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The breaking of SU(3) symmetry is studied in two models: (a) the I~=$+ decuplet states formed as
composites of baryons and mesons through baryon exchange, and (b) the J~=-,'+ octet states formed also as
composites of baryons and mesons through decuplet exchange. In both models symmetry-breaking efFects
are introduced as mass splittings within the component baryon and meson octets. Expansion of dispersion
integrals in powers of mass difFerences is employed to discuss sum rules for masses and coupling constants.
In erst order the expected results are obtained when the Gell-Mann —Okubo mass rule holds for the compo-
nent particle masses; i.e., the GMO rule also holds for the composite particle masses, and the coupling con-
stants of composite to component particles obey the known sum rules. However, a comparison of exact and
first-order dispersion integrals in model (a) shows that the first-order approximation is quite poor. There-
fore, the approximate propagation of the GMO rule from component to composite masses that was found jn
earlier work cannot be explained as merely a reflection of the erst-order result. Signi6cant higher order
effects conspire to preserve nearly equal spacing of the decuplet masses. A mass-difference perturbation
theory of eigenvalues and eigenvectors of the scattering matrix is presented, together with a review of the
decomposition of perturbations by irreducible tensor operators. In the case of model (b)& "octet enhance-
ment" is verified (i.e., the intrinsic preference of the bootstrap equations for octet-type perturbations).
This discussion of octet enhancement, and a similar one of Dashen and Frautschi, is criticized on two
grounds: (i) linearization in mass differences is not justified, and (ii) the neglect of decuplet states in external
lines might be a serious error. Inclusion of the external decuplet states is necessary for vertex symmetry.
It is found that vertex symmetry is dificult to reconcile with other general requirements in approximations
based on the 1VD ' method.

l. INTRODUCTION
' "

N an earlier paper we studied breaking of SU(3) sym-

metry in a model of the ~+ baryon decuplet. ' The
model described the 8*states as 8-P composites formed

by 8 exchange, where 8* is the 2+ decuplet, 8 the ~~+

octet, and P the 0—octet. Symmetry breaking was intro-
duced by taking the observed masses of the 8 and P
states. It turned out that the 8* masses approximately
obeyed the Gell-Mann —Okubo' (GMO) equal-spacing
rule, in the sense that the deviations from equal spacing
were about 10% of the average level spacing. The 8*BE
coupling constants were calculated, and found to deviate
substantially from their pure-symmetry limits. The
question of whether the coupling constants obeyed sum

rules appropriate to an octet-type symmetry perturba-
tion was left unsettled.

In this paper we try to explain and clarify the results

of Ref. 1 by systematic use of first-order expansions in

mass differences. With this linearized treatment of mass

differences we also study the 8 octet formed as a 8-P

*Work performed in part under the auspices of the U. S. Atomic
Energy Commission.

~ K. C. Wali and R. L. Warnock, Phys. Rev. 135, 31358 (1964).
M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Okubo, Prog.

Theoret. Phys. (Kyoto) 27, 949 (1962).

composite through 8* exchange. As other authors' '
have shown in models like ours, there is a precise "propa-
gation of the GMO rule" if only first-order terms in the
mass-difference expansion are retained. That is to say,
if the GMO rule holds for the constituent 8 and P
particles, it will also hold for the composite 8 or 8*.
We show that the coupling strengths of the composite
particles to their constituents also obey octet-type sum
rules if the constituent masses satisfy the GMO rule;
again, this result holds only to first order in mass differ-
ences. In the linear approximation we also study "octet
enhancement"; i.e., the idea of Tarjanne and Cutkosky'
that the bootstrap equations contain an intrinsic prefer-
ence for octet-type symmetry perturbations.

Although we have given much attention to the first-
order mass expansion, the most noteworthy result of the
paper is that the first-order approximation is actually
very poor. A comparison of exact dispersion integrals
with their first-order expansions reveals that the sum of
second- and higher order terms is often quite comparable
with hrst-order terms. It follows that the approximate

' J. R. Fulco and D. Y. Wong, Phys. Rev. 136, 3198 (1964).4R. F. Dashen and S. C. Frautschi, Phys. Rev. 137, B1331
(1965).

~ P. Tarjanne and R. E. Cutkosky, Phys. Rev. 133, 81292
(1964)~

e R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1333 (1963).
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equal spacing rule of the 8* levels in Ref. 1 cannot be
understood as merely a manifestation of the first-order
theorem on propagation of the GMO rule. Some more
interesting mechanism is at work. , in which the higher
order effects conspire to retain nearly equal spacing.
Study of this phenomenon may lead to some hints as to
why the GMO rule (as well as other consequences of first-
order octet-type perturbations) seem to work so well in
6tting experimental facts. It seems reasonable to ap-
proach the problem by a study of second-order effects,
for which the present paper is good preparation.

Section 2 begins with a review of notation and the
formulation of the model by means of the XD ' repre-
sentation. After these preliminaries the mass difference
expansion is treated. The discussion takes the form of a
straightforward perturbation theory for the eigenvector
and eigenvalue of the scattering matrix corresponding
to a bound or resonant state. First- and second-order
formulas for mass perturbations and first-order formulas
for coupling-constant perturbations are derived. Section
3 contains a review of the expansion of mass and coupling
constant perturbations as linear sums of matrix elements
of irreducible tensor operators. The first-order result on
propagation of GMO rule is obtained, and the general
form of mass and coupling-constant sum rules is stated.
The formulation for the discussion of octet enhancement
is set up. Section 4 contains the comparison of exact
dispersion integrals with their first-order expansions, for
the case of the decuplet model. In Sec. 5 the coupling-
constant sum rules are stated explicitly, and numerical
evaluations of coupling-constant perturbations are
carried out. In the decuplet case, the first order B*BP
coupling perturbations are compared with the exact
perturbations of Ref. 1. As one might have expected
from Sec. 4, they do not compare very well. However,
both calculations show that the 27 representation is the
one that mixes most strongly with the 1Q, and they agree
closely on the amount of 27. The predominant 27—IQ

mixing is associated with the suppression of the decay
mode I'i*~ Z+vr. In the case of the baryon octet, only
the first-order calculation has been performed so far. A
serious defect of our model is encountered; viz. , there is
a failure of vertex symmetry. If the residue of the 8'
baryon pole in the 8-P scat tering amplitude is compared
with the residue of the 8 pole in the 8'-P amplitude, it
does not agree as it should. This may be traced to our
omission of the 8*-P channels in the ED ' representa-
tion. The impossibility of ensuring both vertex sym-
metry and T matrix symmetry in ED—' procedures
based on single-particle exchanges is pointed out. Octet
enhancement in the linear bootstrap equations for the
baryon masses is verified. However, this treatment of
octet enhancement, as well as a similar one by Dashen
and Frautschi, '7 is criticized on two grounds: (i) the
linearization in mass differences is not well justified;

7 R. F. Dashen and S. C. Frautschi, Phys. Rev. 137, 31318
(1965).

(ii) the omission of 8*-P channels, which spoils vertex
symmetry, is a doubtful procedure. Some of the 8*-P
thresholds are quite comparable to 8-P thresholds. The
effects of mass differences on the positions of 8*-P
thresholds is expected to have an important bearing on
the octet enhancement question. Section 6 is concerned
with conclusions and the outlook for future work. The
Appendix is concerned with formulas for derivatives of
dispersion integrals with respect to masses.

gigi,
' 'w =wpi, wp&'(pi)p)

17 w wpi) wp j($1/2) )

(2 3)

J——' T"—
2 ~ i9

g;i' )w=wpi, wpg'(pp(p)'

(V'Vi)'; w= —wo', —wpi(dpi') .

These statements follow from the formula for q

q'(w) = L(w —wp )(w+wp;)(w —wi, )(w+wi;)7(4w', ' (2.4)
wp; ——M,+m;, wi; ——cV,—m;.

The baryon and meson masses of channel i are labeled
3I; and m;, respectively. We employ the matrix 2VD—'
representation for G; G=cVD ', where E is analytic in a
neighborhood of the physical cuts, and D is analytic

2. FORMULATION OF THE MODEL AND
THE MASS DIFFERENCE EXPANSION

As far as possible, the notation will follow that of
Ref. 1. The partial-wave P-8 scattering matrix is de-
noted by T= LT;p(s) 7, y = (J,I, I'), where s is the (com-
plex) energy in the zero-momentum frame, and the
indices i, j label the channels. T describes both orbital
states (i=JW pi) for a given J. For a physical value of
the energy w, T(w+i0) represents the physical ampli-
tude for one state, while T( w —i0)—is th—e amplitude
for the other. Thus, there are two "physical cuts":
(—~, —wp) and (wp, po). Which orbital state is found
as the limit from above the right cut is a matter of
choice. For notational convenience later on, we take it
to be the p state in both the J=—,'and J= sp problems.
In order to avoid threshold branch points and to insure
correct momentum dependence of our model T matrix,
we work with an associated matrix G. In the pi~, state,
G is de6ned in the following way:

G' (s)= L(s—wo')(s —wpj)7 '"T' (s). (2 1)

Here mo,- is the threshold energy of channel i, and the
square root is defined as positive for s real and greater
than wp, and wp, . In the ppi, state we have

G,"(s)= Lq, (s)it' (s)(s+wp, )(s+wp )7 T. (s), (2.2)

where q; is the momentum of channel i. If G is nonzero
and finite at thresholds (as it will be in our model), then
the T matrices of Eqs. (2.1) and (2.2) will have the
proper momentum dependence at thresholds:
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elsewhere. D has the representation

s—w "p;(w)cV;;(w)dw
D;;(.)=~;;——

)
„(w—w)(w —s)

(2.5)

where the momentum factor p; is defined so as to exclude
the region of integration (—w„, wo'). The subtraction
point w lies inside the interval (—wo, , wo;), and p; is
dined by

p'(w) = Iw —wo'Iq'(lwl)~(lwl —wo'),
= Iw+wo'Iq"(Iwl)~(lwl —wo, ),

To specialize on the model that we study, X is set
equal to the single-baryon exchange approximation for
G. In accordance with the bootstrap picture, ' the
baryons exchanged are the ~+ decuplet states 8* in the
case of the J=—,

' amplitude, and the ~~+ octet states 8 in
the J=—,

' case. Thus, the Jp* exchange produces 8 as a
8-P composite, and the 8 exchange produces 8* as a
8-P composite; P denotes the 0 meson octet. The E
matrix is computed assuming degenerate masses within
the 8, 8*, and P multiplets. Nondegenerate P masses
obeying the Gell-Mann —Okubo rule are introduced only
in the centrifugal barrier factor p of Eq. (2.5). Of the
various elements of the ED ' representation, the p
factor is most sensitive to mass di6erences. For this
reason, the simplest, if not the most reined, way of
accounting for mass differences is the one we have
chosen. The procedure is not entirely satisfactory, but it
at least has the advantage of yielding a symmetric T
matrix (see the remarks following Kq. (2.14) below).
The obvious proposals for improving the method lead
to difficulties. For instance, if E is set equal to the Born
matrix 8 computed with nondegenerate masses, the
resulting T matrix is not symmetric. Also, the integra-
tion over p;A;; in the D matrix may then encounter
singularities of E;; if the threshold of channel j is lower
than that of channel i. Symmetry of the T matrix is
ensured" if one solves the integral equation of the 5D—'
method with the kernel determined by the singularities
of the nondegenerate Born matrix. Unfortunately, that
method spoils the symmetry of the vertex function. The
J3'BP' coupling constant defined as the residue of the
j9' pole in the SP —+M' amplitude would not agree
with the residue of the 8 pole in the 8'P —+8'P ampli-
tude. "Further remarks on the problem of vertex sym-
metry are included in Sec. 5.

We also take coupling constant relations implied by
strict SU(3) invariance in calculating X. This approxi-
mation can be dropped without too much difBculty, and
in some future publication we intend to account for
perturbations of coupling constants (i.e., the coupling
strengths of the crossed-channel P-Jp states to the ex-

' G. F. Chew, Phys. Rev. Letters 9, 233 {1962).' F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 {1962).
»J. D. Sjorken and M. Nauenberg, Phys. Rev. 121, 1250

(1961);A. W. Martin, ibid. 135, 8967 {1964).
» K.. Y. Lin and R. E. Cutkosky, Phys. Rev. 140, 3205 {1965).

changed B or B*).For the present we are concerned
mostly with the perturbations of the direct-channel
coupling constants due to mass differences. A formalism
for ensuring consistency of the crossed- and direct-
channel coupling perturbations is presented in the
following.

To put Eq. (2.5) in convenient form, we use Eq. (2.6)
and make the change of variable m -+ —m in the range
of integration where m is negative. Then the D matrix
element takes the form

D;,(s)=S,,— dwq ~(w)

(wWwo;)h, ;&
—'(w) (w~wo;)h;;~+&(w)-

X
(w w)—(w s)— (w+w)(w+s)

(2 &)

E~M=f(w~M)' —m')/2w,

(E+M)(E—M) =q'. (2.10)

For the J=~ amplitude and ~+ baryon exchange, the
partial-wave projections A~, B~ of the invariant ampli-
tudes are

A~(w) =—4n.y(w)p(M+M)n(w)+(M —M)p)Q((x)/q',

Bi(w) =4~4(w)I:~(w) p)Q'(*)/q'—
~(w) =q'y(x —1)q' P=(E+M)'/3 (2.11)

x=1+)M'+m' (Ms+w')/2)/q', —
y(w) =((M+m')+a')/Pw'+u'7.

"S.C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

The upper sign is to be taken for J=-,', and the lower for
7=s. Superscripts (—) and (+) indicate odd and even
orbital states. In our model h;;( ~ is the degenerate,
single-baryon exchange amplitude for the p wave,
divided by (w~wo)q'~ '; (wo and q are the threshold
energy and momentum of the degenerate P Bsystem). -
h;;&+) is the corresponding amplitude for the s or d wave,
divided by (w~wo)q'~ '. Because of degeneracy of the
masses and the presence of only one type of exchange
graph for a given J, the energy dependence of h;, comes
out as a factor. Thus,

h"&+&(w) =h&+'(w)(Eo)" (2.8)

where Eo is a constant matrix and h(+& is a scalar multi-
plier. The following formulas define h(+)."
J=-,': 16xw(w+wo)h&+&(w)

=(E+M)I Ao, i+(w —M)Bo,i)
+(E—M)P—Ag, o+(w+M)Bg, o),

J=-,': 16am(wow)q'(w)h&+&(w)

=(E+M)PAg, o+(w —M)Bg, o)
+(E—M)E—A, ,+(w+M)B, ,). (2.9)

With the degenerate 8 and P masses denoted by SI
and m, the baryon energy E satisfies the relations
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A &(w) = (Si—cV)Q, (x)/q',

B&(w)=Q&(w)/V',
(2.12)

where again llf represents the exchanged particle's mass.
We discuss now the expansion in mass differences.

Since we are concerned only with pr/8 and p3/8 states,
we work with G(w+i0), w)0. After division of the
numerator and denominator by the constant matrix
Eo, the G matrix has the form

where

G(w+i0) =h(w)E(w+i0) ', (2.13)

The factor Q~ is the Legendre function of the second
kind. The bar over q or E indicates that the quantity is
to be evaluated at the mass M of the exchanged ~3+

particle. The function p(w) is an arbitrarily chosen
cutoff factor, which is included to obtain convergence of
(2.7). The "cutoR energy" (), is an adjustable parameter
to be determined later. For the J=~3 amplitude and
~+ baryon exchange, the partial-wave projections are"

then the first mass derivative is

BJ=I'
BM

" BP dw'

0 &9M 'N —K'
(2.18)

Higher mass derivatives are not necessarily obtained
correctly by carrying out further differentiations under
the integral sign.

Our next concern is the expansion of the mass of the
8-I' composite state in terms of the mass differences of
its constituents. In our model the latter occur only in
the expansion (2.16) of J. The mass of the composite
state is the energy m for which

det[ReE(w)) = detLNp '+J(w)) =0. (2.19)

In order to study Eq. (2.19) to first order in mass diRer-
ences, it is convenient to make use of a basis in which
Ã0 is diagonal. The diagonalization is accomplished by
an orthogonal transformation to states that transform
by irreducible representations of SU(3); viz. , the repre-
sentations contained in the direct product 8138. The
transformation to the diagonal matrix h. reads as follows:

h(w)=h& &(w), E(s)=/Vp '+I(s). (2.14)
(N, ),,=(B,P, ; IV!N, !B;P,; IV)

J(w; M;,m;8) =J(w; M,m)+ J)&((w; ~,m) (M;—M)
+J~~(w M m)(m. '—mp)+ . (2.13)

The choice of m' rather than ns as the expansion variable
stems from the superiority of squared meson masses in
satisfying the GMO rule. In terms of diagonal matrices
J, 835, ()m' and scalars Jp, J)k(, J ~, Eq. (2.15) takes
the form

J=Jp+ J)(r()M+J ~5m'+ .
=Jp+AJ. (2.16)

The first-order mass derivatives are easily evaluated,
although some care should be taken to justify differ-
entiation of the principal value integral under the
integral sign. This justification and also the question of
higher order mass derivatives are treated in the
Appendix. If the integral is written

"y(w'; I(/I, m)dw'
w, =M'+m, (2.17)

5') R'

I(s) is a diagonal matrix, obtained from the second term
of Eq. (2.7) by replacing h;;("& by h(+). Since Np is
symmetric, the symmetry of G follows from (2.13).The
Taylor expansion in mass differences refers to the real
part of I(w+80) Branch po.ints prevent a similar ex-
pansion of the imaginary part of this quantity. This
causes no difhculty, since the real part suKces to con-
struct the IC matrix, from which all physical results
may be derived. We denote the ith diagonal entry of
ReI by J(w; M;,m;8) and expand it in powers of M;
and m about the degenerate values M and es'.

s, r (IrI'r); (I8F'8); I I')

=Q U; }( U; = (UAU );;. (2.20)

The quantity

!

( 8 8 p,

UV, I V, I I

y«» = (cos|&)y(")—(sine)y(')

y (88) —(sing) P (4)+(c os&i)P (ss )
(2.21)

(2.22)

» J. J. de Swart, Rev. Mod. Phys. 3S, 916 (1963}.
"A. W. Martin and K. C. Wali, 5uovo Cimento 31, 1324

(1964}.

is the isoscalar factor of the SU(3) Clebsch-Gordan
coefficient for forming the representation p, from the
product of two 8's. (We employ de Swart's notation. ")
The index y distinguishes the two states transforming
according to the two equivalent 8-dimensional repre-
sentations that occur in 88. These states must be
chosen appropriately to obtain the diagonalization
(2.20). For the case of B exchange in B Pscattering, the-
correct states are the usual antisymmetric and sym-
metric tensor products, (t

('~) and p(8'). For B*exchange
in B Pscattering, one mu-st take states p(8»

which are obtained by a rotation":
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In the last line of Eq. (2.20) and in the following work,
the states transforming by SU(3) representations are
denoted briefly by Greek indices n, P, , while states
of a definite particle type are labeled by Latin indices
i, j, . . . In general, not all of the representations of
8!38 are actually present in the sum on o., since given
I, I' values are not present in all such representations.
In the new basis Eq. (2.19) reads

d et[A '+ UrJ(w) U]
det[A.—'y Jo(w) y Urh J(w) U]. (2.23)

The matrix A '+ Jo is diagonal, and the nondiagonal
perturbation term has the form

(U~AJU) s= (+o,hJ+o&),

as power series in the real parameter x.

w=wp+wix+wpx +
+=+o+%x+%x'+

(2.28)

[1V '+H(0)+xH'(0)+ 7
X[@p+x'ki+ ' ' ']=0, (2.29)

or
[1Vp

—'+H(0) ]To——0, (2.30)

(2.31)[1Vp
—'+H(0)]+o= —II'(0)@„

[1Vo
—'+ H(0)]%'2

= —H'(0)+i —(1/2!)H"(0)%'o . (2.32)

If H is defined by H(x) =J[w(x); 3E+xocV, m'+x8m'],
we have

J„=BJ/By(wp, 3E,m') and Jp= J(wp' M m),

the first few derivatives of H are

where the vector %0, the nth column of U, is an eigen-
vector of Eo. In the limit of degenerate masses, AJ With the notations

tends to zero and (2.23) becomes

det[h. '+Jo(w)7= g P. '+Jp(w)]=0. (2.25)

In our problem only one of the factors of Eq. (2.25)
vanishes —a factor corresponding to one of the 8 repre-
sentations in the J=-,' case, and the factor of the 10
representation in the J=—,

' case. If mo is the energy of
the unperturbed level we have

X '+Jp(wp) =0, (2.26)

for the appropriate o..
To solve (2.19) we employ a straightforward pertur-

bation Inethod. The problem is equivalent to finding the
energy w for which 1Vp '+J(w) has an eigenvector 0
with eigenvalue zero:

[1Vp '+J(w)]4'=0

We also wish to compute the vector +, since its com-
ponents are proportional to the coupling strength be-
.tween the composite state and its constituents (see the
discussion below). We replace the diagonal mass shift
matrices WI, bus' by xbM, xbm', and develop ze and 4

H(O) =J„
H'(0) =J„wi+J~83I+J 8m',
H"(0)= 2J„w,+J~„wi'+2(J~~B3I+J~~M bm') wi

+Jm~r&1V'+2Jia~mM8m'+ J~~~~(bm')'. (2.33)

Let 0'0 ——+0 be the eigenvector of Eo with the eigen-
value X of (2.26), so that (2.30) is satisfied. Following
the standard procedure of perturbation theory, one
takes the scalar product of (2.31) with %p to obtain wi.

wi= —J„'(Vp,M~o ),
~=J~"o~+Jmmpm'.

(2.34)

Substitution of the expansion 4i——gp„cs%'P in (2.31)
and formation of the scalar product with 4'o& yields

(2.35)

%p+4'i has unit length, to first order. The second-order
correction to the energy is

(0 „d,%P)' J„„1
(+o,~+o)'+—(+o,~'+o)(+o,~+o)

Xp' —X ' J' J.
——', (Vp, [J~~81V'+2J~~~RV5m'+ J~2~~(8m') ']4p), (2.36)

where 4'o=+0 . Thus, in first order the formulas re-
semble the ordinary perturbation formulas of the Hamil-
tonian formalism, but the analogy breaks down in higher
orders. The procedure just described naturally fails if
the unperturbed eigenvalues Xp become nearly degener-
ate. One must resort to degenerate perturbation theory
if (X '—Xp ')J ' is effectively of order 8M. In our
problem the nondegenerate theory applies.

The generalization to allow perturbations of the input

coupling constants is not difficult. The most interesting
case is that in which the same coupling constants occur
in the direct and crossed channels. In that situation
the requirement that the direct- and crossed-channel
couplings be equal leads to definite values for the
coupling-constant perturbations in terms of the mass
perturbations. We have such a situation in the baryon
problem if both parts of the reciprocal bootstrap are
considered together. I'hen both the BBP and B*BP
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couplings appear in direct and crossed channels. Now
the G matrix is a direct sum of the J=-,' and J=—,

' G
matrices, but the formalism described above still applies.
The coupling constants are proportional to the com-
ponents of 0, so the effect of perturbing the crossed-
channel couplings is obtained by the replacement'4'

Q~o~ go+M[4]; M;, =Q p;, , s@ii%'i. (2.37)
kl

Since 3~0 describes the unperturbed system, the pertur-
bation series for M begins with the erst order.

M(x) =M[+(x)]=M'(0)x+M"(0)x'/2!+ . (2.38)

To modify (2.29) the expansion of PlojM) ' is

required:

(1Vo+M)
—'=Eo '—Xo 'M'(0)Eo '+ . (2.39)

To express M'(0) we use (2.28) and obtain

the coupling constants, we work. with the following
representation of G(w+so):

G=L(1 ipL—) ') L=N(ReD) '. (2.46)

The diagonal matrix p has elements defined by Eq. (2.6).
The relation between the Hermitian matrix I. and G is
analogous to that between the usual reaction matrix
E and T. According to Eq. (2.14),

(w)="(w)[~ '+I(w)] '

so I. and Eo '+J have the same eigenvectors. Near a
resonance or bound state with energy m+, I. may be
represented approximately as

L=[y/(w~ —w)]4+1, y)0, %=%*, (%,%)=1. (2.48)

The eigenvector 4' satisfies Eq. (2.27) for w=w~. The
corresponding approximate expression for 6 is

M'-'(0) =Z p'i, w(+io+oi++o~+ii),
kl (2.4o) &(+ p+)7/(we w)— (2.49)

M'(0) = (c,e,) .

Here C is a vector with matrices as components. It is
given by

(2.41)+ii 2 (pi ski+ fiji,k) +0l q,

where k labels the vector components. The first-order
perturbation equation that replaces (2.31) is

[X +I,(,)]e,=[—I„(w,)w, —I (w,)m]e,
+(Xo 'CcVo ' 4'i)%o. (2.42)

The terms involving the meson mass shifts are sup-
pressed. since they enter in the same way as the bM
term. Let @i——pp„cp%'op and take the scalar product
of (2.42) with Coo', yNn. The result is

(X ' —'A ') c~= —Jsr(+o~, 3M%'o )

This formula may be ascertained by Taylor expansion
of (1—ipL) ', and proved by multiplying (2.49) on the
right by 1 ipI = 1——ipse/(w+ —w)%'4't. Equation (2.48)
is exact at w =wa in the sense that lim„„„,(w~ —w)L(w)
=y%'4't is an exact equation. In the case of a resonance,
Eq. (2.49) is not exact in the same sense; rather, a
formula like (2.48) holds for G at a complex point ws, on
a secondary sheet. Equation (2.49) asserts that only one
eigenvalue of 6 is nonzero at m =m~, which is not the
case in general. The narrower the resonance, the better
the approximation of Eq. (2.49). In the case of zero
width (a bound state) we have p=0, G=L, and Eq.
(2.49) is exact at wa. The work of Ref. 1 indicates that
(2.49) is suKciently accurate for the ii&* and I',*
decuplet resonances, but that it begins to fail slightly
for the broader X3i2*. For the case of a resonance we
have

or

+P X,—'X —'[(+o&P%'o ),+oP]cp. (2.43)
pgn

r/2
IrnG= y

(w~ —w) '+ I'/4 (2.50)

Q A~pep= J~(%'o&,bM+o ), yWn.
pgn

(2.44) r/2 = (+,p+)v.

After Gnding +& by solving these equations, we can
compute the first-order mass shift from (2.42):

wi= —I '(+o,Psi3M —X '(4P'i)]To ) (2 45)

In the vector-meson bootstrap problem, Fulco and
Wong" have effectively carried out the procedure just
outlined.

To derive the relation between the eigenvector 4' and

'4& Pote added irI, proof. The formalism described here does not
allow for perturbations of the kinematical factors involved in the
relation between + and the coupling constants that appear in the
Lagrangian. For a discussion of these factors see Eq. (5.22) ff and
Kq. (5.36) ff."J.R. Fnlco and D. Y. Wong, Phys. Rev. 137, 31239 i1965l.

We define the squared coupling constant between
channel i and the composite state as y+, where +; is
the ith component of %. (This is not the same as the
definition of the coupling constant via the Lagrangian.
For the relation between the two definitions see Sec. 5.)
Thus, the approximate equation (2.50) relates the ex-
perirnental width and branching ratios to the coupling
constants in the conventional way. In principle, the
comparison between theory and experiment need not
be based on the approximate equation. Ideally, one
would compute L from the experimental G by the exact
equation L=(1+iGp) 'G, and evaluate the coupling
constants from y@is=lim„„,(wi, —w)L, ,(w). The cou-
pling constant sum rules hold only for coupling cog-
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stants defined as residues of I., essentially because no
mass difference expansion of the momentum factor p
exists. Some related remarks are to be found in Ref. 16.

To find the reduced width y of Eq. (2.50) to first order
in mass differences, one needs the eigenvalue of I. near
m =m+ to first order. It is easy to check that to lowest
order in ()M the eigenvalue of Ep '+J(7()) for eigen-
vector 4 is

characterized by the equation

U(n) T„(~)U(n)
—'=g D„.„(»*(n)T„.(». (3.2)

Matrix elements of T„&» obey the Wigner-Eckart
theorem":

($„($48) T (P2)p (Ill))

p( )=l(;7+J,(~)+t +o..~(~)+,-j. (2.51)

Therefore,

h(~)/~(~) =v/(~* —~)' 7= —h(~*)/~'(~*) (2 52)

Now expand y(w~) about w~=7()p, and set z()~ —wp=7()i.
The result to first order in mass differences is

The symbol

I() III'""l[) 7) (3 3)
Y Vy V2 V3

py p2 p3~

h, h' Jo" 1
1+ ———Wi — (eo, i) 'eo ), (2.53)

Jo'- h Jo' Jo'

where prime denotes d/d7(), and all quantities are evalu-
ated at zo. Of course, we have neglected perturbations
of crossed-channel coupling constants in (2.53).

3. TENSOR OPERATOR DECOMPOSITION,
GENERAL FORM OF SUM RULES)

AND OCTET ENHANCEMENT

It is rewarding to expand the mass and coupling-
constant perturbations as linear sums of matrix elements
of irreducible tensor operators. The relevance of such
expansions to the discussion of bootstrap equations was
first shown by Glashow. "The usual sum rules come out
when the sum over operators is reduced to an octet
operator term alone. We briefly review the tensor opera-
tor formalism and its application to our model. The
formalism gives the setting for the idea ' of "octet
enhancement, " which is discussed at the end of this
section.

For the most part we follow de Swart's notation. "
I.et a finite-dimensional vector space 6 be a representa-
tion space of SU(3). The unitary operators U(n) repre-
sent the group on 8; o. denotes a group element. In the
cases of interest U(n) is reducible, so (' breaks up into
invariant subspaces corresponding to irreducible repre-
sentations. If the vectors of an invariant subspace for
irreducible representation p are denoted by (t„(», the
following equation defines the unitary matrices D„.„(»(o,)
constituting the representation p ..

is the Clebsch-Gordan coefficient for combining repre-
sentations p~ and p2 to form p3. The index y distinguishes
possible equivalent representations in the direct product
p&p2. The number of terms in the sum on y equals
the multiplicity of p3 in p&p2. Thus, in the Clebsch-
Gordan series of 88, two equivalent 8-dimensional rep-
resentations occur; these are distinguished by the value
of y. Equation (3.3) specifies the dependence of the
matrix element on v& and v3, and thereby leads to sum
rules for the matrix elements of a fixed operator.
()ipll T&&') ll)ii)~ is called the "double-bar matrix element. "

If T„,'») is an irreducible tensor operator, then it may
be written in the form

( olla'(""ll»).
P1P3&1&3+

p, y pg p37
Xy„(") (pp)t (3 4)

Vg V2 V3

The sums on p~ and p3 run over all irreducible repre-
sentations in the representation space 8. Of course, some
of these representations may be equivalent. There will be
separate terms in the sum for any two equivalent repre-
sentations. The vectors p„'» form a complete, orthonor-
)nal set in ('; the p„&»t are the corresponding vectors of
the dual space. Given the completeness of the p, (», Eq.
(3.4) just expresses the Wigner-Eckart theorem. There is
a sort of converse of the Wigner-Eckart theorem: viz. ,
that the right-hand side of Eq. (3.4) is a tensor operator
of type T„(») for arbitrary values of the double-bar
matrix elements. By taking all but one of the double-bar
matrix elements equal to zero, we conclude that the
following expression is a tensor operator of type T„(&'):

U(())(t) (y) —P D, (u)((i)y„, (» (3 1)
py p2 p3~

(Pl) (P3) 7

v]v3 Vj V2 V3

(3.5)

The index 7 stands for (I,Ip, Y) collectively. An irreduci-
ble tensor operator T, '» is an operator acting on C. It is

6 G. Rajasekaran, Xuovo pimento 37, 1004 (1965)."S. L. Glashow, Phys. Rev. 130, 2132 (1963).

The converse Wigner-Eckart theorem may be estab-
lished by Eq (3.2), Eq . (3.1), and. the properties of the
D's and the Clebsch-Gordan coefhcients. "

A matrix element of an entirely arbitrary operator
may bc expressed as a linear sum of matrix elements of
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the type (3.3). With 2 arbitrary and pl and pp fixed, we

regard the quantities

(P (P3) gQ (Pl)) (3.6)

as the components of a vector; the components are
labeled by index-pairs (vp, vl). The Clebsch-Gordan co-
efficients provide a complete set of vectors in terms of
which this vector may be expressed. Write the orthogo-
nality condition in the form

f) 1 Pp P~ Wi P2 P~
=S„„.S„.S.. . (3.7)

&8&1 1vi —Pp P Pi Pp V

where p is the complex conjugate of the representation p,
and —v stands for (I, I,, —F—). Next apply the
"crossing symmetry" of the coe%cients":

Here E; is the dimension of representation p, ;, and
$2 ——+1 is an arbitrary phase factor. By substituting
(3.8) in (3.7), we find

Zl i

= a„„.a„.a,„.. (3.9)
1@2 &$&1(vi P P2 ) Pi V V2 1

It follows that vectors with components

py jx p3~

form an orthogonal set with $~Ã3 members, and hence
a complete set. Therefore, there exist coefficients n()M, y, v)
such that

py p ps&
(y (Vs) gy ,(P1))—P n(p, y, v) . (3.10)

P'Y~ P] P Pa

Of course, Eq. (3.10) reduces to Eq. (3.3) if 2 is an
irreducible tensor operator. If A is not a tensor operator,
Eq. (3.10) may nevertheless simplify in certain cases.
For example, if A commutes with I, I3, and I', then only
the terms with v= (0,0,0) occur in the sum. In this case
there is a further reduction due to the absence of
v= (0,0,0) in certain of the representations )(1.

The Gell-Mann —Okubo2 (GMO) mass formula follows
from Eq. (3.3) and the assumption that the mass-
perturbation operator is a tensor operator of the type
T ('), where the subscript 0 means v2

——(0,0,0). Thus "
's R. J. Oakes and C. N. Yang, Phys. Rev. Letters 11, 174

(f963).

fgl )l2 122 p

(Vl V2 P,

+8 Pl )12 P2y')= f (—)(&2+ &)1
~

(3 g)
-X2- Pl Vp P21

i'll Iw (+p) 1~+pi ) 1

6=Jpl8M+I 18m2.
(3.12)

If the constituent masses 83f„and bm„' obey the GMO
formula (3.11), then the corresponding mass operators
b3f and bm' are tensor operators of type To('&. This
follows if we note that (+p), l)M%'pl ) may be regarded
as a matrix element of the operator

8M =1,g bM, -Q y„,(')y„(»t
&1

8 8 8~Sg +..(')+,.(') ~ a.„(3.13)
v2v v2 0 v2

where indices 1 and 2 refer to rnesons and baryons,
respectively, and the a~ are arbitrary real numbers. By
Eq. (3.5)& 1238M2 is clearly a Tp'" operator. Now since
m&z is given as a matrix element of a To(') operator by
Eq. (3.12), it will obey the GMO formula. More
generally the mass-perturbation operators 63f and ben'

might be a linear combination of To&" and a singlet
operator To(". This would only add terms independent
of I and V to the GMO formulas of the 8, 8*, and
I' multiplets.

The origin of the coupling-constant sum rules is
immediately apparent from Eq. (2.35). The vector 4',
of coupling-constant perturbations is expressed as a sum
of matrix elements of mass-perturbation operators. If
the latter are irreducible tensor operators, their matrix
elements may all be expressed in terms of a few param-
eters by means of the Wigner-Eckart theorem. With an
octet mass perturbation we get n coupling constants
expressed in terms of m parameters, with m&n. Elimi-
nation of the m parameters yields n —m sum rules. The
sum rules for BM' and 8*BI' couplings are worked out
explicitly in Sec. 5.

The idea of "octet enhancement" is that equations
of the bootstrap type may actually force the mass-

@If„and bm„' are proportional to the quantity

(y (» Tp(')y (»)=bI'+ct 2I(I+1)—!I"
—2P(P+2) —pg(9+2)+9(P —V)'j, (311)

where the right side is an evaluation of the right side of
Eq. (3.3). Here p(q) is the number of upper (lower)
indices in the tensor construction of representation p.
One requires that v2 ——(0,0,0) to ensure that the mass
perturbations do not result in nonconservation of I,
I3, or I'.

We now return to our dynamical model in which the
8 or 8* states are formed as 8-I' composites. We show
that to first order in mass differences the validity of the
GMO formula (3.11) for the constituent 8 and P
particles will imply its validity for the composite states.
This fact is a trivial consequence of Eqs. (2.34) and (3.3).
After restoration of an index X indicating the I, I3, and
I' values of the composite state, Eq. (2.34) gives the
mass shift m~q of the composite state as follows:
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RV„=Q A „),RV),+D„, (3.14)

where the 8M„are the perturbations of the baryon
masses, and D„ is proportional to the meson squared-
rnass perturbations bmq'. In a more complete model, D„
would contain many other terms. As far as the following

discussion is concerned, D„can be considered as an un-

known quantity from an "exact" theory. We use the
vector notation ()M=AbM+D, where A is a 4&(4
matrix. Mass-perturbation vectors (')M with components
proportional to diagonal matrix elements of T0(» form
a complete set of eigenvectors of A. In fact, a complete
set of four eigenvectors of A may be constructed from
the following quantities:

perturbation operator to be predominantly an octet
tensor operator. To see how this goes we take the
simplest kind of bootstrap equation for mass pertur-
bations. The equation is Eq. (2.34) for the case of the
8 octet formed as a 8-E composite. It may be written
in the form

P [+")',A4 "~')]c =X(: . (3.19)

The matrix of (3.19) is real and symmetric, and its
eigenvalues are distinct (cf. Sec. 5). The two orthogonal
solutions of (3.16) lead to eigenvectors
which are orthogonal in the sense of (3.17). The A

matrix may now be written in spectral form as follows:

+ '"'A "+),(")g)
@=27,8', 8P, 1

Av —[@(v) A@(»]
(3.20)

By using a similar spectral form for (1—A)—', Eq. (3.14)
may be transformed to

of type T0(&', p=27, 8, or 1. If p, =27 or 1, then Eq.
(3.18) and the Wigner-Eckart theorem show that
(A l)M)„ is also proportional to 4'„(&), so 4'„(&) is an eigen-
vector of A. On the other hand, if 035„is proportional to
+„(8~) or +„(",then (A (1M)„will be a linear combination
of 0'„(' ) and 0'„(8'). One can And two orthogonal corn-
binations of +("' and 0 ('& which are eigenvectors. If
the eigenvectors are written 4=(;,+")+c,+(", the
eigenvalue equation is

()M', =Q (1—A &)
—'[+(»,D]+„(». (3.21)

8 8 8,
@(8)

g„=2I+1. (3.16)

We use a square bracket notation for scalar products
based on this metric:

[@(~v) @(v')")]=P +(&v)g„+(&'v') = $„„$~~.. (3.17)
I, F

Now consider the equation defining A:

(A l)M)), ———(J))r/I„) (%0),(" W/I%'0), (8)) . (3.18)

If in (3.18) we take 8M„proportional to one of the four

quantities 4„(» of (3.15), then WI is a tensor operator

+„&» is proportional to (p ('),TD'&)p "') for )((=27 or 1,
since 8 is involved only once in 8327 or 81 [i.e., the

sum over y in Eq. (3.3) contains only one terin]. On

the other hand, (p„"),T0("g„(") is proportional to a
linear combination of 4'„&'& and 0'„('), since 8 is included

twice in 88. Only the representations p, =27, 8, 1 are
allowed for mass-perturbation operators of the octet
baryons, since these are the only representations in 8(38
with I=I3——V=O. The quantity 0'„(» is independent
of I3 for fixed I and V. Thus, the eight values of

) = (I,I3, V) yield only four distinct values of 4'„(»; these

make up the four-component vectors on which A acts.
Orthogonality of the eight-component vectors with com-

ponents (3.15) follows from Eq. (3.9) if it is recalled that
v&= v3 when v=0.. To arrange for orthogonality of the
four-component vectors we introduce a metric

The viewpoint of "enhancement" is that one value of
A & may be much closer to 1 than all the others, and that
the corresponding term of Eq. (3.21) will dominate. Of
course, it is assumed that largeness of (1—A") ' will not
be nullified by smallness of [4(&),D]. Very little is
known about D in general, so this assumption can only
be tested within the context of some particular model.
In Sec. 5 we show that one of the A (')'s is indeed much
closer to 1 than A ("),so the conjecture of octet enhance-
ment is verified for our simple model. In the model the
ratio A ( ())/A (2~) depends only on group theory. To the
extent that the model is realistic, we have something like
a group-theoretical explanation of octet enhancement.

The reader familiar with the literature will be aware
that the material of this section is not very original. "4 "
We have presented this review in order to bring the
notation into accord with that commonly used in the
theory of angular momentum, and to show more clearly
the role of the Wigner-Eckart theorem.

4. TEST OF THE ACCURACY OF MASS-
DIFFERENCE EXPANSIONS

In the case of the decuplet model we compare precise
numerical evaluations of the dispersion integral J with
its first-order expansion in mass differences [cf. Eq.
(2.15)]. The model was described in Sec. 2. It is the
same as the model of Ref. 1, except that the values of the
unperturbed masses have been changed slightly. In the
present work we assume that the mass perturbation
operator is purely of octet type [as in Eq. (3.11)]while
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in Ref. 1 it was taken to be octet plus singlet. Thus, the
unperturbed masses are M=-', (M~+Mq) =8.255m and
m'=2(m '+m ') = (2.88m )' instead of the values
%=M~, m=m of Ref. 1. The exchanged mass M is
taken to be 11m„.This relatively large value is necessary
to avoid a spurious overlap of left and right singularities,
an overlap due to the approximation of including mass
differences only in the centrifugal barrier factor p. The
subtraction point cb has the value 3m, in agreement
with Ref. 1.

Table I shows the comparison of exact and first-order
integrals for the various channels over a range of

energies. Ke tabulate J—Jo and Ji—Jo, where J, Ji,
and Jo are the exact integral, its first-order approxima-
tion, and the unperturbed integral, respectively. Since
Jo is large with respect to the perturbations, this way of
tabulating gives a clearer idea of the accuracy than a
simple comparison of Ji with J. The table shows that
the accuracy is rather poor. In fact, the sum of the
second- and higher order perturbations is often not much
smaller than the first-order perturbation. The ratio of
these quantities, (J—J&)/(J&—Jo), is shown in the table.

The poor accuracy of the first-order expansion brings
out some interesting questions. In particular, there is

TAsLE I. Numerical values of the dispersion integrals: Jp is the integral evaluated with the degenerate masses, J the integral
evaluated with the actual masses, and Ji the integral evaluated using the erst-order mass expansion.

Jp J—Jp Jg —Jo (J—Jg)/(Jy —Jo) J—Jp Ji—Jo (J—Ji)/(Ji —Jo)

8.5
9.0
95

10.0
10.5
11.0
11.5
12.0
12.5

—0.01442—0.01625—0.01822—0.02040—0.02283—0.02572—0.02947—0.03300—0.03621

—0.00597—0.00700—0.00774—0.00808—0.00797—0.00721—0.00540—0.00361—0.00195

—0.00202—0.00244—0.00301—0.00385—0.00547—0.00633—0.00586—0.00649—0.00449

—0.00054—0.00074—0.00112—0.00177—0.00223—0.00218—0.00117—0.00023
+0.00056

3l—vr

—0.00315—0.00380—0.00463—0.00574—0.00744—0.01126—0.01280—0.01069—0.00868

N —E
—0.00181—0.00214—0.00257—0.00309—0.00387—0.00542—0.00642—0.00747—0.00557

Z —m.

—0.00050—0.00062—0.00081—0.00105—0.00149—0.00259—0.00274—0.00174—0.00090

0.90
0.85
0.67
0.41
0.07—0.36—0.58—0.66—0.78

0.12
0.14
0.17
0.25
0.20
0.17—0,09—0.13—0.20

0,08
0.19
0.38
0.70
0.50—0.16—0.57—0.87—1.62

0.00076
0.00092
0.00110
0.00135
0.00168
0.00225
0.00336
0.00360
0.00288

0.00188
0.00223
0.00263
0.00315
0.00379
0.00477
0.00644
0.00766
0.00826

—0.00168—0.00228—0.00321—0.00394—0.00435—0.00417—0.00296—0.00180—0.00077

Z —E
0.00084
0.00103
0.00126
0.00159
0.00208
0.00326
0.00364
0.00289
0.00222

—E
0.00229
0.00276
0.00334
0.00414
0.00532
0.00797
0.00912
0.00776
0.00645

A —m-

—0.00131—0.00159—0.00197—0.00248—0.00330—0.00523—0.00580—0.00446—0.00327

—0.09—0.12—0.13—0.15—0.19—0.31—0.08
+0.25
+0.30

—0.18—0.19—0.21—0.24—0.29—0.40—0.29—0.01
+0.28

0.28
0.43
0.63
0.59
0.32—0.20—0.49—0.60—0.77

0.00109
0.00131
0.00157
0.00192
0.00237
0.00311
0.00447
0.00528
0.00510

0.00129
0.00158
0.00195
0.00247
0.00327
0.00520
0.00576
0.00443
0.00325

—0.15—0.17—0.20—0.22—0.27—0.40—0.22
+0.19
+0.57

0.00103
0.00118
0.00132
0.00150
0.00161
0.00175
0.00268
0.00339
0.00387

0.00095
0.00111
0.00128
0.00150
0.00175
0.00213
0.00274
0.00313
0.00334

0.08
0.06
0.03
0—0.08—0.18—0.02

+0.08
+0.16

0.00003
0.00006
0.00008
0.00013
0.00020
0.00038
0.00068
0.00027—0.00003

A.—E
0.00004
0.00007
0.00010
0.00016
0.00027
0.00062
0.00058
0.00016—0.00015

—0.25—0.14—0.20—0.19—0.41—0.39
+0.17
+0.69—0.80

0.0021.3
0.00252
0.00298
0.00355
0.00428
0.00534
0.00713
0.00851
0.00935

H

0.00273
0.00331
0.00403
0.00502
0.00650
0.00992
0.01125
0.00930
0.00749

—0.22—0.24—0.26—0.29—0.34—0.46—0.36—0.08
+0.19
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the question of how to explain the "propagation" of the
GMO rule that was obtained in Ref. 1. In that work the
GMO equal-spacing rule for the decuplet held approxi-
mately, in spite of the presence of perturbations of all
orders in the constituent-particle mass differences. Devi-
ations of the level spacings from equality were of the
order of 10@~ of the spacings themselves. Table l indi-
cates that this situation cannot be understood merely
as a manifestation of the erst-order result on propaga-
tion of the GMO rule (i.e., that to first order in mass
differences the composite states will obey the GMO rule
if their constituents do). Higher order effects are cer-
tainly substantial, but they somehow conspire to give
smaller deviations from the GMO rule than would be
expected from a casual look at Table I. Something of the
sort was already apparent in the work of Ref. 1, where
the energies of the decuplet states were plotted as a
function of the symmetry perturbation strength x
(Fig. 2 of Ref. 1). Since the octet mass-perturbation
operators of the constituent particles are proportional
to x, any curvature in the graphs of decuplet energies
versus x is due to contributions nonlinear in mass differ-
ences. There is appreciable curvature in the graphs of
Ref. 1, except for the 0 graph. The ™*,F*, and E*
graphs all bend in the same direction. The amount of
bending increases with isospin in such a way as to
maintain approximately equal spacing. It is hoped that
a close study of the second-order formula Eq. (2.36)
will throw light on this interesting behavior.

S. SUM RULES IN EXPLICIT FORM AND
NUMERICAL EVALUATIONS

To illustrate the general discussion of Secs. 2 and 3,
we consider specific details of our two models: (a) the
J"=~+ states 8* formed as 8-P composites through
B exchange, and (b) the J~=-,'+ states B formed as BP-
composites through 8* exchange. In both models sym-
metry-breaking effects arise as a consequence of mass
splittings within the component baryon and meson
octets. For the component masses we take GMO
formulas. The mass splittings are treated according to
the formalism of Sec. 2.

(a) The 8* Decu1&let

Reference 1 contains a detailed treatment of the 8*
model. In that work the mass-difterence expansion was
avoided, but there was a consequent lack of trans-
parency in the calculations. The remarks of this and the
previous section are intended to elucidate the purely
numerical results of Ref. 1..

As in the previous section, the mass-perturbation
operator is assumed to be of purely octet type, so that
the degenerate 8, P, and 8* masses are given by
M=-'(My+My) m'= '(m -'+m~') M*=Mr, ~. Accord-
ing to Eq. (3.8) the various mass shifts may be expressed
in terms of matrix elements of irreducible tensor opera-
tors T„~», with & =(I,I3,F)=(0,0,0). For example, for
the baryon octet,

%e consult the tables of de Swart for the coefficients of
Eq. (5.1), and invert the equation to obtain the follow-
ing expressions:

M&'&= ,' )28M'~+--8Mg+3M z+2bMg j,
8M &"&= (1/+5) L

—M'»t —8Mz+3RVz —RV-.$,
M('+) =M~ —M™,
Qf ~»& = (9/8+5)L2RV~ —3M'g —8Mg+2WII„-.j, (5.2)
bm'&'& =-'(48mx'+8m +38m j

bm' &"& = (1/Q5) L
—28m&r2 —Bm '+38m 'j

bm'&"& —(9/8+5)L48m '—3&m '—&m 'j
The subscripts s and e refer, respectively, to the sym-
metric and antisymmetric octet representations. The
perturbations of the 27-type are small, and by defining
the degenerate masses as we have, the singlet-type
perturbations are also made small.

Similar mass-shifts characteristic of the representa-
tions 1, 8, 27, and 64 may be introduced to describe the
decuplet mass shifts (these are the representations in
10 10).

1 1
8M~ ——8M~ "&+—53II~'8&+ Mg""+

2@2 3+7 8+14
83f «4)

SM». ——m, &» M, «4),
9+7 2/14

(5.3)

bM~ &"— 8M~ &"&+— bM~ &''&,

2&2 3+7 4+14

0Ma 8M~&'& ——8M~&'& + RV——~&"&-
92 Q7 2+14

835 «4) .



MASS —D IF F ERE N CE EFF E CTS IN BARYON M ULTI P LETS 1365

From Eq. (2.34) it follows that

—J (M*)(&My&"=6&'&,

—J (M~)I&M &'&=(1/+10)h&"&+(1/V2)h&'&
—J (M*)I&M~ &27& = (+35/15) 6& "&,

8M (64)=0

where

(4'()/' A4()")
+os

P=27, Ss, 8&s g yp
—gP

(5.& )

The sum over P includes only 27 and 8, since these are
the only representations in 88 which are also in 81310
(6+()'() contains only the representations in 810). By
the Wigner-Eckart theorem LEq. (3.3)j we have

]10 8 P
(+o',~+o'")=

I (pllll»)
«Zl OO 11

(5.7)

Also, the components of the %0's are just isoscalar
factors:

8 8 P
+o;~=

(I,V,); (I,Y,); IY)
(5.8)

We express the +i's in terms of the parameters

(pll ~ll 1o)
(Pp =

Ago
'—Pp ' (s.9)

a&»& = Jsr(M*)8M&»&+ J„(M*)(bm') &»&. (5.5)

If 5'")=0, as is nearly the case experimentally, then
the GMO formula holds for the 8 octet. In that case,
Eqs. (5.4) show that the GMO formula will also hold
for the model of the decuplet 8*, since only Bf~(') and
BM~(') are nonzero.

We now turn to the sum rules for the B~BP coupling
constants of the model. In the lowest order of mass
differences the coupling of 8» ~* to 8;P; is the ith com-
ponent of the vector p'"0' where p is given by Eq.
(2.53), and %=%'()+4& is defined by Eqs. (2.30) and
(2.35). As usual, we assume that the mass-perturbation
operator 6 is a To(" operator, in which case +i becomes

and Singh" we de6ne some additional parameters:

p= e&P27, q= 5+s„
(5.12)

r = —(1/+5) &Ps. , s =—(1/2&2) S.
The X's are expressed linearly in terms of these
parameters:

X(N*cVor) = 1+(5/4) p—s,
X(N*ZE) = 1—(5/4) p—s,
X(Ft*h.7r) = 1+p+2q,
X(I'g*Z~) = 1—2r,

X(F'&*ZE)= 1+p —3q+r,
X(Yt*Zt&)= 1—p —2q,

X(F't* E)=1 p+3q+r—,

X( * s.)=1+-,'p+3q —res,
X( *AE)=1+-,'p-q+r+s,
X( ~ZE) = 1——,

'
p—3q —r+ s,

X( * /)r=1 ,'p+—q+—r+s,

X(Q E') = 1+2s.

(5.13)

These equations agree with the equations of Gupta and
Singh if their parameter a is put equal to 1; u is merely
an over-all scale factor which does not affect sum rules.
The sum rules stated by Gupta and Singh are obtained
by elimination of p, q, r, and s in Eq. (5.13).The Gupta-
Singh X's are not precisely the same quantities as ours,
but they satisfy the same sum rules.

There is a rough consistency of the sum rules from
(5.13) with the coupling constants computed in. Ref. 1,
for values of the symmetry perturbation strength x at
or near its maximum value of 1. If the sum rules are
written as P l&;X;=0, then

l P X,X;/8Xl is about 0.25
at worst, where bX is an average magnitude of pertur-
bation of the X's. This degree of failure of the sum rules
seems consistent with the magnitude of higher order
mass perturbations reported in the previous section. As
in the case of the mass sum rule, the failure is perhaps
less than one would have guessed from Table I.

To make a comparison with the nonperturbative
calculation of Ref. 1 we compute the first-order coupling-
constant perturbations with exactly" the dynamical
model used in Ref. 1. The double-bar matrix elements
involved are as follows:

The Wigner-Eck. art theorem also allows us to give the
I, I' dependence of y'I' in terms of the single parameter

1 h' J()")—'
l(10ll~ll10)+(10ll~'II10) . (s.1o)

2J()' h J()' I

(27ll~ll10) = —(1/v'5)~& &-y-', z& -&

(S.llall 10)= —(1/Qs) z "-—-'z ",
(8.ll~li10) =l~ "',
(1oll~ll10) = (1/+10)~&8 &+ (1/vz)~&8. &.

(5.14)

We state the sum rules in terms of the quantity

X. +~1/2/+ ~ 1/2 (5.11)

i.e., the ratio of the coupling constant to its degenerate
limit. To make correspondence with the work of Gupta

+ V. Gnpta and V. Singh, Phys. Rev. 135, B1442 (1964).E.
Johnson and E. R. McCliment, ibid. 139, 3951 (1965), have
derived the Gupta-Singh sum rules in a dynamical model based
on third-order perturbation theory.' As we remarked in the last section, the model of Ref. 1 uses
3E=3Eq and m=m„as the unperturbed masses, instead of the
values stated above, which are appropriate to a pure octet mass
shift operator.
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where

(+sv~~io) &(~x~ ~XEc)

)
~10 ~27 ~10 ~27

(5.18)

QBP J 3MB+J 2@"2P (5.19)

The E and 7t- masses differ greatly from the unperturbed
masses 3E~ and m„, while Z and E masses are close to
the unperturbed values. Thus, A~ —A~lk is relatively
large. Thefactor P.io '—Xvv ') 'isalsolarger thancorre-
sponding factors for other representations. This means
that of the various nonresonant representations, the 27
is the closest to resonance. For an F/D ratio corre-
sponding to f=0.326 (notation of Martin and Wali" )
we have ()'sv i—)'io i) i=158gs/4m', Ps, Xio )
= —1.014g'/4vr () s

'—) io ') '= —0.675g'/4~. Given
the 27 amplitude in the A* state, the 27 amplitudes in
the V* and * states of Eq. (5.16) are determined by
Clebsch- Gordan coefFicients alone.

The dominant 10—27 mixing helps account for the
small experimental branching ratio R=(Vi*~ Z+vr)/
(P'i*~A+~). If the pure SU(3) prediction for this
ratio is corrected only by centrifugal barrier factors,
8=0.16 is obtained. The experimental upper limit for
R is about 0.05. Equations (5.17) lead to R=0.07 (foot-
note 20 of Ref. 1). This decrease is mainly due to the

"A. W. Martin and K. C. Wall) Phys. Rev. 130, 2455 t', 1963).

The quantities ~&" and ~, &s' are defined in (5.5);
differs from d(') by a minus sign in the meson

term:

g(ss)- J~(Me)Qf(s') J ~(M@)(Q"2)(ss) (5.15)

With numerically computed values of (5.9), we use

(5.6) to obtain the first-order coupling-constant vectors.

(Ee)=0.98@'o+0.162%'v

%(V*)=0.99% is+0.123% vv

—0.014+'+0.011+", (5.16)

4("*)=0.997%'"+0075%"—0.014%'+0.011%"

We give the corresponding nonperturbative expressions
of Ref. 1 for comparison.

+(1V*)=0.98%"o+0.18%'v,

+(7*)=0.994"+0.13%"+0.0007%'
+0.0084'+0.0034", (5.17)

~( *)=0.997%"+O.ON'sr+0. 001%"+0.007%'.

The first-order theory does rather well in predicting the
amplitude of the strong 27 component, but its account
of the weaker components is poor. In the amplitudes for
the weaker components there are near cancellations
between several large terms. This may account for the
difference between the exact and first-order results. The
large magnitude of the 27 component can be understood
easily in the first-order theory. In the E* channel the
amplitude of the 27 term is

The energy m at which this equation is satisfied is already
known from the complete calculation. We solve for 4
by first-order perturbation theory with Urdj(w)U as
the perturbation. This amounts to replacing 6 by ~j(w)
in Eq. (2.35).The results are closer to the exact equation
(5.17) in the sense that 8,, is suppressed relative to 8,:

4'(1V*)=0.98%"+0.1884",
~(F*)=0.99+"+0.1284"+0.0004%'"

+0.013@s—0.002%"o (5.21)
4'(Z*) =0.9974"+0.0724"—0.00164'+0.0114'.

In Ref. 1 it was noted that the calculated coupling
constants did not agree with the sum rules of Sudar-
shan. "The reason for the disagreement is merely that
the coupling constants of Ref. 1 were not calculated
with sufficient numerical precision. The Sudarshan sum

rules contain a large number of terms, so that the
accumulated roundoff error becomes troublesome. These
sum rules, although stated in terms of squared coupling
constants, are equivalent in first order to linear com-
binations of the Gupta-Singh" sum rules. The con-
nection between linear and squared sum rules is trivial.
The linear rule has the form g X;X,=O, where the X;
are all equal to 1 in the degenerate limit. Thus, if
X;=1+8X; we have P X;3X;=0 and PX;=0. It
follows that P X;X'v=0 is correct to first order.

The coupling constant GB*Bp defined via a Lagrangian
in Ref. 1 is related to the y'l'4 that we have been dis-

cussing by the following equation:

12'B*'~B (BP)i
v+,'f'

4m Ms*+Ms mp—(5.22)

Here p; is an isotopic spin factor, which may be looked

up in Fq. (7) of Martin and Wali. "One may show that
the G's (dividecl by their symmetric limits) satisfy the
sum rules as well as the X's, provided that the factor
multiplying p% P; in (5.22) is expanded to first order
in mass differences.

2' E. C. G. Sudarshan, Proceedings of the TopicaL Conference on
Recently Discovered Resonance Particles {Ohio University, Athens,
Ohio, 1963); this/paper contains a revision of the work of C.
Dullemond, A. J. MacFarlane, and E. C. G. Sudarshan, Phys.
Rev. Letters 10, 423 (1963).

fact that 0'7 contains no Z-x component, while the A~
components of 4" and 0"7 add.

In view of the disagreement between Eqs. (5.16) and
Eqs. (5.17), it is desirable to find a simple check of
Eqs. (5.17), since the latter were obtained from a rela-

tively complicated computer program. Such a check is
provided by first-order perturbation theory, but with a
different choice of the perturbation operator. We write

Eq. (2.27) in the form

$A '+Jo(w)+Urhj(vr)Uj+=0. (5.20)
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M~ ——6.97m„, Mg ——7.81m,

(b) The B Octet

Calculations for the —', + octet reported in the following
are all to first order in the mass differences. At present
there are no exact evaluations with which to compare
the first-order results.

The constituent 8 and I' masses are given by
GMO formulas, with parameters chosen to fit the
observed masses as well as possible. As in Sec. 4, the
unperturbed masses are M=-,'(Mq+Mx) =8.255m and
m'=-', (m„'+m. ') = (2.88m, )'. The exchanged decuplet
mass is M=11.0m which is somewhat larger than the
degenerate decuplet mass 3f

=Afar,

*——9.92m appropri-
ate to a pure octet mass-perturbation operator. The M
value was chosen to avoid an overlap of left and right
singularities, as explained in Sec. 4. The matrix Ep
depends on a single coupling constant G~*~~'. In addi-
tion, we have as free parameters the subtraction point 8
and the cutoff energy a of Eq. (2.11). The B*BP
coupling constant was given the value obtained in the
pure symmetry limit of the model of Ref. 1; viz. ,
G~~s~'/4z =0.09. As in the decuplet case, the average
level spacing depends strongly on S. On the other hand,
the average mass of the multiplet depends most strongly
on a. By fitting one of the observed level spacings the
subtraction point is essentially fixed. With 9=3.0m
and a=7.25re we obtain the following bound state
masses:

values obtained from other considerations [limited
empirical evidence and U(6) theory]. As Martin and
Wali showed, "the choice f=0.326 guarantees that only
the 10 representation resonates in the octet-exchange
model of the decuplet. As far as the BBI' coupling-
constant sum rules are concerned, the value of 0 may be
arbitrary. The first-order perturbation of the coupling-
constant vector is

p=2V, lp lp, 82, 1

(4'Os 6+O8')
+pP

A8, '—XP
' (5.24)

h/ J 11

(+ 81 Q+ 81)

2Jp h Jp'

1
(Q 8yQ+ 8z)

2Jp' 4p,' (5.25)

For X(ZZ~) this expression makes no sense, because
+0,"vanishes. In this case +„'is replaced by Q(6/5).
It should be noted that the X; do not reduce to unity
in the pure-symmetry limit. As in the decuplet case, we
introduce parameters to describe the off-diagonal per-
turbations. In the notation of Eq. (3.3),

We define the vector X with components X; in terms of
+=+0+%:

M y. =8.67m, 3f-.=9.08m,
M= ,'(My+My) = 8.25-.

The corresponding experimental values are

(&II ~ll8~)

X8, '—XP
'

P=27, 10, 10, 8g, 1.

(5.26)

M~= 6.72m, Mg ——7.98m,
Mg ——8.53m, 3f-.=9.51m .

The quoted bound state masses obey the GMO rule,
since they were computed in first order.

We now turn to the coupling-constant perturbations.
As we remarked in Sec. 2, the Ãp matrix for the octet
problem is diagonalized in a basis which involves a
definite linear combination of the 8, and 8, states. The
state labeled 8, in Eq. (2.21) corresponds to the BP-
bound state; i.e., Xs, '+Jo(M)=0, where M is the
unperturbed bound-state energy. The unperturbed
coupling-constant vector is

In the case of P=82, y takes on two values, 1 and 2.
There are two more parameters corresponding to the
diagonal perturbations:

n(7) =— ——,(8~11~118~) +(8~Ii~'II8~) v
2Jp L h Jp

7=1 2 (5.27)

Finally, there is the 8 —8, mixing angle 0, so there are
nine parameters in all. We introduce the following con-
venient constants:

4'o"——(cos0)40' —(sin0) 40',
tan0= (Q5)/(+6+1),

0=33',
(5.23)

which corresponds to a D/F mixing parameter" f=0.326
for the coupling of the composite baryon to its con-
stituents. Of course, this particular mixture is specific
to the decuplet exchange model, but it is consistent with

a= cos0; a'= —(+5/3) sin0,

b = (1/+5)(cos0) X)&"j3(sin0)(P8 &'&

0'= (—1/+5)(sin0) X)&"+3(cos0)5'8 ~'

c=—,'(cos0) S&"+(+5/6) (sin0)(P8 &'&

c'= ——,'(sin0) X)"&+ (g5/6)(cos0)5'8, &'&,

p= (+5/10)6'27, q= (Q5!12)(Pro,
r = (Q5/12) 6 „; s = (~5/8) 6, .

(5.28)
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The X's come out as follows:

X(NNx. )= (a ,'b+—c—)—(a' ,"b—'+—c')—p 2q—,
X(NN))) = (a ', b—+—c)+3(a' ', b—'+—c')+9p 6q—,

X(NAE) = (a st b—+c) 3(—a' ,' b—'+—c')+9p+6q,

X(NZE) = (a ,'b+—c—)+(a'—,'b'+ c—') p+—2q,

X(Zh.s-) = (a+b) —3p —3q—3r,

X(ZZ3 )= (a'+b—') q+ r,—
X(ZNE) = (a+b)+ (a'+b')+2P 2q+2—r,

X(ZZ))) = (a+b) 3p+3—q+3r,
X(Z E)= (a+b) (a'+b')—+2P+2q 2r, —
X(h.Zs) = (a b) —4p —s, —

X(jtNE) = (a—b) —3(a'—b') ——;p+2s,

X(AA))) = (a b)+—(27/4)p+s,

X(ARE) = (a b) j3(a—' b') ,'p—+2s,——

X( vr) = (a sb c)+(a—' s—b' c') p—2r—, ——
X( cUC) = (a ,'b c)+—3—(a'—', b c')—+—9p+—6r,

X(-ZE) = (a——,'b —c)—(a' ——',b' —c')—p+ 2r,

X( Zt)) = (a—sb —c)—3(a'—sb' —c')+9p —6r.

(5.29)

The numerical evaluation of the coupling-constant
perturbations has been carried out on the basis of the
model described above. The integrals involved in the
(P's and X)'s have the following values (all quantities
with the dimensions of mass are expressed in terms of

m, =139.63 MeV):

From these 6gures we obtain

Q(ss) Jsr+f (s8)+J~2(bm2)(sl) — 1 Q3

6(") = JsfbM('I) —J ~(bm')("&=1.73

Z& &=J„SM(-~=—1.58,
Q (8e) — 0 335

&""' =+0.555
~'~8-) = —0.501.

(5.32)

The necessary double-bar matrix elements are the
following:

(27ll~ll8)) = —sr (cos())a(s*)—sr(sin f))6&') =0.461,

(10l[hll8)) = s (cosg) 5&'& (1/—g5)
XL(cos())A(' )+(sing)h(')7=0. 503,

(10ll hll8)) = —,'(cosg) 0 &"+(1/+5)
&& l

(cosa)h('~)+ (sing)h "&7=—1.19,

(1llhll8)) = —(cose)6&"&+(sinf))6('& =0
(8sll hll8() t ——rs(cos2())6"&—ss (sin20) 6&"&=0.056, (5.33)

(8sll d ll8$) s——s (cos28)6(') =0.353

cos2() 1)~(s.)
—sr (sin20)h(s '= j0.787,

(8(ll~ll8, )s=-'~(.)——;(sin20)~«)-=—1.58

(8, ll ~'ll8, ),=+0.249,

(8)ll~'II8))s= —o 5o4

The other quantities needed are the perturbation de-
nominators and the combination of integrals that appears
in the diagonal perturbation:

Jp ———3.232, J~=0.5668, J 2= 0.08536,

J&)'———0.8225, Jsr' ——0.1795, J ~'= 0.02743, (5.30)

Jp"———0.122, h =0.698, h' = —0.0995.

The empirical values of the baryon and meson masses are
given closely by the following octet-type perturbations:

bM("=0.615 83II('o) = —2.79 (8m')( *&=—16.2. (5.31)

(Xsr ' —)(s, ') '=0.0332,

() -,
&)

' —)(s, ') ' = (Xt&)
'—) s, ') =0.127,

(X ' —X ') '= —Q 184

(Xs, '—)(s, ') '= —0.0920,

= —0.1423.
2 h Jo'

(5.34)

TAsxz II. Numerical values of X(B',BP). The Lagrangian Er m Eq (5 3) (5 4) ( 2 ) a d (5
coupling constant gn sp is given by Eq (5.36). Xs(.B',BE) is the the parameters of Eq. (5.28):
unperturbed value of X.

B'BI' Xp

1.24 1.24
NNg —0.38 —0.29
NAP 2.06 1.89
NZE 0.43 0.42

B'BI' Xp

AXE.
ASK
AAg
h. E

0.84 0.84
2.06 2.06
0.84 0.81—0.38 —0.36

8= 0.839,
b =+0.0068,
c=—0.0075,

p =—0.00342,

r = +0.0282,

8'= —0.406,
6'= —0.0023,
c'=+0.0193,
q= —0.0119,
s=0.

(5.35)

ZAqI.

ZZ~
zNK

ZZIC

0.84
0.41
0.43
0.84
1.24

0.81
0.45
0.51
0.91
1.16

MM
w~wg

=-zK
H HMWQ

0.43—0.38
1.24
2.06

0.36—0.29
1.32
1.92

Substitution in Eqs. (5.29) leads to the X's listed in
Table II. In Table II we use the notation X(B'BI') for
the constant related to the 8' pole residue in the 8-I'
scattering amplitude. The vertex symmetry X(B'BI')
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=X(BB'I') should hold in a correct theory. It does not
hold in our model, according to Table II."'The reason
for lack of vertex symmetry is our omission of 8*
baryons as external lines in the ED ' procedure. To
illustrate the point we consider a Lagrangian density
involving only the interactions AZm, F*Zm, V*A+. The
third-order graphs that contribute to X(h.'Z7r) are shown
in Fig. 1. Our computation of X(A.'Z)r) amounts to a
calculation of the third-order I'* exchange graph by a
dispersion method. The A. exchange graph is not in-
cluded in our work; it would come in if the I'* state were
allowed as one of the channels in the ED-' method.
However, both of the graphs of Fig. 1 are necessary for
symmetry of the third-order vertex, since one of the
graphs goes into the other on crossing of the Z and A

lines. Cutkosky and collaborators" "have stressed the
importance of vertex symmetry, and have discussed
ways of incorporating it in dynamical models. Lin and
Cutkosky" have remarked that a method based on an
exact solution of the ED-' integral equations (with the
left-cut term given by single-particle exchanges) cer-
tainly spoils the vertex symmetry. That follows because
the method electively attaches an infinite string of
ladder graphs running in the s-channel direction to the
third-order graph (more precisely, it attaches an infinite
string of fragments of ladder graphs; the method does
not correspond exactly to any sum of Feynman graphs).
Thus, a basic asymmetry between the s and n channels
is introduced, with a consequent failure of vertex sym-
metry. A method like that of the present paper, where
E is set equal to the Born matrix, will presumably give
vertex symmetry if (i) both B and B* baryons are
included as external and exchanged particles; (ii') all
mass perturbations are allowed (i.e., not only mass
perturbations in the centrifugal barrier factor p); (iii)
the cutoffs of the integrals corresponding to the graphs
of Fig. 1 are handled appropriately. Whether items (i)
through (iii) actually guarantee the symmetry is perhaps
not completely clear without more investigation. An
argument to the effect that they do guarantee it has
been given by Lin and Cutkosky" in a static-model
context. Vnfortunately, one thing is clear; if E is set
equal to the Born matrix with both 8 and 8* states as
external lines, the resulting T-matrix will not be sym-
metrical. We were able to avoid this well-known diK-
culty in the present paper only because of the factoriza-
tion of the X matrix expressed by Eq. (2.8). Of course,
the factorization fails if there are two or more types of
Born terms, or if arbitrary mass perturbations are
allowed. The usual remedy for the T-matrix asymmetry
is to use the exact solution of the XD ' integral equa-
tion, but that leads to vertex asymmetry. It seems that

s~ Note added iN proof The failure of ve.rtex symmetry does not
appear to be very great in Table II. However, the discrepancy is
much more marked if one looks at the coupling constants g~ that
appear in the Lagrangian, rather than the X's. /The relation
between g' and X is given in Eq. (5.36).g

~ R. E. Cutkosky and M. Leon, Phys. Rev. 135, 31445 (1964).

ee'

II rr
r

II r

r h

FIG. 1. Third-order vertex graohs which contribute to gqq .

no simple scheme based on single-particle exchanges and
XD' methods can guarantee both T matrix and vertex
symmetries. Furthermore, such schemes involve diK-
culties in meeting threshold conditions, '4 trouble with
overlapping left and right singularities, and failure of
crossing symmetry. Cutkosky and co-workers have
taken the Bethe-Salpeter equation as a starting point
for dynamical investigations of symmetries. Their
method has the advantage of ensuring vertex symmetry.
However, the bootstrap equations for the coupling con-
stants that they finally work with are exactly the equa-
tions obtained from the ED'method -(in the form
tV=Born matrix), ignoring the problem of T-matrix
symmetry.

The connection of the I's with the usual coupling
constants defined by a Lagrangian density is given by
the formula

where g'/4)r is equal to the g' of Appendix I of Ref. 21.
The isotopic spin factor Pt) t)p has the following values:

PNN = s, PNN, =1,
PNAK 1) PNzK

PZAx = 1 y PZZr
—1

PZNK s ) PZZr)

1 ~ 1PZ" K s ) PAZr

PANK s y PAAs= 1
y

PA K s p P"Str=s)

PEAK 1 P 1

With the numbers given by our model the EX~ coupling
constant has the value

GNN. '/4or =36,

while the experimental value is about 15. The number
obtained from the model naturally depends to some

'4 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963);
A. W. Martin and J.L. Uretsky, ibQ. 135, 8803 (1964).

gt)~t)p 4pz~BP3ftt —h(lV)

4)r Mz —Ms+m p Jo'(M)

X$+o(B'Bp) X(B'Bp)7', (536)
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extent on how the cutoff is treated. If we replace the
cutoff function P(w) of Eq. (2.11) by

(cV+ns)'+a' "
y(w) =

w +a

where e is an integer greater than 1, theism coupling
constant is reduced. For example, if e= 2 we find c=25
and G~~ '/4~=26, while with v=3 we have a= 35 and
G~~ '/47r =23. In both of these cases the choice
vir =3.5m for the subtraction point yields a baryon mass
spectrum nearly the same as that reported above for
m=1. In each of the cases v=1, 2, and 3, the poles of
the cutoff function at m = &ia are reasonably remote
from the physical region and the baryon pole. In choosing
the form of the cutoff function, our intention was to
put its singularities far away from the physical region.
In some preliminary work we tried the Abers-Zemach"
cutoff function

w' —(3I+m) '-
y(w)= 1+

which was used in Ref. 13. This turned out to be un-
satisfactory, since the necessary value of z leads to poles
of p at w= +5.5. The pole at w=5.5 is much too close
to the nucleon bound-state pole. It results in an un-
reasonably large residue for the latter pole and a value
of 150 for G~ii '/4m.

If we regard the composite baryon octet as being
identical with the constituent baryon octet, then the
model provides a way of trying out the idea of octet
enhancement which was discussed in Sec. 3. The work
of Dashen and Frautschi4 " on this question is already
more complete than ours, in a sense, since their model is
more elaborate. On the other hand, they use the pole
approximation and the static limit, both of which we
avoid. Their model has both B and B* states as ex-
changed particles, and they allow mass perturbations
for both external and exchanged particles. Since the
B exchange term in the J =~+ B-P scattering is quite
small, the main difference between their treatment and
ours has to do with perturbations of the exchanged
particle masses.

The results of Dashen and Frautschi suggest that
these perturbations are not entirely negligible, but that
they are dominated by perturbations of the external
particle masses, which are included in our work. Indeed,
our neglect of exchanged particle mass perturbations in
both Ref. l and the present paper was based on a
knowledge of their secondary importance.

Although the Dashen-Frautschi model of the baryon
octet is, in effect, similar to ours, we have serious doubts
about the suitability of either model for investigation of
the octet enhancement conjecture. A principal doubt
arises from the necessity of including B* states in

"E.Abers and C. Zernach, Phys. Rev. 131, 2305 (1963).

external lines, if vertex symmetry is to be retained. Since
some of the B*-P thresholds are quite comparable to
B-P thresholds, the undoubtedly important effects of
mass perturbations in the external B*-P lines could
change the entire picture.

Our model results in the following expressions for the
eigenvalues A' and A" defined in Eq. (3.20).

A'=c )

A"=c(1/15)(4 cos28 —1),
c= J~(M)—/JD'(M) .

(5.37)

For the 2&(2 matrix of Eq. (3.19) we have

——,'0 (4 cos20 —1) -,'sin20
A(»=c

~ sin20
(5.38)

where the first row and first column refer to 8,. After
determination of the eigenvalues of A ' and A p' of the
matrix A(8), a numerical evaluation yields A'=0.69,
A '=0.52, A '= —0.22, A"=003. Indeed, A 'is much
greater than A'~, so the conjecture of octet enhancement
is verified in this simple case.

6. CONCLUSIONS AND COMMENTS

We have studied the first-order mass difference ex-
pansions in some detail. In the decuplet model, the exact
and first-order treatments of mass differences have been
compared. The linear theory gave a good account of the
dominant 27—10 mixing, but with regard to finer details
it was not satisfactory. The linear theory seems to be
useful only for a gross sketch of mass difference effects.
This is made clear by the comparison of exact and first-
order dispersion integrals in Sec. 4; the sum of higher
order terms is often nearly as large as the first-order
term. In particular, the linear theory does not explain
the approximate propagation of the GMO rule obtained
in the numerical calculations of Ref. 1. We hope that
some work with the second-order theory will lead to a
qualitative explanation of this phenomenon.

It would be highly desirable to improve the formula-
tion of the dynamics in work of this type. We have seen
that iVD ' methods based on single-particle exchanges
do not allow both T-matrix symmetry and vertex sym-
metry. This is unfortunate, since the vertex symmetry
seems especially important. In order to ensure it, one
has to include channels which seem important a priori;
e.g. , the B*-P channels in the model of the B octet.

The studies of octet enhancement carried out so far
have involved a failure of vertex symmetry, and neglect
of mass difference effects beyond the first order. We
think. that both of these shortcomings are rather serious.
The octet enhancement work has also omitted coupling-
constant perturbations up to now, and these could well
be important.
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The last term (A8) is cancelled by the second term in the integral, which exists by itself. Hence, we once again
obtain (A3).

We can make successive use of (A3) to obtain higher derivatives of Z up to an order which depends on /. In fact

8(")E

83I~")

g (n)

[(w' —M—m)'I'n(w' M m) j
~+„w'(w' —w) BM ~ "&

(A9)

provided N(l+1. For n) k+1 the formula fails, but in that case we can save the day by the trick used in (A6).
For n =1+1,Eq. (A9) is just like the derivative of an s-wave dispersion integral; i.e., it has the form

g (&+&)g (w' —M—nz)
—'"P(w', M, nz)

-- —dzv )
M+m w'(w' —w)

(A10)

where P satisfies the same analyticity conditions as n, and does not vanish at w =M+m. We subtract and add
a term to obtain

g (&+&)+
g@I(i+i)

(w' —M —te) 'I'$P(w', M, nz) P(M+—m, ; M, ns) j
dw' vrP(M—+m; M, m)(M+m) 'i'/w. (A11)

w'(w' —w)

The integral of (A11) may be differentiated under the
integral sign, as in (A3). To get the derivative of order
3+3, we note that the derivative of the integral in (A11)
has the form (A10) with some new function y(w';M, m)
replacing P. Thus, the process may be repeated any
number of times; derivatives of all orders exist. Of
course, derivatives with respect to m', or cross deriva-
tives between M and ns', may be treated similarly.
Kith numerical integration it would be best to use
Eq. (A9) only up to n=l. One should compute the
(1+1)th derivative from the /th only after subtracting
and adding a term in the manner of Eq. (A6). This
avoids numerical integration over the singularity of
(w' —M —m) "'. Numerical evaluation of principal-
value integrals is conveniently done by means of an
identity like (A4).

For the study of mass difference effects one also needs
derivatives of E with respect to m. These can be ob-
tained to any order by differentiating under the integral
sign in the formula

(w' M m—)"'In—(w'; M,m) —n(w; M, m)]

(w' M rn)'~'— —
(w'+ a) (w' —w)

m (M+ no+a)'~'
a(M+m. (A14)

If we write M=MO+nx, m=nzo+Px, where x is a mass
perturbation strength, we see that E is analytic in x
except for a branch point at —(a+M, +mo)/(n+P).
Suppose x=1 corresponds to the physical values of the
masses, and x= 0 to the unperturbed masses. The power
series in x about @=0converges for

differentiation to any order under the integral sign is
permitted. However, if derivatives of o. can be obtained
conveniently only by numerical methods, it may be
simpler to do a direct numerical differentiation of E.

It is educational to look at a simple model of an
s-wave dispersion integral. In the nonrelativistic ap-
proximation and with a single pole as the only left
singularity of the amplitude we have

VV 3) —'K

+em(w; M, m)(M+m)'i'/w. (A12)

(w' M ns)—'i' n—(w') n(w) B—n 1
(w)

'M —ZV 8zv
(A13)

which is continuous in m' and m. Higher derivatives of
this expression are also continuous in m' and m, so

For example, the integrand of the derivative of the first
term of (A12) is

(A15)

The larger the distance from the unperturbed threshold
to the left singularity ze= —a, the larger the radius of
convergence of the series. The radius of convergence
can be large even when n and P are large, provided that
they have opposite signs. Since the pole at z= —u
moves to the left as the range of the force between the
particles is decreased, the radius of convergence goes
to in6nity in the limit of a zero-range force.


