The contribution of many states is handled more
easily in polarization calculations than in coupled-
equations methods. The polarization potential is then
suitable for use in studies of low-energy scattering from
heavy atoms or from excited states, where coupling to
many levels is important.

APPENDIX

The use of a fully antisymmetric wave function with
distorted atomic orbitals leads to scattering equations
where the partial waves are coupled in the exchange
terms. As there has been some confusion" as to the
proper terms, they are derived here.

The fully symmetric version of (30) considering only
the valence electron is

f(rlr2) (l//0(11)+p(f2)el(rl)gF(r2)
~Lit'0(r2)+P(rl)II'1(r2)]F (rl) ~ (A1)

This form leads directly to (31) with a second term on
the right side

(V2+ &o'—Voo—V„)F(r2)

2
=~(ito +&0—&02 F)ito(r2)

2
&Q'0 +K—&0' pF)pl (r2), (A2)

fy—r2

where the matrix elements are integrations over the
atomic electron coordinates r~.

The difhculty is in the evaluation of the second ex-
change term when F(r) is expanded in Legendre
polynomials,

F( )=2-P-( )(f-( )/ ) (A3)

The second exchange term is not present when the
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f~(ro) term in Eq. (A1) is neglected. The expansion of
2/jr' —roI is

P( )P( )
r l+1

+terms that become zero on y~ integration. (A4)

In this expression r& and r& are, respectively, the smaller
and larger of r1 and r2. As the q~ integration can be done
immediately, the extra terms in Eq. (A4) need not be
exhibited.

An important point is that P&(zo) has been set equal
to one in the evaluation of V„because the s axis is taken
as the nuclear to scattered-electron direction. This is
the mathematical statement of the adiabatic approxi-
mation for the polarization of the atom. But neither
P~(z~) nor P~(zo) of Eq. (A4) can be set equal to one in
the exchange term. A proper description of exchange
requires that the angular dependence of both particles
be included. Essentially, polarization can be treated in
the adiabatic approximation but not exchange.

The angular dependence of an s state for fo and a

p state for f& is obtained by using

A(r&) = (4z) '"so(~i)/ri
(AS)

»t i(ri) = (3/4~)'"Pi(zi) (o ~(r~)/&~) ~

With Eqs. (A3), (A4), and (AS) the exchange terms
of Eq. (A2) are (after integration over q&q and 8q)

P„(zo)
&»oo(&o)P d&i +of

2 fQ
X (&o—&o )&,o+

2m+1 r&~+'

P„(zo)
+@3'q g(ro)P&(zo)Q «4@of

m r2

X (K—&o')&,o+ (A6)
2m+1 r&~+'

An equation for the lth partial wave is obtained by
multiplying by P&(zo) and integrating over zo. If the
equation is also multiplied by ro(l+ —,), the terms in
Eq. (A6) become anally

~O o9'o) (&o—&o')&r, o «iq os+
21+1

r&l
d&ipofl &v3»oi(&o) (R—t'to')&i, x d&jItyofo

l+1

2l r(' '2l+2-
«Pqofi i +

(2/ —1)' (2t+3)'

r l+j

d&P toft+i ~ (A7)
l+2

~(")=~(")I'~.(~.) (AS)

is used along with fq (rq) and a summation over
m= —1, 0, +1 performed, the coupling will not occur.
The terms multiplied by yo(ro) in (A7) are unchanged

The set of terms multiplied by qz(ro) are n.ot included

in the calculations reported here and earlier and are

generally absent when the wave function has the form
of (30) rather than (A1). It is clear that the last terms

couple the partial wave equations to neighboring equa-
tions. The fully coupled set can be closed by substituting
the spherical Bessel function for f~& at suKciently
high /.

The second set of terms are generally less important
because P is small and because q ~(ro) is small at small

radii. At larger radii where z~(ro) becomes important,
polarization is the largest eGect and the exchange terms
do not contribute significantly to the scattering.

Note added As proof. The coupling in (A7) can be
avoided by allowing P to have angular dependence.
Thus if

while the terms multiplied by»o~(ro) become

» i(ro)
(E —koo)8), g drPyof

(4~)»

6
+I «)Prof~

E2l+1 2/ —1I
I

6 ~ t /+1~ r '+'-
+ I II I «4~ofa (A9)

(2l+1I » 2E+3l r l+2

Either (A9) or (A7) can be used although (A9) is clearly
simpler. (A9) was not formulated in time to be included
in the lithium calculations.

W. R. Garrett /Phys. Rev. 140, A705 (1965)g has
recently published a Li calculation (also Na) that is
very similar to the present work in the treatment of
the valence electron. In addition, he includes polariza-
tion of the core and uses the Slater approximation to
allow for exchange with core electrons. His large cross
sections (above experiment) seem to follow from the
core-exchange term and from the use of somewhat
di6erent atomic wave functions.


