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Radiative Hyperon Decays, x+ ~ n+~++p*
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University of 3faryland, College Park, 3Earyland

(Received 23 August 1965)

The observation of the Z+ —+ n+x++p radiative-decay spectra has been proposed as a method of de-
termining the s- or p-wave nature of the Z pionic decay. The previous theoretical treatment is based on
a phenomenological interaction that neglects all form-factor eRects. Calculations have been made to in-
vestigate the sensitivity oi the theoretical predictions to structure effects by using two models: (a) a self-
consistent pole model that includes the Z+ ~P+y vertex in a natural way; (b) a loop model that serves
as a demonstration of the radiative influence of a virtual light particle. The results show that the simple
phenomenological calculation is not changed signi6cantly. Hence, the reliability of the radiative-decay
method to determine the s- or P-wave nature of Z pionic decay is improved.

I. INTRODUCTION

'T has been shown by Nauenberg, Barshay, and
~ - Schultz, ' and, by Li and, Snow that a measurement
of the branching ratios for radiative Z decays of the type

can determine the s- or p-wave nature of the nonradiative
Z decays:

Z+ —+ rr+rr+ (1.2)

A phenomenological calculation of the branching ratios
for radiative hyperon decays has been made by Barshay
and Behrends. ' These authors evaluated the angular
and energy distributions of the decay nucleon from
reaction (1.1) and point out the possibility of obtaining
information about the Z+ and Z magnetic moments
from a study of radiative decays with large p-ray
momenta. Since it is the charged pion rather than the
neutron or p ray that is observed in a typical bubble-
chamber experiment, the main purpose of the paper is
to examine extensively the charged, -pion spectra
expected, in these radiative d,ecays.

The s- or P-wave nature of the nonradiative Z decays
(1.2) is indirectly related to the AI= rs rule in the weak
interaction. 4 The present experimental values of the
parameters n+ which describe the decay angular distri-
butions combined. with time reversal invariance and, the
Dl=-', rule in weak decay require that one of the Z
decays (1.2) proceed via p wave and the other via
s wave. It is known presently that time-reversal in-
variance d,oes not hold generally in the weak interaction.
However, even if it is true in the case of the Z decays
(1.2), one can still show that these decays are either
pure s or pure P wave if one uses the AI= sr rule and the
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asymmetry parameter values 0+=0. =0, o.'= 1, and. the
d,ecay rates co+=co =~'.'

In Sec. III the pion spectra are stud, ied. using the
same phenomenological interaction Hamiltonian of
Barshay and Behrends. ' For the differential pion energy
spectra for reaction (1.1) we have evaluated rigorous
expressions, where the square terms of magnetic
moment corrections from the hyperon, Z+, and neutron,
n, are included, . In the later discussions the integrated
pion energy spectra are evaluated numerically. This
phenomenological model only considers contributions
to the rad, iative d,ecays from inner bremsstrahlung. In
particular, there are decay processes involving the
transition between the hyperon and, the nucleon with
the emission of photon followed (or preceded) by the
strong emission of a pion by a baryon that are not
included. Such processes would be related to the decay
Z+ —& P+y. In order to clarify this problem we shall
consider more complicated and detailed models.

In Sec. IV the nonradiative Z decays (1.2) are con-
sidered in the pole model. ' We assume that the (1.2)
decay amplitudes are dominated by the Z, A, and E
pole-term contributions. That is to say that the d,ecay
proceeds through a Yukawa-type strong vertex and a
two-fermion effective w'eak vertex. For the radiative
decays, the electromagnetic interactions are introduced,
in the conventional way for these nonradiative d,ecay
structures. In this model the Z+ —+ p+y vertex enters
in a natural way and the influence of the Z'(A) —+ rt+p
vertex is also considered. The expressions for the differ-
ential pion energy spectra in this model are quite
complicated and were evaluated numerically on the
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Maryland IBM 7094. In the end of Sec. IV the E loop
is also taken into accounts for the nonradiative decays.
In the E-loop mod, el structure, a fast pion occurs in an
intermediate state, so that an evaluation of these terms
may serve as a measure of the electromagnetic inhuence
of a light swift intermediate particle on the radiative
pion spectra. In Sec. V the numerical results are given.
It shows that the phenomenological mod. el and, the
Z, A, X pole models give similar results except for the
magnetic moment contributions, and the E-loop con-
tribution for the rad, iative decays can be completely
neglected. The results of our calculations serve to
support the theoretical arguments of Nauenberg et al. '
that radiative decays can be used to determine the s-
or p-wave nature of Z -+ zz+zr decays. A comparison of
these calculations with experimental results is briefly
d,iscussed.

II. X+~ n+zz+ DECAYS

For our later convenience we would like to outline
some results of the Z+~ zz+zr+ decays based on the
following phenomenological Lagrangian:

L'.»= (C/z )A(za+bvshVi~. v'+H c (2 1)

The indices 1 and 2 refer, respectively, to the hyperon
and nucleon. pQ) is the meson (baryon) field operator;
g/p, is the coupling constant. The parameters a and
b(~ a~'+

~
b )'= 1) are a measure of the degree of parity

nonconservation for the Z+ ~ zz+m. + decays. If
~

a
~

= 1,
~b~ =0, the decay is through s wave (parity non-
conserving); if ~a~ =0, )b~ =1, it is the parity-conserv-
ing p-wave decay. The first-order decay amplitude A
for Z+ —+ zz+zr+, illustrated in Fig. 1, can be written
d,own from the w'ell-known Feynman rules:

C ( mim„)
A = ——(2»r) 'i'8(pi —ps —

q)i
EE E 2Q)

XW'(ps) (za+bp;)p"q„W'(p, ), (2.2)

where p= (p,E) and q= (»I,Q) are the four-momenta of
the baryon and pion. m and W(p) are the mass and
spinor of the baryon. In the rest system of the hyperon
the decay transition rate is

(g) 1 (mP —mz'+z» ) '
W=/-[

kp) Semis E 2m, )
X(

~
a~'(mi —ms)'L(mi+ms)' —p,'j

+
~

b
~

'(mi+ms)'L(mi —ms)' —p']) . (2.3)

Notice that in Eq. (2.3), the only difference between the
u part and the b part is the replacement m2~ —m2.
This type of relationship between the a part and,

b part is also true in the later calculations of the

FIG. 1. Feynman diagrams for Z+ —+ n+w+
decays in the phenomenological model.

z L. Wolfenstein, Phys. Rev. 121, 1245 (1961).

I »= (gin)A(za+bvs)vVi(~. +z&»A.) v*

2 2—E eA"Ak' sZ z»'4'~"9'—~«.

zes(q*8«p)—A "+es'A «A «y*q+H c.) (3.1).
where Fp„= BpA„B„Ap, 6j f2 and, e3 are the charges of
the hyperon, nucleon, and meson, respectively. p, & and
p, 2 are the static anomalous magnetic moments of the
hyperon and nucleon. The interaction (3.1) was
originally used. by Barshay and Behrends to calculate
the nucleon spectra of the same decays. The above
interaction is introduced in the customary manner by
making the replacement

( «zes «)&~

8«p ~ (8«+ze;»A«) p (3.2)

in the total Lagrangian for Z+ —+ zz+zr+ systems, where
the interaction Lagrangian (2.1) is assumed. In
addition, the interaction between the electromagnetic
field, and, anomalous moments for the hyperon and,
nucleon are includ, ed. We wish to evaluate the pion
spectra to the square-term correction for the magnetic
moments as the previously published, calculation only
includ, ed linear-term correction. Now', we would, like to
outline some procedures which will be helpful in under-

Fn. 2. Feynman diagrams for Z+ —+ n+~++p
decays in the phenomenological model.

Z+~N+zr++& decays. The reason is simple. In the
trace calculation when we try to cancel the two y5's in
the b part the sign preceding m2 is automatically
changed, . This simplifies the calculation in that it is only
necessary to calculate one of the two possibilities, s-wave

type or p-wave type, and the other is then obtained
d,irectly.

III. X+—+ n+zz++y DECAYS

In this section we deal with a simple model for calcu-
lating Z+ ~ zz+zr++p decays. This model suggests that
one can determine the s- or p-wave nature of Z+-+
zz+zr+ from a study of the momentum spectra of the
pions in the Z+ —+ n+zr++y decays' ' whose interaction
is taken as
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standing the more complicated pole model results to be
discussed later. In the lowest order the I'eynman
diagrams responsible for these radiative decays are
illustrated in Fig. 2. For 2+ —+n+lr++y decays we
need only to consider the special case in which the

nucleon charge &~=0, and the hyperon charge is equal
to the pion charge e~= &2= e. e is the photon polariza-
tion vector, where P =1, 2 refers to the two transverse
components. After some simplification, the decay
amplitude AR, is

1 (ml) ~ (m2)1~ ( 1 ) i 1 ) ~
g

(2 )'EE & kE & (2K& 2Q& p

( pl(pl' k mi +mlm2) p2(p2 k+m2 m—lm2) e(ml m—2))xw (p,) +&(v'")I + +
2pl k

P2 2 q'6
+ (y e") (pi+ p2) (mi m—2) p2—A'(ml m—2) +e (mi —m2)

p2. k q k

pl (pl ' k ml mlm2) p2 (p2 k+m2 +mlm2) e (ml+m2))
++2 k(y e") — +

P2 k 2pl. k

p2'6 q'6
+ (p' & ) (pl p2)(ml+m2)+p2k(ml+m2) +e (ml+m2)

p2k qk
X lf'"(pl)b(pl —p2 —

q
—k) (3 3)

4m, Q (Q+lqlq Sm, lql
lnl

ml'+p' —2mlQ —m2' EQ—
I ql & mP+p' —2m, Q—m22

dWR, 1 (g)22e2
[(m,~m, )'—p']

dlql 2 (2~)2Qmlkp& ml

m 2+p' 2m, Q m2' (ml—Q+ ~
—q I g
——

ill! ! +4e(mlwm2) (plwp2) (ml' —m2'+p' —2m, Q)
(mlam2)' —p,

' kml —
Q —

I ql &

(Q+ I «I ) 1, (ml —Q+ I qli
~mym2

!y

—lnl I+—(p'wmlm2) lnl
m12 —2mlQ+p' ml iQ —

I ql & ml &m —
Q

—
I «I &—

m1 (ml' —m2'+ p2 —2mlQ) I q I

8 (pla p2)'(mp —m2'+ p,
'—2mlQ)

mP —2mlQ+ p'

(m, —Q+ I ql )—(mlwm2)' lnl
I ql — &m, —Q

—
I ql &

m2 ~2mym2
X —'(—m —Q&2m2)+

2 (mp 2mlQ+Jll )—
( m2(mi —Q) m, (m,~m2)'I ql

+2ln2! &2 ! +8(pl+p2) (ml m2 +p 2mlQ)— —
Em 12—2mlQ+ p,' (mP —2mlQ+ p')'

ml' —2mlQ+ p,
'

(m, —Q&m2) ——', (ml —Q) +Spl'(m, &m2)'(ml' —m2'+ p,
'—2mlQ)

ml-' —m2'+ p' —2mlQ
m, (m, —Q)lql m2 (ml —Q+ lql)-

X — +—»I !, (3A)
m, '—2m, Qgp' 2 &m, —Q—

I «I &

where k= (k,E) is the four-momentum of the photon. From the above decay amplitude Aa, it is possible to find
the transition probability in the standard manner. The existence of the infrared divergence implies that the total
transition probability is not well de6ned, and it leads to a logarithm divergence at the maximum pion energy, but
we can sum up to a fixed pion energy. The differential transition probability for the radiative decay in the rest
system of the hyperon is

where the upper sign in & or W corresponds to and (3.4), we can calculate the branching ratio between
Ial =1, lb! =0 (pure s-wave type); and the lower sign the radiative and nonradiative decays either in the
to Ial =0 Ibl =1 (pure p-wave type). From Eqs. (2.3) differential or integral form. In Figs. 3 and 4 (and
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a small correction proportional to a p matrix, the square
term is not always smaller than the linear correction.
A concrete example is

1+nba.

The trace of this matrix square gives

~tTrg(1+ny5) (1+n*y~)7= 1+n'

This peculiar property is directly related, to the different
behavior of traces of even and odd products of ymatrices.
In fact the single current term of fermion involves odd
y matrices and the single magnetic term involves even
y matrices.

The Z hyperon is slightly heavier than the Z+
hyperon. For a 6xed pion momentum the p ray from
Z— hyperons is more energetic than that from Z+
hyperons. If the pion momentum is 160 MeV/c, the
total transition probability from the current contribu-

Z+ s wave 0.99 )&10 ',
p wave 0.123&&10 ',
s wave 0.79 )&10 ',
p wave 0.104&(10-'.

It suggests that one can even use the higher pion mo-
FIG. 3. Pion momentum spectrum of the differential values

fy(g+~N+w++y)/gr(z+~rc+7r+l anditstttagneticcorrections mentum spectra to distinguish s or p waves provided
for s wave Z+ ~ n+7r+ as in Table I. the pion momentum could be measured accurately.

Tables I and II), we list the differential and integral ~+
spectra for Z+ radiative decay for s and p waves,
respectively. The current contribution is from the Z
hyperon and, x meson currents where all the magnetic
moments are taken as zero. The magnetic moment
contribution is the sum of the magnetic moment term
as shown in Eq. (3.4). Note that the magnetic contri-
butions are only significant for s waves and, increase as
pq+ increases, but are negligible for p waves. It is
immediately apparent that the radiative decay branch-
ing ratios for the s-wave and p-wave decay hypotheses
are quite different. This d, ifference is much larger than
the differences due to various assumptions about the
Z+ magnetic moments. Tables III and, IV contain the
analogous results for Z radiative decays. Both Z+ and
Z- radiative decays have the same spectra except for a
small pion energy shift. The shift comes from the mass
difference of Z+ and Z hyperons. Hence a measurement
for Z+ and Z radiative decays can be used to determine
the s- or p-wave nature of each of these nonradiative
decays.

We should, point out that the magnetic corrections
calculated here are diferent and somewhat greater than
those of Nauenberg et ul. ' They calculated, only the
linear correction term. In our case the square term was
also included, . The calculations show that both the
linear and quadratic terms are of the same order, and
that in some cases the square term may be greater. This
result contradicts the conventional treatment of a small
correction in the y-matrix calculations. As one handles

IV. POLE-MODEL CALCULATIONS

The preceding section was based on the phenomeno-
logical interactions given in Eqs. (2.1) and (3.1). But

IO'

0

b b
-I»

lo

IO

20 40 60 80 IOO 120 I40 I 60 I80
Iql IMeV/c)

FIG. 4. Pion momentum spectrum of the differential value
W(Z+ —&n+m.++y) jW(Z+ —+n+~+) and its magnetic correc-
tions for p wave Z+ —+ n+m+ as in Table II.
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TmLE I. The differential and integral value of zv(Z+ —+ n+zi-++y)/m(Z+ —+ n+w+) as a function of pion momentum, g, for s wave
Z+ ~ I+s.+ decay. (The definition of "current" and "magnetic moment" contributions are contained in the text. )

Current
contribution p,g+=3.79

Magnetic moment corrections
p,y+= 2.79 pg+= 1.79 p,g+=0.00

20
40
60
80

100
120
140
160
180

0.69 Xio s

091 X10 7

0.44 X10 6

0.138X10 '
035 X10 '
0.80 X10 5

0.180X10 4

0.46 X10 4

0.31 X10 s

Differential
029 X10—z 0.22 X10 7

0 133X10 6 0.85 X10 7

0 24 Xio 0.184X10
0.41 X10 0.31 Xio
0.58 X10 ' 0.43 X10 6

0 /2 X 10 6 0 53 X10 '
0 77 X10 057 Xio
0 64 X10 ' 0147 X10 '
0,187X10 0 13/X10 6

0157X10 7

0.61 Xio-7
0.131X10 '
0 216X10 6

0.30 X10 '
0.37 X10 '
0.39X 10—e

032 X10 6

0.94 X10 7

069 Xio '
026 X10 7

057X 10 7

0.93 X10 7

0.128X10 '
0.155X10 '
0.161X10 6

0.129X10 '
037 X10 '

20
40
60
80

100
120
140
160
180

0.29 Xio 7

0.72 xio-6
0.51 X10 '
021 Xio 4

067 X10 4

0.174X10 '
0.41 X10 '
0.99 Xio '
032 X10 2

Integral
0.179X10-5
0 147X10 5

0.49 X10 '
011 X104
021 X104
0.34 X10 4

0.49 Xio 4

064 X10 4

073 X104

0.135X10 6

0 111X10 5

0.37 X10 '
0.85 X10 '
0 158X10 4

0.25 x10 4

036 X10 4

0.47 X10—4

054 X10 4

0.97 X10 7

o.79 Xio-6
026 X10 5

0.60 X10 '
0.112X10 4

0180X10 4

0.258X 10 '
0.33 X10 4

0.38 Xio 4

0.43 Xio 7

035 X10 6

0116X10 '
0.26 X10 5

0.48 X10 '
o.77 Xio-5
0109X10 4

0 139X10 4

o.is7x io-4

there still remain some questions, namely, whether the
results are model dependent, and if so to what extent.
We wish to examine the problem further. To describe
the nonradiative hyperon decay, the model does not
matter, since a change leads only to a coupling constant
readjustment. But for the radiative hyperon decays the
situation is different, since some momenta will be off the
mass shell. The form factors for the hyperon weak
vertices will enter the problem; these can inQuence the
radiative decay rate. So the details of the vertex for
hyperon decay have to be studied. This is done by using
a structure based on the pole approach. Originally, the

pole approximation comes from the pole term on the
dispersion relation. It can give a correlation between
the coupling constants in the strong interaction and in
the weak interaction. This problem has been studied by
various authors for the nonleptonic hyperon decay. '
The interactions which are considered as fundamental
are the usual three-point functions for the strong inter-
action and the two-point weak interactions where the
two interacting particles have their strangeness diGering
by one unit. This last interaction includes a parity
conserving part and a parity nonconserving part. In the
discussion that follows, the influence of some individual

TABLE D.. The differential and integral values of w(Z+ ~ n+ +s&+)/ (Zw+ ~ ts+s.+) as a function of pion momentum, q,
for p wave Z+ —+ n+~+ decay.

Current
contribution p,g+= 3.79

Magnetic moment corrections
p,g+= 2.79 py+= 1.79 pal+=0.00

20
40
60
80

100
120
140
160
180

0.177X10 '
072 X10'
0.170X10 '
0.33 X10 5

0.59 X10 5

0.106X10 4

0.204X10 4

0.48 X10 4

0.31 X10 '

0.159X10 s

0.56 X10 s

0.107X10 '
0.163X10 7

0.233X10 7

0.32 X10 7

0.42 X10 7

0.43 X10 z

0.156x10 7

Differential
0.51 X10 '
0.27 X10
0.85 X10—s

0.199X10 7

0.37 X10 '
0.58 Xio-7
0.76 Xio '
0.73 Xio '
0.24 X10 7

—053 X10'
0.37 X10 9

0.85 X10 s

0.29 X10 7

063 X10—z

0.103X10 6

0 134X10 6

0.127X10 6

0411X10 7

—023 Xio s
—0 27 Xio—s

+0 139X10 7

0.61 X10-7
0 139X10 6

o.23 Xio-'
029 Xio 5

0.28 X10 '
090 X10 7

20
40
60
80

100
120
140
160
180

0.110X10 5

0.92 X10 5

0.32 X10 4

0.80 X 1O-4

0.168X10 '
0.32 Xio 3

0.61 X10 s

0.123X10 '
0.34 X10 2

0.100X10 7

0.77 Xio 7

0.23 X10 '
0.50 X10 '
089 X10 6

0.144X10-5
0.22 X10 '
0.31 X10 5

0.37 Xio 5

Integral
030 X10 '
0.39 X10 7

0.133X10 '
0.40 X10 '
0.95 X10
0.190X10 '
0.32 X10 5.
0.48 X10 5

0.59 Xio 5

—039 X10 s
—0.127X io-7

O.SS X1O-7
0.40 X10-'
0.129X10 5

0.29 X10 5

O.53 X1O-5
0.80 X10 5

0.99 X10 5

—0.159X10 7

—0.80 X10 7

—0 183X10 7

0.65 X10 '
024 X10 5

0.62 X10 5

0.115X10 4

0.1'76X10 4

0.218X10 4
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TAnLE III. The differential and integral values of re(Z ~ I+s +y)/w(Z -+ I+s ) as a function of pion
momentum q for s wave Z —+ e+~ decay.

Current
contribution py- = 1.00

Magnetic moment corrections
yg-=0.00 p,g- ———0.83 pg-= —1.83

20

60
80

100
120
140
160
180

20
40
60
80

100
120
140
160
180

0.64 X10-s
0-81 X10 '
0.39 X10 6

0122X10 5

030 X10 I'

0.67 X10-~
0 145X10 4

034 X10 4

0.»6X 10-'

0.271X10 '
0.65 X10 '
0.46 X»-
0.191X10 4

0.58 X.10-4
0 150X10 '
035 X10 '
0-79 X10 '
0.200X10 ~

Differential
0 111X10 z

0.43 X10 z

o 93 X10-z
0 154X10 '
021 X10 6

027 X10 s

030 X10 '
027 X10 '
0 153X10 '

Integral
069 X10 z

0.57 X10 6

0.188X10 ~

0.43 X10 '
0.8Q X10 5

0 129X10 4

0 187X10 4

0.2S X10-4
029 X104

0.68 X10
0.26 X10 '
0.56 X10 '
0.92 X10 z

0.129X10-'
0.160X10 '
0.174X10 '
0.156X10 6

0.87 X10 '

0.42 X10 z

0.34 X10 s

0.114X10 '
0.261X10 '
0.48 X10 '
0.77 X10 '
0.110X10 4

0.144X10 4

0.170X10 4

0.39 X10-s
0.1SOX10 '
0.32 X10 '
0.51 X10 z

0.69 X10 z

0.87 X10 '
0.93 X10 z

0.83 X10 z

0.4S X 10-z

0.24 X10 '
0.197X10 '
0.65 X10 '
0.147X10 '
0.27 X10 '
0.43 X10 '
0.61 X10 '
079 xao 5

0.93 X10 5

0.121X10 s

0.46 Xio-s
0.96 X10-s
0.154X10 '
0.21 X10 '
0.25 X10 '
0.26 X10 z

0.23 Xio-'
0.122X10 z

0.75 X10 s

0.61 X10 z

0.199X10 6

0.44 X10 '
0.80 X10 s

0.127X10 '
0.178X10 ~

0.23 X10 5

0.26 X10 '

pole structure on the radiative decay is given. The
requirements for isospin nonvariance on the strong
interactions and AI =

~ rule on the weak interaction are
not imposed, since we are only interested. in estimating
the importance of some d,ecay structures on the theo-
retical radiative decay rate.

A. Proton Pole

the strong vertex which has the form

et~'(ps) eV s~'(p)

FIG. 5. Feynman
diagram for 5+ ~
n+x+ decay in the
proton pole model.

yf
. . The weak two-point vertex, represented by th«ec-

the nonleptonic Z+ decay is dominate by the
tangular box, is chosen as

proton pole, the decay process corresponds to the
d,iagram of Fig. 5. In this figure, the circle represents @ (p)(,"+'b )~ (p ), (4.2)

TABLE IV. The differential and integral values of ur(Z -+ a+s +y)/(re(Z -+ n+s' ) as a function of pion
momentum g for p wave Z ~ e+~ decay.

Current
contribution p,y-= 1.00

Magnetic moment corrections
pg- =0.00 pg-= —0.83 pg- ———1.83

20
40
60
80

100
120
140
160
180

20
40
60
80

10Q
120
140
160
180

0.166X10 '
068 X10 6

0159X10 5

0.30 X10 ~

054 X10 5

093 X10 s

0 170X10 4

035 Xio 4

0 117X10 s

0.103X10 ~

086 X10 ~

0.30 X10-4
0.7S Xio-4
0155X10 '
030 X10 s

0.55 X10-s
0 104X10 ~

032 X10 ~

—0.137X10 s
—0.154X10 s

0.87 X10 s

0.38 X10 z

0.87 X10 '
0.149X10 '
0203X10 '
0.21 X10 s

0.134Xao-s

0.94 X10 s
—0.47 X10 z

—0.65 X10 '
041 X10 6

0.161X10 5

0.39 X10 5

o.75 Xio '
0.118X10 4

0.154X10 4

Differential
—0.24 X10 '
—033 X10 s
—0117X10 z

056 X10 z

0.131X10 '
023 X10 '
0.31 X10-s
0.33 X10 '
0.210X10 '

Integral
—0160X10 '
—085 X10 z

—0.47 Xio-z
Q.ss xao-6
0.23 X10-s
O.S8 Xio-5
0.112X10 4

0.176X10 4

023 X104

—0.32 X10 '
—0.43 X10 '

0.157X10 '
0.7S X10-z
0.176X10 '
0.30 X10 '
0.41 X10 6

0.43 X10 '
0.27 X10 '

0.215X10 z

—0.114X10 6

—0.62 X10 z

0.74 X10-'
0.31 X10 5

0.78 X10-'
O. isOx 10-4
0.24 X10 4

0.31 X 10-4

—0.41 X10 s
—0.52 X10 s

0.23 X10 '
0.103X10 s

0.24 X10 '
0.41 X10 6

0.56 X10 '
0.59 X10 '
0.37 X10 '

—028 X10 '
—0.14SX10 '
—057 X10 '

0.106X10 5

0.43 X 10-5
0.108X10 4

0.205X 10 4

0.32 X10 4

0.43x 10 4
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where gl, al, and bl are the coupling constants. W (p) subscript 1 is introduced to denote the corresponding
is the spinor of the proton. The decay amplitude can be formula. For example, the decay transition probability
written directly as Eq. (2.2) per unit time for this mod, el is

f mlm2 )
A 1=2gl(22r) '"&(pl —q

—p2) I I
W'(p2)

t E E2Q.J sm, E 2m, )

-1/2

1 1
a,-+zb,~, IqW" (p,) . (4.3)

m, +m2 m, —m2i
x I I (ml —m2)2L(ml+m2)2 —~2)

km, +m, i

The differences between the amplitude A (2.2) and
Al (4.3) are only the replacements of the coupling
constants, as follows:

I
(ml+m2)'I (ml —m2)' —p')

km, —m2)
(4.5)

a(g/P) = alglD/(ml+m2));
b (g/p) = blglL1/(ml —m2)) . (4 4)

Hence we do not have to go through all the calculations.
All the necessary results can be written down from II
with the appropriately changed, coupling constants. The

which is the same as (2.3) except for some constants.
The electromagnetic interaction for the d, iagrarn Fig. 5
can be introduced, in the same way as was done for the
diagram Fig. 1. The diagrams for the corresponding Z+
radiative decays are illustrated in Fig. 6. The cor-
responding decay amplitude, A. la., obtained after some
simplifications, is

1 (ml)'"(m2 '"( 1 )'"f 1 )'" 1 1
A» =—2gl I

—
I I

—
I I I I

w'(p2) q» (alv2+2bl)
(22r)' kE&) (E2 (2E) k Q2/ (P,+q) —m2 . (P2+ q) m, —

L
—&1(V'&")+Pl&(7'e"))+qV& ( '2+An&)(7 &") (a172+2bl)

(p2+q) —m2 p,—m2

+"(v'")v. ( v.+'b )-(q+k)~.
pl m2 pl —m2

e2(2q+k) e"
(an +2b)

(q+k)' —p2

1 1
+L e2(V' & )++2~(Y' e )) '

q'y5 (al'y2+zbl). W (pl)b (pl p2 q k) (4.6)
p2+0 —m.. pl —m2

where e„and p,„are the charge and magnetic moment of the proton, respectively. The amplitude A &R, in the form
of Eq. (4.6) can be reduced to the following by using the properties of the p matrices.

m )'~'1(m )'t'2( 1 )'n/ 1 )ll2

(22r)2 E ) kE,) &2E/ (2Q) -ml+m2
k(y e")

p2. k

Pl(pl' k ml +mlm2) p2(p2' k+m2 mlm2) e(ml m2) Pl+@
L(m, —m, )'—2p, k)

pl k (P2+q)' —m22

bl t pl (pl k™1m1m2) q2 (p, 0+m 2'+ m1m 2) e (m 1+m 2)j I k(y e')
mg —m2 ( pl'k p2. k 2pl k

Pl+Pl 4m2pl k
+ L( 1+ 2) pl k) + ( Y cl) (pl p2) (ml+m2)+ (121+12y)

(P2+q)' —m22 (p2+q)' —m2'
I

P2'
+@2'(m,+m2) +e ( mm2)

I
w" (Pl)b(P, —P,—q

—k). (47)
. p2 k q. k

4m2Pl k P'e" q e"
+ (V e")

I (Vl+y2) (ml —m2) —(pl+ p„) @2k(mj —m2) —+e (ml m2)—
(p2qq)' —m22 . p, .k q k
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The difference between Eq. (3.3) and Eq. (4.7) occurs only in the terms containing the anomalous magnetic
moments. Hence we expect that in the proton pole approximation the essential features of the radiative decay
remain unchanged. The evaluation of the corresponding differential transition probability is laborious but straight-
forward. It is possible to express the differential transition probability in terms of known functions. Since we are
interested only in numerical values, it is wise to use the computer directly to evaluate the integrals, instead of
writing lengthy differential transi. tion probability expressions. The results of the numerical calculation will be
presented and discussed in Sec. V.

B. Neutral (A. or X') Poles

In the same manner as shown immediately above we can consider the Z+ decays being dominated by the neutral
hyperon poles. Both neutral poles will give the same decay structures which are different from that of the charged
proton pole. Hence the discussion of each can be combined. The decay process corresponds to.the diagram shown
in Fig. 7. In Fig. 7 the circle represents the strong vertex which has the form

g2W'(P) qy0W" (Pl) .

The weak. two-point vertex, represented by the rectangular box, is chosen as

~'(p2) (o2v0+2b2) ~'(p) (4.g)

where g2, u2, and b2 are the coupling constants. W (p) is the spinor of the intermediate neutral hyperon. The cor-
responding decay transition probability per unit time for this model is

2m]

1 (ml' —m, '+p'~

r82rml' 5

—1/2

)2
X i (ml —m2) L (ml+m2)' —y'j+ i

—
i

(ml+m2)'L(ml —m2)' —P'), (4.9)
m, +m) km, —mJ

1 mls't2(m2 '"f 1 '12( 1 q'" ia2
~ a.=—,—i i

—
i ( / (—g)~'(p)

(22r)2 El) EE2 E2E E2Ql m+m2

pl(pl'k ml +mlm2) p2(p2'k+m2 mlm2) ~(ml m2)
X &(y0") + +

2pl kp2 k

where m is the mass of the neutral hyperon. The electromagnetic interaction can be introduced in the same way
as in the case of charged proton. The Z+ radiative decay diagrams are shown in Fig. 8. The decay amplitude for
these diagrams has the form

00+92
+ (2P1 q

—q'"—2mlm+2mm2) + (p' 0 ) (+1++2)(ml —m2) —(p0+p2)
(pl —q)' —m' (pl —q)' —m'

P2' 0 4mP2 0" q 0"
+k IJ2 (ml m2)+ (p0+p2) +~ (ml m2)

p2 k (Pl q)' m2 —
q k—

k(y 0")
pl k p2 k 2pl k

P1(pl'k ml mlm2) p2(p2 k+m2 +'mlm2) ~(ml+m2) Po—P2

(pl —q)' —m'

4m..p k
X (2P1 q q' 2mlm —2m—m2) + (—y 0") (pl —p2) (m, +m2)+ (p0—p2)

(pl —q)' —m2

P2' 0 4m2P2' 6

+ k+2 (ml+ m2) (p0 p2) +& (ml+m2) ll (pl)b (pl p2 q
—k), (4.10)

P2 k (P,—q)-' —m' q k

~he~e po is the magnetic moment of the neutral hy- same fact as in the proton pole case that the neutral
peron. If we compare with the 6rst model described, in pole model still yield. s a correction of the order of the
Sec. HI, and particularly with Eq. (3.3), we observe the anomalous magnetic rnornents. fn general, if one
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xI

P
I

7Tr r
and the weak interaction is assumed to be a scalar
given by

for (7r+X')m. + vertex,

where G~, G2, and 8 are the corresponding coupling
constants. In the conventional way the d,ecay Feynman
amplitude can be written down as

(my) '" mo) '"( 1
Fxo. 6. Feynman dia- A o,g=—GqGoB(2')

grams for Z+ ~ n+m+ km, ) Z,) E2q
+y decay in the proton
pole model.

X&(p P 1)—d'—P W'(P )

7T+r

X W'(P g), (4.11)
(P~ P)' u' —(P P—o)' ~—x'

assumes that the Z+ ~ 44+~+ decays are dominated by
other poles, such as a EC pole, then the d,iscrepancy with
the model in Sec. III is only of the order of the anoma-
lous magnetic moments. As we shall see, the current
contribution is always the dominant term in the radi-
ative hyperon d,ecays, so we will not d,iscuss any other
pole models in detail.

x+

7 jj
0 0~~ (x)

I

+
7Tj

~k(x) j

7Tj
Z(x')

I

n
I

7

C. Virtual X-Meson Loops

The decay vertex structures just discussed were based
on the pole approach. In this model the intermed, iate
particles in the reaction have low' velocities, and con-
sequently their contributions to inner bremsstrahlung
may dominate the radiative nonleptonic decay, so we
would like to examine the loop contributions. In the

7Tjjj
x ~ Z(x') n

I

n

FrG. 8. Feynman diagrams for Z+ —+ n+w++p decays in
the A. or Z' pole model.

0
j'

~Z(x )
I

1 n
I

FIG. 7. Feynman
diagrams for Z" —+
n+7f+ decays zn the
A or Z pole model.

where p~ is the mass of the X' meson. The integration
above is not divergent and can be carried out by using
the Feynman integration

language of dispersion relations, the loop d, iagrams are
related to contributions from the cuts in the complex
plane, as d,istinguished, from the pole contributions. The
lowest intermediate mass cut or loop involves virtual
IC mesons, as in the diagram shown in Fig. 9. The circle
represents strong interaction vertices, and, the weak
vertex is represented by the rectangular box. This kind
of diagram gives rise to a parity nonconserving s-wave
decay amplitude. For simplicity we choose the vertices
as follows. All the strong interactions take the pseudo-
scalar forms

=2 dx (4.12)
ubc o o ((a—b)y+ (b c)x+c5'—

d4k (k' —2P k —c)-4=—(P'+ c)-&
2i

d4k k„(k'—2p k —c) '=—p„(p'+c)—'. (4.13)
2$

"

G&W'(p)»W" (p&) for Z+(~+2') vertex,
or for Z+(7r+h) vertex,

GoW'(po)yoW'(p) for Z'(X'1V) vertex,
or for Z+(or+A) vertex,

K

~x', a)
7T

FIG. 9.Feynman diagram
for Z+~n+Tf+ decays in
the virtual IC-meson loops.
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(4.1S)
K'

4)

+
7T

FIG &0. Feynman dia-
grams
+ deeaysln the virtu7
~-meso»oops

K
+

Q-g h)

7T'

1't d (411) reduces toThen the decay Feynm P '

)m~~ ~ ~2 (m2

2e&

x (p —p —)~'p' "'p' '

cy y

( 2 „2+m')x+m
~

22—(m ' V'—m—2'+"~g = 2xpi p2 —*m'

g —~2g—W ~
2 D= m1—m2=p ) (4.16)

ca transition prob&
~ ~

jlit jn theThe corresponding dec» .
rest frame of the yp

1
2 2[(mi+m2) —&WSs=

4(2 )9 mp
—fmP+8 m' lt 2

l
X

l

2. (4.1~)

~

d the electromagnetNow we would i
l. S' ewechosebaryon

ike tp intro uce
deca mp e. incinteraction into t e

prrections cominglars the radiative cotices as sca a
n prder to simp i yrom these baryon

'
ment contribution

n vertices are zero.
~ ~

the comp«at'o the magnetic mom
l i nored. Then thens is comp]etc y igno

decay amplitude A 3Raacprrespon»g

1/2P~~q '~ (Bzg) ( )
Il &b(P P2 q )— ——(2 ) 'GGdl

z&l (z&

x@"(p) -p'™
2(p, k)'"+(~'")"

—2pg k 2 2(p p, )2—pz' (P~ kP)—
1.2x p —m

2
(p p)2 p2 (q+k) P Pp2 m2 (P—P2 —PK

2(pi —P) '"
2 (p, p —k) —I—

W (p )d'p

he Fe nman integration s 4.12) anded out by using tdec~y amplitude A 3RaaThe reduction o t e

—b)s+ (b c)y+ (c—d)x—+d) '.=6 dx dy dz((a —b s
0 0 0

(4.19)

(4.13) and the following integralsAt the same time one hahas to use Eq.

i~
d4k(k' —2p k —c) '= (p' c

Ã2iiver'

d'kki, k„(k —2p. k —c) =p~p„(
12( '+ )

+c) gi ~ (4.20)
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l tions one arriv tives atrious manipu a iAfter some laborio

,) ', ,) (,. i,.
X2W'(P2 ) (—(F1+F2m2+F2m 2 ) 2F2p

e" F6 2 e"k+F2(y c"))1V"—F4p2 2"+F2p2 e" F6 2 e
where

(ml 2
I /

(
1/2 1/2 $ 1 I 2

~2Raa= —(2~) 'G1G2&

2pl
'

m' —(m22 —/1K2+m2)x) ',—m, —
/1

— ' '—2p, k)j+m22x2+m2 —m2 —K' ' xm 2 2 m2+/1K 1'dy (/ y y
2 2+ L2p2 ~ qx—(ml —/1—

2pl k

2+m2)x) '

1

F2= 7l d

1

F =~' dx3—' /12 —m22—/2K2 21 k)]—+m2'x'+m' —(m2 /1K' '+ L2p2 qx—(m12 —/12 —m22 /2K2 21 k —m2dy (/2 y y 2
— '—/1' —m2 /2K

2pl k

'—2 l.k) j+m22x2+m2 —m2 //K2 —' x2 2 y . 2 2 m22+pK2yL2p qx —(m, —/1—Fg=z2 dx
0 0

1
2F4-
(.k 0

m x 2 m 2 2pl'p2)dx y 1
— m2x —m)(y' ml m2-dx dy (m,y m2y—+m 2x —' m2—

0

2 2—m22+yl: p

1

/1
' m2 '— '— ' m2)x+m2),/12') j+m2'x' —(m22 —/1,2 1'px —2m 'x—(ml p,

S

2
— ' d dy ds 2(x—y)sF6 x dx

0 0 0

1
dx

0

dy ds
0 DE

'X.

0

—p, — ' ' —(m22 —/2K +m2 2 m2 +/1K y 2ks+m' —ml —p, —

(4.22)

and
(4.23)DE= (—sk+ ply-—2y+ p2x) +2pl

between the spectra obetween tra for
1 fM1 d f01 e 111Oto fnd the eitherP

f the transition prox ression o e
as in the pole cases. e

virtua -me ode is

enornenologicaeno l

. (4.23) i 1 d
e results are Thus it Inay

A as gven y q.

terms in a
e. This is e

8RB,S
for numerical ca cu . e r

'
hes between s an'gu

presented, in ec.

V. DISCUSSION
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th t th t fresu 't' tl (bff t a

meson
d, l lloop, all other mod, e s giv
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-wave an
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TABLE V. The differential and integral value of iI'(Z+ ~ n+s+) as a function of pion momentum, q,
for s wave Z+ ~ n+w+ decay, under the Z' pole model.

Current
contribution py+= 3.79 yy. += 1.79

Magnetic moment corrections
pg+ =0.00 pg+ = —1.79 p, g+ = —2.79

20
40
60
80

100
120
140
160
180

0.29 X10 '
0.72 X10 '
0.51 X 10-5
0.21 X10 4

067 X104
0.174X10 '
041 X10 3

099 X10'
0.32 Xio-~

0 178X10 '
0.145X10-
048 X10 '
0.109X10 4

0202X10 4

0.324X10 4

046 X10 4

0.60 X10 4

069 X10 4

yyo = 1.79

0.96 X10 7

o.77 X10 '
0.252X10 '
0.56 X10 '
0-102X10 5

0 162X10 4

0.230X10 4

0.296X10 4

0.33 X10 4

0.42 X10 '
0.33 X10 '
0.104X10 '
0.225X10 '
0393X10 5

059 X10 '
0.81 X10 '
0 102X10 4

0.118X10 4

0.71 Xio-8
045 X10 '
0.102X10 6

0 102X10 '
—0.37 X10 '
—035 X10 '
—0.82 X10 '
—0 131X10 '
—0.161X10 '

—099 X10 s
—089 X10 '
—0.32 X10 '
—0.82 X10 '
—0 163X10 '
—0 2'?1X10 '
—0.393X10 5

—0 501X10 '
—0.56 X10 '

20
40
60
80

100
120
140
160
180

029 X10 7

0.72 X 10-6
0.51 X10 '
0.21 X10 4

0.67 X10 4

0.1?4X10 '
041 X10'
0.99 X10 3

032 X10 ~

0.172X10 '
0.138X10 '
0.44 X10 '
0.98 X10 '
0.175X10 4

0.2/3X10 4

0.38 X10 4

0.49 X10 '
056 X10 4

p, go =0.00

091 X10 '
0.71 X10 '
0 218X10 '
0.45 X10 '
0.76 X10 '
0 113X10 4

0.153X10 4

0 190X10 4

0.213X10 4

0.39 X10 7

0.278X10 '
0.73 X10 '
0.212X10 5

0.143X10 '
0 122X10 6

0.64 X10 '
—0 213X10 7

—0.40 X10 '

046 X10 '
—0.74 X10 '
—0 185X10 '
—0.88 X10 '
—0 243X10 '
—049 X10 '
—081 X10 '
—0.112X10 4

—0 132X10 4

—0.114X10-7
—0.127X10 '
—0.58 X10 '
—0 174X10 '
—0.39 X10 6

—0.71 X10 '
—0.110X10 4

—0.147X10 4

—0.169X10-4

20
40
60
80

100
120
140
160
180

0.29 Xio 7

072 X10 '
0.51 X10 '
0.21 X10 4

06/ X10 4

0.174X10 3

0.41 X10 3

0.99 X10 '
0.32 X10 '

0.167X10 '
0.131X10 '
0-409X10 '
0.86 X10 '
0 149X10 4

0.225X10 '
0.309X10 4

039 X10 4

0.44 X10 4

@go= —1.79

0.87 X10 '
0.65 X10 '
0.187X10 '
0-353X10 '
0.52 X10 '
067 X10 '
0.78 X 10-5
0.88 X10 '
093 X10 5

0.36 X10 '
0,23 X 10-6
0.45 X10 '
0.25 X10 '

—0.91 X10 '
—0.33 X10 5

—0.66 X10 '
—0.99 X10 '
—0.119X10 4

0.240X 10-'
—0.44 X10 7

—0.45 X10 '
—0.179X10-'
—0,47 X10 '
—0.93 X10 '
—0.151X10 4

—0.209X10 4

—0.245X10 '

—0,126X10 7

—0.162X10 '
—0.82 X10 6

—0,258X10 '
—0.60 X10 '
—0.112X10 4

—0.177X10 4

—0.240X10 4

—0.279X10 4

magnetic terms can become larger as one progresses
from the simple phenomenological model to the proton-
pole or Z'(h)-pole model, depending on one's choice of
magnetic moments.

In Table V and Figs. 11 and, 12 we d,isplay the nu-
merical results for Z+ decays, using the proton-pole model
of Sec. IV. The current term contribution is id,entical
to the previous model of Sec. III, and the magnetic
moment contribution has the same form but is slightly
larger for correspond, ing value of p,~+. Tables VI and
VII contain the numerical results for Z+ decays using
the Z'(A) pole model. The range of values for the
magnetic moment terms is somewhat larger since w' e
have two unknown magnetic moment terms to select,
but in any case they remain small compared to the
dominant current term. Table VIII gives the contri-
bution from the E-loop d, iagram of Sec. IV, which turns
out to be completely negligible. Figure 13 d,isplays the
s- and p-wave predictions for Z+~ ts+vr++y decays
for the maximal magnetic moment contribution
(us+=3.79) in the "proton model. " It is clear from the
figure, that the essential point of Nauenberg eI al. ,

'
namely that p-wave decay is significantly larger than
s-wave decay, remains a common feature of all the
models consid, cred, .

10

-S
IO

li )ur

b b

-6
10

-7
IO

IO
0 20 40 60 80 IOO I20 IIO 160 I80

I q I (MeVic)

FIo. 11. The differential value W(Z+ —+ n+m++y)/W(Z+ ~
n+7I-+) and its magnetic correction as a function of the pion
momentum I q I, for s wave in the proton pole model.
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TABLE VI. The di6erential and integral value of W(Z+ -+ m+s. +y)/W(Z+ -+ I+s+) as a function of pion momentum, q,
for p wave Z+ ~ n+m+ decay under the Z pole model.

Current
contribution pg+ =3.79

Magnetic moment corrections
pg+= 1.79 pg+= 0.00 py+= —1.79 py+= —2.79

20
40
60
80

100
120
140
160
180

20
40
60
80

100
120
140
160
180

0110X10 '
0-92 X10 5

0.32 X10 4

0.80 X10 4

0 168X10 '
0.32 X10 '
061 X10 '
0.123X10 '
034 X10 '

0.110X10 '
0.92 X10 5

032 X10 4

080 X10 4

0.168X10 '
0.32 X 10-3
0.61 X 10-3
0.123X10 '
0.34 X1o-'

042 X10 7

0.40 X10 6

0 161X10 '
0.42 X10 5

0.84 X10 '
0 137X10 4

0.190X10 4

0 232X10 4

0.252X10 4
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FIG. 12. The differential value 8 (X+ —+ n+7I++)r)/W (Z+ —+

I+w+} and its magnetic correction as a function of the pion
momentum Iq I, for p wave in the proton pole model.

The advantage of the pole models is that they give
us a natural way to includ, e the weak vertices 2+ —+

p+y, gs —+n+y, and A.'~ n+y. These vertices can
only be taken into account in a phenomenological model

by introducing a "transition" magnetic moment arti-
6cially. Actually, understanding the possible contri-
bution of these weak vertices to the radiative pionic
decay transition is essential before one can have con-
fidence in the previous calculations. As Dosch' has
pointed out to us, if the Z+ —+ p+y transition has the
following vertex form:

U(p) f (p+&) &7. —(p+~) &)&(~) (~ &)

where p, Z, E: are the momenta of the proton, Z-hyperon,
and, photon, and, e is the polarization vector of the
photon LU(p), U(Z) are the corresponding spinors$,
then the contribution from this vertex in the Z-radiative

decay is comparable with the clrreet term. The impor-
tant point is that the pole models enable us to predict
the Z+ —+ p+y transition without giving rise to terms
like (5.1) that would drastically change the rate in the
radiative-d, ecay calculations. Hence the pole models

' H. G. Dosch (private communication).
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TABLE VII. The differential and integral value of W(Z+ ~
++A-+) as a function of the pion momentum, g, under the virtual
E'-meson loop.
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TABLE VIII. In samples of 14 800 Z+ ~ e+zI+ and 25 000
Z —+n+m the events found for the radiative decays Z+~
n+w++y are listed in the second column of each table. The data
are copied from Nauenberg et al. The experimental branch ratios
are the ratios between these observed events and the number of
samples. The theoretical branch ratios are the current contribution
to the integral values of W(Z+~N+~++y)/W(Z~ ~ n+s+)
As we said in the text, the current contribution is the main term
and is the same for the phenomenological and pole models.

A sample of 14 800 Z+ ~ ~+zi-+
Observed Experimental Theoretical branching
events for branching ratio

lq I
Z+ a+~++7 ratio s wave P wave

80 1
100 4
120 7.5
140 11.5
160 22.5
165 24.0

0.67 X10~
0.27 X10 '
0.506X.10-3

0.84 X 1O-3
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0.174X10 ' 0 32 X10 '
041 X10 3 0-61 X10 '
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1.28 X10 ' 1.53 X10 '

A sample of 25 000 Z ~ ~+zi-+
Observed Experimental Theoretical branching
events for branching ratio

[ql Z-~N+s- +y ratio s wave p wave

80 0
100 1
120 5
140 11
160 23
165 26.5

0
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015 X10 ' 0.30 X10 '
0.35 X10 ' 0.55 X10 '
079 X10 ' 104 X10 '
1.00 X10 ' 1 25 X10 '

provide a self-consistent model for the radiative pionic
and nonpionic decays.

The negligibly small contribution of the virtual
E-meson loop indicates that the inner bremsstrahlung
from the virtual swift light particle can be discarded, .
A priori, one generally believes that the faster a charged
particle moves, the greater its contribution will be to
the inner bremsstrahlung. Then one might conjecture
that high-energy intermediate states that aRect the
hyperon-proton form factor might contribute signifi-

cantly to the radiative d, ecays. The loop-mod, el calcu-

lation, if it can be taken as a prototype of such form

10

10 20 40 60 80 100 120 140 160 180

Ig ( (MeV/c)

FIG. 13. The s- and p-wave predictions for Z+ —+ e+zi-++y de-
cays for the maximal magnetic moment contribution (ps+= 3.79)
in the proton pole model. In comparison the virtual E-meson
contribution is also listed.

factor effects, indicates that d,espite the general con-

jecture, these intermediate states will not contribute
significantly to radiative decays.

An experiment on radiative Z+ decays has been
carried out by Nauenberg et a/. ' They studied a sample
of 14 800 Z+ —+ I+x+ decays and a sample of 25 000

—& m. +e decays. From these samples they found a
number of radiative decay events for the different pion

moments which are recopied, in Table VIII. From these
d,ata, one can calculate the experimental branch ratio.
For comparison we also list theoretical values which are
calculated, from the current contribution of the phe-
nomenological and the pole models. In the case of
Z+ —+ w++~+y d,ecay the experimental branching
ratio is bigger than the theoretical values. If we take
into account the magnetic corrections and. the experi-
mental errors, the results strongly indicate p wave for
the Z+ —&7r++I decay. In the other case Z

+ts+y the experimental ratio lies between the theo-
retical values. Even if we take into account the mag-
netic corrections and, the experimental errors, it is
difficult to choose between the p-wave or s-wave

I) V. Nauenberg, M. Bazin, H. Blumenfeld, L. Seidlitz, S. Mara-
teck, R. J. Piano, and P. Smith, Phys. Rev. 140, 31358 (1965).
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hypotheses for the Z —-z zz+zr decay. Nevertheless, if
one assumes the AI=-,' rule and the experimentally
measured asymmetry parameter values, the experi-
mental results of the radiative hyperon d,ecays strongly
favor the assignment Z+ —-z zr++zz (p wave) and
Z —+ zr +rt (s wave), rather than the reverse.
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In this article several decay modes of the p and the X (heavy &) meson are discussed under the assumption
that there exist C-violating interactions which conserve parity and strangeness. Various speculations about
the strength, symmetry, and electromagnetic properties of this interaction are considered to find out how
these properties might be determined experimentally from these decays. From available experimental data,
several limits for the strength of C-violating interactions are obtained.

INTRODUCTION

S INCE the discovery of the m.+m decay mode of the
long-lived neutral E meson, ' ' there has been a

great deal of speculation concerning the nature of the
interaction which is responsible for this CP-violating
transition. It has been pointed out recently' ' that a
possible explanation is the existence of an interaction
H which violates charge conjugation C, but conserves
parity I' and strangeness. The 2x decay of the E2'
occurs then as a second-order process in H)&H~, where
H~ is the CP-conserving AS=1 weak interaction. The
strength of H which accounts for the observed E2' —+ 2m
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branching ratio is estimated to be of the order of
electromagnetic interactions, but there is some un-
certainty in this result because of the difficulties in
calculating higher order processes.

The transformation properties under isospin and
unitary spin of the C-violating interaction H are open
to conjecture. it has been suggested that (a) H might
correspond to the same interaction that is responsible
for the breakdown of SU3 symmetry which transforms
like the T=O, V=O member of the octetz; (b) H may
be part of the electromagnetic interaction of strongly
interacting particles. A number of experiments have
been proposed to test the existence of H and examine
its properties. ' "
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