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Low Energy K--d Elastic Scattering: Effect of the K'-K- and u-P Mass Differences*
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School of Physics, University of Minnesota, Minneapolis, 3finnesota

(Received 25 August 1965)

A Faddeev type of multiple-scattering formalism with nonlocal separable S-wave potentials for the two-
particle interactions is applied to X=d scattering for incident kaon lab momentum up to 300 MeV/c.
Coulomb scattering is neglected but calculations are performed both neglecting and including the K -E
and n-p mass differences. E -d elastic angular distributions, elastic cross sections, and total cross sections are
calculated using the Kim E-g scattering lengths and values of the X -g range parameters from 0.05 to
0.20 F. The corrections due to the mass differences run about 3—9%, being larger at the smaller values of the
incident kaon momentum.

I. INTRODUCTION'

'N a previous paper' we calculated, E -d elastic
- - angular distributions, elastic cross sections, and
total cross sections for incident-kaon laboratory
momenta in the range 100—300 MeV/c. The main
features of the model used in these calculations were:
(a) The representation of each two-particle interaction
by a nonlocal separable (NLS), 5-wave, Yukawa-
shaped potentiaP; (b) the neglect of Coulomb scatter-
ing; (c) the use of nonrelativistic kinematics'; (d) the
neglect of hyperon channels, except for their contribu-
tion to the g-X amplitude4; (e) The neglect of the
go Eand tt-p m-a' —ss splittings. With this model a
Faddeev type of multiple-scattering formalism' was
used to obtain an exact solution to the three-body
problem. '

It is our aim to eventually investigate those effects
which we neglected. in HS1 so that our model may
be made to more closely approximate the physical
situation.

The primary objective of the present work was to
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investigate the sensitivity of the low-energy cross
sections to the g' Eand -tt-p mass splittings. To this
end, calculations of the elastic angular distribution,
elastic cross section, and, total cross section for incid, ent
kaon la,b momenta in the range 15—300 MeV/c were
performed (a) with these mass splittings neglected, and

(b) with these splittings correctly taken into account.
Asid, e from the inclusion of the mass splittings, the

present calculations d,iffer from those carried, out in
HS1 in two respects. First, as noted above we carried,
our calculations down to lower incid, ent kaon momen-
tum. Second, we used the Rim' values of the E-X
scattering lengths rather than the Humphrey-Ross'
values.

Ke d, iscuss in the next section the potentials used for
the two-particle interactions. A two-channel model is
used for Z-1V sca, ttering. The application of the Rim
scattering lengths to determine the parameters of this
model is covered at some length. The form of the rtp-
potential and its parameters are giveq. .

In Sec. III we give the results of our 3-body calcu-
lations and look at their dependence on the mass
splittings and the E-E range parameter. The results
obtained here are compared, with some of those in HS1.

Append, ices A and, B contain some of the mathe-
Inatical details of Sec. II and, Sec. III, respectively.

II. TWO-BODY AMPLITUDES

X-E scattering was taken to be a two-channel
process, channel 1 being the K p channel and channel
2 the K e channel. Each element of the 2&(2 matrix
representing the K-S "potential" wa, s taken to be an
NI S S-wave potential with a Yukawa shape. ' The
details of the calculation are given in Append, ix A.

The K-S input parameters were the masses of the
proton, neutron, E' and E (denoted by M „,M, M v,

and 3EI, respectively), and the isospin zero and one
scattering lengths, Ao and, A 1.

' Jae @wan Kim, Phys. Rev. Letters 14, 29 (1965).
8 W. R. Humphrey and R. R. Ross, Phys. Rev. 127, 1305

(1962).
Because we use only S-wave potentials, spin Rip cannot occur.

Thus in both the K-3f and E=d problems spin coordinates may
be ignored.
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For the masses two different sets of values were used.
In one case we took into account the K' E -and m-p

mass splittings. In this case we used"

M„=938.256 MeV, 3f„=939.550 MeV,

M =493.8 MeV Mo ——498.0 MeV. (2.1)

The energy difference 6 between channels 1 and, 2 is in
this case given by

IO 000

IOOO

6=5.494 MeV. (2.2)

With k; the c.m. momentum in the jth channel and p;
the reduced mass in the jth channel, we have

k 2 [(p2/p y) (k P—k o )] (2.3)

where kp is the value of k~ at the threshold for channel 2;
1.e.)

b IOO

ko= (6/2pq)'"= 59.62 MeV/c. (2.4) IO—

We shall refer to this case as the 6/0 case.
The second, set of mass values was used, for calcu-

lations in which we neglected the mass splittings. In
this case we used"

3f„=3f„=938.9 MeV,

Mp=M =493.8 MeV. (2 5)

In this case of course kp=0 and 6=0. We shall refer to
this case as the 6=0 case.

For the scattering lengths we used the values given

by Kim'
A p= (—1.674+i0.722) F
A g= (—0.003+i0.688) F. (2 6)

' Arthur H. Rosenfeld, Angela Barbaro-Galtieri, Walter H.
Barkas, Pierre L. Bastien, Janos Kirz, and Mittis Roos, Rev.
Mod. Phys. 36, 977 (1964).

"The nucleon mass is just the average of 3f„and 3E„given in
Eq. (2.4). This value and the E value for the kaon mass were
used in HS1. These values were used here for 6=0 in order to
facilitate comparison with the HS1 results.

"Values of the I4 -p relative momentum above this upper limit
do not contribute signi6cantly to the E -d cross sections. This
also indicates that our use of nonrelativistic kinematics throughout
is at least a consistent procedure.

I' For a nonrelativistic zero-range R-matrix treatment of E -p
scattering see J. D. Jackson and H. W. Wyld Jr., Nuovo Cimento
13, 85 (1959).

"See Appendix A.

Since Rim's results were based on a zero-effective-range
model, we took as our "experimental data" the E p-
elastic, charge-exchange, and. total cross sections for
values of kq up to 300 MeV/c, "calculated from a zero-

range E-matrix formalism" with the values (2.6) as
input parameters. This was done for both 6=0 and

6&0. These "experimental" cross sections are shown

ln Flg. 1.
Our finite range potential mod. el for E-E scattering

contained three parameters"; two strength parameters
X+ and X and one range parameter 1/P. These param-
eters w'ere handled, in the following ways.

For 6=0 we used an isospin-state representation for

I

0 60 I20 I80 240
K-p RELATIVE MOMENTUM (MeV /c )

500

FIG. 1. Two-body cross sections plotted as a function of relative
E=p momentum. The solid curve shows the total, elastic, and
charge exchange scattering cross sections as calculated from the
zero-range R-matrix formulation with the Kim scattering lengths.
The dashed curves show the elastic and charge exchange cross
section when the mass difference is ignored. The mass difference
zero curve for the total cross section lies within the solid total
cross section curve except at the cusp and was not plotted.

"This representation may be obtained from the charge-state
representation of Appendix A for 6=0 by diagonalization.

' The "experimental" values of the amplitudes are just those
which yield the "experimental" cross sections shown in Fig. 1.

the E-X amplitudes. "The parameters X~——X++X and

Xo ——X+—X were determined for a given value of p
—' by

equating the isospin zero and one scattering lengths as
calculated, from our NI S potential model to the Rim
values. The "given" values of P ' were limited from
above by the requirement that our model give a reason-
able fit to the "experimental" values of the E pcross-
sections. The results listed in Table I show that for
P-'&0.2 F we have a fairly good fit. From calculations
performed, in HS1 we found that in order to obtain an
accurate solution to the 3-body problem on the com-

puter available to us without using very fancy nu-

merical techniques, we had to take P '&0.05 F. Most of
our calculations (for both 6=0 and DAO) were carried
out therefore at P '=0.10 F. The range dependence of
our results was investigated by repeating some calcu-
lations with P '= 0.05 F and P '= 0.20 F.

For 6&0 two different fits w'ere used to determine

X+ and X for a given value of P '. In 6t No. 1 we

matched the Ep +E p amplitud'e a—t its threshold

(kq= 0) and the E p ~E'e amplitude at its threshold

(k~
——59.62 MeV/c) to their "experimental" values. "
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TABLE I. E=p elastic, charge exchange, and total cross sec-
tions in millibarns as functions of the E=p relative momen-
tum. The X'-E and n-p mass splittings have been ignored.
Column 3 follows from a zero range R-matrix calculation, and
columns 4, 5, and 6 from an NLS potential calculation with
different ranges. All four calculations fit the Kim scattering
lengths at zero X=p relative momentum.

E=.p
relative

ross momentum
section (MeV/c)

Zero-
range

R matrix p '=0.05 p i=0.10 p '=0.20

10
60

160
260

10
60

160
260

10
60

160
260

145.1
105.6
51.89
29.48

75.75
34.37
8.301
2.784

1845.
322.6
95.00
45.25

145.1
106.6
53,21
30.26

75.80
34.81
8.608
2.919

1845.
325.2
97.09
46.36

145.2
107.5
54.12
30.46

75.84
35.22
8.898
3.041

1846.
327.5
98.71
46.82

145.3
108.9
54.73
29.21

75.91
35.95
9.413
3.247

1847.
331.4
100.5
45.94

In 6t No. 2 we matched both of these amplitudes to
their respective "experimental" values at the charge
exchange threshold. Fit No. 1 w'as calculated for
P '=0.05, 0.10, and 0.20 F while fit No. 2 was calcu-
lated for P '= 0.1 F.

The results of these 6&0 calculations for some typical
values of k2 are shown in Table II. It is clear from this
table that for 0.05 F&P-'&0.20 F the range-dependence
of the cross sections is quite small, but that for
P ')0.20 F this range dependence would become
appreciable. Furthermore, both fit No. 1 and, 6t No. 2

reproduce the momentum dependence of the "experi-
mental" cross sections quite well. Although fit No. 2

may be slightly better in terms of a least-squares fit to
the "experimental" cross sections, fit No. 1 is the better
6t in the low-momentum region. As this low momentum
region is the more important in the 3-body calculation,
we chose to perform most of our 3-body calculations
with the X-E parameters determined by fit No. 1..

In Table III we list the values of P+ and, A. as

TABLE III. The K 1V p-otential parameters X+ and X (in units
of (2rr)'&& 10' MeV') for the cases studied.

p '=0.05 F p-i=o. iO F p-1 =0.20 F

—9.7790—i0.8016
+0.3492—i0.5699

—9.7649—z0.8173
+0.3370—i0.5962

a=O
—1.2224 —i0.1938 —0.1493 —i0.04292
+0.1121—i0.1294 +0.03679—i0.02267

3 WO Fit No. 1—1.2240 —i0.1933 —0.1510 —i0.04286
+0.1065—i0.1308 +0.03427 —i0.02324

6/0 Fit No. 2
—1.2209—i0.1987
+0.1124—i0.1365

determined by the 6=0 and, the 6&0 fit No. 1 and, fit
No. 2 calculations.

The other two-particle potential that enters the
E—-d problem is the '52 nucleon-nucleon potential. This
potential too was taken to be an NLS potential w'ith a
Yukawa shape. The values of the parameters in this
potential were taken from Yamaguchi. In terms of the
inverse of the range parameter Psr and the inverse of the
size of the deuteronn, where n'= $2Mr M„B/(M +Mr) j
with 8= 2.225 MeV, these values are

n = 45.706 MeV/c,

pN = 6.255n. (2.7)

In HS1 we used a Faddeev type of multiple scattering
formalism and. NLS S-wave potentials for the two-
particle interactions to reduce the problem of 6nding
the E delastic scatte-ring amplitude (with 6=0) to
that of solving a set of three coupled one-dimensional
integral equations for each partial wave. The kernels of
these equations were singular but by judicious use of

The strength of the potential A.~ is related to these
parameters by

Xrr ———47rp~(n+pN)'(3f „+M~)/M„M, . (2.8)

III. RESULTS OF THE X=d CALCULATIONS

TABLE II. E=p elastic, change exchange, and total cross sec-
tions in millibarns as functions of the E=p relative momen-
tum for various 6ts to the Kim scattering lengths. The E'-E
and n-p mass splittings have been correctly taken into account.

tel

0'ee

10
60

260
260

60
160
260

10
60

160
260

X=p
relative

Cross momentum
section (MeV/c)

210.5
99.3S
52.01
29.51

6.028
8.286
2.800

2012.
292.7
94.93
45.27

210.6
100.8
53.44
30.24

6.051
8.805
3.026

2013.
297.2
97.29
46.37

220.7
102.8
55.03
30.81

6.036
8.74S
3.005

2015.
302.1
99 44
47.09

211.0
106.0
56.66
30.03

6.027
8.880
3.055

2017.
308.2
102.2
46.59

202.0
99.38
53.83
30.30
6.048
9.103
3.172

1938.
292.8
98.15
46.68

Zero-
range Fit No. 1 Fit No. 2

Rmatrix P '=0.05 P '=0.10 P 1=0.20 P '=0.10

20

E

l5
b
ss

0
0 90

C.M. SCATTERING ANGLE (DEGREES)

FxG. 2. Elastic di6'erential
cross section for E=d scat-
tering for various values of
the laboratory E momen-
tum. The dashed curves are
for the case 6=0, the solid
curves for the case 6/0.
In both cases p '=0.1F.
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TABLE IV. E=d elastic and total cross sections in millibarns as functions of the
incident-kaon lab momentum for various sets of K-E parameters.

Cross
section

+'el

SC lab
momentum

(MeV/c)

15
60

150
250

15
60

150
250

356
221
83.5
34.7

2450
653
261
143

348
219
84.2
35.1

2370
642
261
144

352
226
88.4
36.1

2290
641
266
146

Z=O
P-1=0.05 F P-1=0.10F P-1=0.20F

391
238
86.6
34 9

2600
688
263
143

380
235
88.0
35.9

2500
677
267
145

382
242
93.2
37.6

2400
675
274
149

6~0 Fit No. 1

p '=0.05 F p '=O. i0 F p 1=0.20 F

a~0
Fit No. 2

p '=0.10F
371
231
86.7
35.2

2450
665
262
143

values for the two-body input parameters. The values
of ps used here were" ps

——15, 60, 105, 150, 194, 250, and
300 MeVjc. The values used for the two-body param-
eters were those discussed in Sec. II. Our results are
displayed in Figs. 2, 3, and, 4 and Table IV.

In Fig. 2 we have plotted the E -d elastic angular
distributions for ps ——15, 60, 105, 194, and 300 MeV/c.
We obtained, the solid line curves by using the d &0, 6t
No. 1, p '=0.1 parameters of Table III. We obtained
the dashed curves by using the same range but with
6=0.

In Fig. 3 we have plotted, the E -d elastic and total
cross sections (o,& and o&,t, respectively) as functions of
the incid, ent-kaon lab momentum for the 6&0, fit Xo. 1,
P '=0.1, and the 6=0, P '=0.1 sets of parameters.

How o.,~ and o~,~ depend upon P-', upon whether
6=0 or b, &0, and (if 6&0) upon the choice of fit No. 1
or fit No. 2 input pararn. eters is shown in Table IV.

As a further look at the sensitivity of the K -d 0-,~ and

IO 000

contour integration and, analytic continuation w'e could,
get around these singularities. The set of coupled
integral equations was then solved. on the CDC 1604
at the University of Minnesota Numerical Analysis
Center. "

In the present work our 6=0 E -d calculations used
exactly the sam. e equations given in HS1 but with the
Rim values, rather than the Humphrey-Ross values, of
the E Xscatteri-ng lengths. For our 6&0 E dcalcu--
lations in the present work we used the same 3-body
formalism, " rn.athematical analysis, and numerical
techniques as were used previously. A sketch of the
derivation is given in Append, ix B.

As before we calculated the elastic angular distri-
bution, elastic cross section, and, total cross section for
a range of initial kaon lab momenta pe and with various

5000

IOOO—

E

b

IOO—

IOOO—

IOO—

TOT

i~
Et. ~o

KIM

HR I
HR II

IO
I I I

75 I50 225

K LAB MOMENTUM (MeV /c )

Fxo. 3. Elastic and total cross sections for E -d scattering as
functions of E laboratory momentum, for the 6=0 and 5&0
cases. The range parameter p ' was taken to be 0.1F.

~7 All computations in this work were also done on this machine.
The numerical analysis was carried out so as to maintain an
accuracy of 1'Po in all results.' With 6&0 isospin is not a good quantum number so that a
charge state representation had to be used in place of the isospin-
state representation of HS1.

IO
0

I

60
I

I20 I80
I

240 500

K LAB MOMENTUM (MeV /c )

FIG. 4. The total and elastic IC=d cross sections corresponding
to the Kim, Humphrey-Ross I, and Humphrey-Ross II sets of two-
body scattering lengths. In all cases the mass difference was
ignored and the range parameter p ' was taken to be 0.1F.

"In terms of p0 the E +d —+ E +e+p threshold occurs at
52.7 MeV/c and the X +4 ~X'+o+e threshold occurs at
98.1 Me V/c.
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«.1 to the K-1V parameters we have plotted in Fig. 4
these cross sections as functions of incident kaon lab
momentum for three different sets of these parameters.
In each of these sets we used 6=0 and P

—'= 0.1, but in
one set we used, the Rim scattering lengths, in another
the Humphrey-Ross set I (HRI) scattering lengths, and
in the third the Humphrey-Ross set II (HRII) scatter-
ing lengths. "

The main features of these results are:
(i) The difference in the K dcross-sections for the

two AQO sets of K-tV parameters is quite small ( 2%).
For the values of P ' considered the variation in the size
of the cross sections is also only one or two percent.
These results indicate that any set of X-S parameters
that give a good fit to the low-energy K -p scattering
data will also give a good. 6t to the low-energy, elastic,
E -d cross sections.

(ii) The neglect of the KP-K and n pmas-s splittings
leads at worst (i.e., at pp

——15 MeV/c) to an error in the
K dcross sect-ions studied of about 9%. At po= 100
MeV/c this error is down to about 5% and for po&250
MeV/c it becomes comparable to the other small
uncertainties in the calculation.

(iii) For p.,i the difference between the calculations
using the Kim data and, those using the Humphrey-
Ross data is 15% for po(200 MeV/c. In the near
future experimental results for the E -d elastic plus
breakup cross sections in the range po

——100—300 MeV/c
accurate to 5% will become available. "If the breakup
cross section d,epend, ence on the E-S scattering lengths
doesn't compensate for the dependence of a, j on these
parameters, then at least sets of scattering lengths as
different as the Kim and, Humphrey-Ross sets will lead
to measurably different E -d cross sections"

t= V+Vgt, (A1)

with the t matrix, the potential V, and, the Green's
function g given by

111 t12$ V11 V12)
V=

t21 t22/ V21 Vll/
(A2)

(g
0)

0 g, /
(A3)

respectively. Here row (column) one refers to the K p
channel and row (column) two to the K'rt channel. The

' From Ref. 8 we have for HRI, A 0= (—0.22+i2.74)F
and A1= (0.02+i0.38)F, while for HRII, A 0= (0.59+i0.96)F and
A, = (1.20+0.S6)F.

2' R. D. Hill (private communication).
'2 Calculations of this cross section are in progress. The sensi-

tivity of the results to the model assumed for the neutron-proton
interaction will also be investigated.

APPENDIX A

The I.ippman-Schwinger equation for ), the X-X t
matrix, was taken to be

energy variable that labels both t and. g has been

suppressed, but it should be remembered that g~

describes the free propagation of a E and a proton at
a c.m. energy E~ while g~ describes the free propagation
of a E" and a neutron at a c.m. energy E2= Ej—A.

Each element of the matrix V was taken to have a
NLS 5-wave form. With r; (r,') the interparticle dis-

tance in the final (initial) state, we used

with
(r'I v'~(r~') = I '~~'(r~) ~~(r1 ) (A4)

(A5)

(Were isospin a good quantum number, we would have
X~= 2 (Xi+ho) with X; the potential strength for isospin

j.) The shapes v, (r) were taken to be the same for both
channels, namely

m, (r) = (42rr) ' exp (—Pr) . (A6)

This gave us three parameters (X+, X, and, P) to be
determined from the two experimentally known scatter-
ing lengths Ao and, A~.

With Kqs. (A4), (A5), and (A6), Kq. (A1) was solved.

exactly. If we let (k, I
t,; I

k ) denote the t matrix element
for scattering from a state in channel j of relative
momentum k, ' to a state in channel i of relative Inomen-
tum k, , then the solution to Eq. (A1) may be written

with
(k, it,, ik,')= (k2,)r,, (kit), (A7)

rii ——P~(1—g2X+)+X2 g2]/D, (A8)

r22 ——P,+(1—gih+)+X2 gi]/D, (A9)

r12 ~—/D r211 (A10)

a, t
——2rki '

I (ki
I
t 11 I

k 1) I
',

«..= 2~ki-'Im(ki
I
tii I ki),

~,.=vrki 'I (k2! t21!k-i)i'.

(A13)

(A14)

(A15)

The experimental" amplitudes, i,e., the zero-
effective-range amplitudes were taken to be"

(kii tii I ki) =
I 2kik2(A '—A+') —2ikiA+)/Dp, (A16)

(k2! t21!ki)=—2iA (kik2)'"/Dp, (A17)

where
Do '= 1+kik2(A-' —A+') —iAy(ki+k2) &

(A18)

A~=2(A1+Ao). (A19)

The "experimental" K -p cross sections are the result
of using Eqs. (A16) and (A17) in Kqs. (A13), (A14),
and (A15) with the Rim values of A p and Ai.

D= (1—gi~+) (1—gobi-) —gig2~-' (A11)

g'= (t '/4 —)I:&(0 ik')1 —' (A12)

For K--p scattering the elastic, total, and charge-
exchange cross sections are given by
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APPENDIX 8 TABLE VI. Reactions represented by the
various two-body t matrices.

There are only three particles present at any one time
in the scattering process, so that the Faddeev type of
multiple-scattering equations used in HS1 could. also be
used here. Thus the matrix element for elastic scattering
is given by

(81)
tf 7+2

with

Operator

tp

t2

t3

t4

Reaction

E+N ~$+&
Iisospin zero, 3&1)

E +p-+E +p
& +P —+EP+77,

Ep+n ~E-+p
Ep+e E0+
E +s~E +s

3
gij —t.g.+Q tGibTbr,

k=1

t =V[1—GV j '

(82)

(83)

energy, the G'k are also state-dependent;

Gl'k 0 0
Gk 0 G k 0

0 0
(88)

A

t2=
tp

1 02

tp

P

t4 0
0
0

0 —tp

0 0
0 tp

0

(86)

(87)

where the reactions represented by each of the t-

matrices t;, i =0, , 4 are given in Table VI."
The Green's functions G'" are also operators in this

subspace, but they are diagonal. Through their de-

pendence on the particle masses and the total kinetic

where pb' (p, ') is the final (initial) wave function for a
d,euteron and a plane wave E—expressed, in the ith
(jth) "natural" coordinate system discussed in HS1,
and, G is the three-body free particle Green's function. "

In the present work, however, each of the t, is an
operator in the subspace whose states are defined, in

Table V. With row (column) j referring to state j, the

matrices representing the t; are

0
t2 t3 0 (85)
0 0 t4

where P„&' is the spatial part of the initial wave functions
in the jth "natural" coordinate systems and the ith
state of Table V.

The scattering matrix element can now be written

where

Mb =Cb(t+tgt)C„

g=G+Gtg.

(810)

(811)

Here C is the nine-element column matrix mad, e from
g, ', P,' =—0, P,', t" is the 9X9 matrix made up of the
three t,'s along its diagonal, and G is the 9&(9 o6-
diagonal matrix of the G'k. Because there are only four
different "interactions" (to, t4, and the 2X2 E 1V charge-
zero interaction) these 9X9 matrix equations may be
reduced to 4X4 matrix equations. That is, Eqs. (810)
and (811) still hold, but with

where the subscript d,enotes the state.
Similarly, g, ' may be written as a vector in this

3-space. Since the d, euteron is in an isospin-zero state
we have,

al
0

TABLE V. Particle labels.

State No. Particle No. 1 Particle No. 2 Particle No. 3

0
ib

0-

33

tp 0 0
0 t 0
0 0
.0 0 t2

0
0

tl.
"The energy dependence of the operators has been suppressed.
24 The operator tp is the isospin-zero nucleon-nucleon scattering

matrix in the 35' state, There is no neutron-neutron scattering in
this state so that the center element of t2 vanishes. The other zero
elements in t1, t2, and t3 result from charge conservation in each
two-particle scattering.

0

0
—J3

A 0
0 0

—D 0—C 0 0)



1320 J. H. HETHERINGTON AND L. H. SCHICK

where
g —G23 —G 21

G 21 G 23

C= G131=G3",
jg G 13 G 31

Advantage may now be taken of the factorable
nature of the interactions t, and a partial-wave separa-
tion of these equations carried out. From this point the
derivation of the set of four coupled one-dimensional
integral equations for each partial wave proceeds
exactly as in HS1.
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Photodisintegration of the Deuteron from SOO to 1000 MeV*

R. CHINGf AND C. SCHAERFj

High Energy Ph-ysics Laboratory, Stanford University, Stan/ord, CaHfornia

(Received 26 July 1965)

The photodisintegration of the deuteron has been studied at energies comparable with the second and
third pion-nucleon isobars using the Stanford Mark III linear electron accelerator. Qo evidence has been
found for any resonant behavior in the energy region of interest.

EXPERIMENTAL PROCEDURE

E have measured the angle and momentum of the
protons produced in the reaction

p+d —+ P+I,
using the double-focusing magnetic spectrometer of
Hofstadter's group.

The same experimental apparatus and data-handling
technique described in Ref. 1 has been used. The lower
counting rate of this experiment required some increase
in the shielding around the counters in order to reduce
the accidental coincidence rate to a tolerable level. In
this way the accidental coincidence rate was reduced to
less than one-third of the true rate for 0„' = 130 and
to less than yp for 0„'- =90'. Two cells were filled,
respectively, with liquid deuterium (full target) and
with liquid hydrogen (empty target).

The emission of protons from liquid hydrogen at the
angle and with the momentum accepted by our spec-
trometer was forbidden by kinematics for all of our
points. However, the proton yield from a liquid-
hydrogen target was slightly higher than the compa-
rable yield from an empty target. We have interpreted
this phenomenon as the result of two-step processes. As
an example we can consider pion photoproduction in the
target's w'alls followed by pion-nucleon scattering in the
target. ' For this reason we have assumed that the

*Work supported in part by the U. S. Once of Naval Research,
Contract Nonr 225(67).

t Present address: Department of Physics, William Marsh
Rice University, Houston, Texas.

f Present address: Laboratori Nazionali di Frascati, Frascati
(ROMA), Italy.

'H. De Staebler, E. Erickson, A. C. Hearn, and C. Schaerf,
Phys. Rev. 140, B336 (1965).' The kinematical conditions of the experiment prevented
contributiorz from all two-step processes involving stationary
pucleons,

TABz.z I. Center-of-mass differential cross section in micro-
barns/steradian as a function of the gamma-ray energy h and the
proton angle HpC™in the c.m. system.

(MeV)

975
950
925
900
850
800
975
950
925
900
875
850
825
800
775
750
725
700
675
650
625
600
575
550
525
800
800
800
800
800
800

g C.Ill.
p

(degree)

130
130
130
130
130
130
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90

137
120
iio
100
80
70

d /dfol

(tsb/sr)

0.0343~0.0133
0.0356&0.0134
0.0547&0.0143
0.0442~0.0108
0.0347~0.0118
0.0755&0.0145
0.0681&0.0093
0.0488~0.0075
0.0543~0.0089
0.0688~0.0107
0.1038~0.0082
0.1235~0.0068
0.1483&0.0096
0.1571~0.0080
0.1935~0.0164
0.2643~0.0177
0.2984~0.0197
0.3374&0.0206
0.3908&0.0238
0.3948~0.0175
0.5620~0.0210
0.5822&0.0367
0.6900&0.0280
0.6860~0.0412
0.8021+0.0441
0.0678~0.0098
0.1144~0.0128
0.1323~0.0149
0.1360~0.0166
0.1948m 0.0138
0.2040~0.0151

proton yield from a liquid-hydrogen target was a better
approximation of the background. processes contributing
to our full target counting rate, than the yield from a
true empty target. In these conditions the yield from
the hydrogen target was comparable with the photo


