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The 2-dimensional metric on the symmetry axis of the Kerr solution is examined and it is shown that in
the form usually given it is incomplete when a'~& m'. The method developed by Kruskal for completing the
Schwarzschild solution is adapted to the distinct cases a~ (m' and a'=m'. In each case a singularity-free
metric is obtained which is periodic with respect to a timelike coordinate, and which is shown to be a com-
plete analytic extension. The generalization to the full 4-dimensional Kerr solution is discussed, and finally
the questions of uniqueness and causality are considered.

1. INTRODUCTION

''T is remarkable that although the Schwarzschild
~ - metric was discovered nearly 50 years ago, no really
determined effort to understand its full topology was
made until quite recently. In 1960, after a partial solu-
tion of the problem by Finkelstein' in 1958, Kruskal'
finally published the full solution which he had obtained
some years earlier, while about the same time Fronsdal'
solved the problem by a different method. One reason
for the long delay was that many people thought that
the region of space-time within the Schwarzschild
horizon could have no physical meaning. As a result of
the interest which has developed in problems of gravita-
tional collapse it is now generally realized that this
view was mistaken.

Most large stars have angular momentum per unit
mass which is comparable in gravitational units with
their mass, and this may well be true for the other

types of body whose gravitational collapse is under dis-
cussion. The only presently known exact solution of the
field equations which might be relevant to such a situa-
tion is that of Kerr' (1963). Consequently it seems that
the claridcation of the complete topology of the Kerr
solution is worthwhile for the same reasons as applied
to the Schwarzschild case.

In this paper the complete solution for the axis of
symmetry is obtained, and the probable form of the
full 4-dimensional solution is sketched. The methods of
Finkelstein and Kruskal are used since these seem much
more straightforward than the embedding technique of
Fronsdal.

2. THE NECESSITY OF EXTENSION

The Kerr solution may be expressed in quasispheroidal
coordinates as

( 2mr 2amr sin'8 2a'mr sin28~
ds'= —

~

1— dt2 j2 dh dq+sin'8~ r'+a'+ ~dp2+(r2+a2cos28)d82
r'+a' cos'8. r'+a' cos'8 r'+ a' cos28)

2mr
+2 dr dh+2

y2+ a2

2amr sin'8 r'+a' cos'8( 2mr ydr dp+ —

~
1+ ~dr2,

r2+a

where, as was stated by Kerr4 and demonstrated at
length by Boyer and Price, ' m is the mass and a is the
angular momentum per unit mass as observed at large
r. When a=0 this is the Schwarzschild solution, and
when m =0, the two regions, r positive and r negative
each represent a complete Rat space in spheroidal-type
coordinates, the two Qat spaces being connected through
the interior of a ring of radius a.

On the axis this reduces to the 2-dimensional form

( 2mr ) 2mr ( 2mr )ds'= —
)

1— ~dt'+2 dr dt+~ 1+ ~dr'.
y2+.a2) y2/g2 ( y2+a2]

' David Finkelstein, Phys. Rev. 110, 965 (1958).' M. D. Kruskal, Phys. Rev. 119, 1743 (1960).' C. Fronsdal, Phys. Rev. 116, 778 (1959).

This may be equivalently expressed in terms of a null
coordinate

u= t+r as ds'= —f1—2mr/(r2+a2) jdu2+2du dr. (1)
This metric is analytic and nonsingular over the mani-
fold 5K(u, r) defined as the whole of the (u,r) plane.

The equations for a geodesic are

( 2mr )du dr
/

—+—=—&,
r2+a2I dX dX

( 2mr du) ' du dr

r'+a' dXJ dX dX

4 Roy P. Kerr, Phys. Rev. Letters 11, 238 (1963).' R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 61,
531 (1965).
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where e is an indicator with value +1, 0, —1 in the
spacelike, null, timelike cases, respectively, A. is an aSne
parameter —the metric parameter in the non-null cases—and E is a constant representing the energy in the
timelike case.

They may be rewritten

dr/dr= +a(r),
du/D. = [1—2mr/(r'+a')7 '[E&A(r) 7 (2)

where

A(r) = (E'+a[1—Zmr/(r'+a')])"'

It can be seen that dr/dX is bounded. When a'&m'
the factor [1—2mr/(r'+a')7 has no real zeros and so
au/dX is bounded also. Hence each geodesic may be
continued to infinite values of the alone parameter.
Thus when a'& m' the manifold 5K(u, r) with metric (1)
is geodesically complete.

From now on we shall consider the more interesting
case when 0(a'(m'. The factor [1—2mr/(r'+a') 7 now
has two (positive) real zeros r+=m+(m' —a')'"

In the null case, (2) can be solved explicitly. We may
put E= 1 without loss o f generality by renormalizing
the aS.ne parameter, and we obtain two classes of
solution:

where r is uniquely determined in terms of N, ~ by

F(r) =u+w

provided that one of the regions I, II, III is speci6ed.
Thus the lines r=r+, r=r (i.e., w=&~) divide the

manifold 5R(u, r) into three open manifolds ggz, 5gzz,
5Ezzz each of which consists of a whole (u,w) plane. In
each one, r is determined by (5) with the restriction to
the region I, II, III, respectively, and the metric is
given by (4).

Conversely, OE(u, r) can be regarded as an analytic
extension of one of 0%, ~il, ~rid

We may take advantage of the symmetry of (4) and
(5) to eliminate u instead of w, obtaining the metric

ds'= —[1 2mr/(r—'+ a') 7dw'+ 2dw dr,

which is analytic and nonsingular over 5K(w, r)—the
whole (w, r) plane.

5R(w, r) is also subdivided into manifolds isomorphic
to SKAG, BRli, 5Kzli, and so can be regarded as an alter-
native analytic extension of any one of these.

We shall show in the next section how it is possible
to obtain an analytic extension which is geodesically
complete by repeated use of these two ways of extending
one of ~I ~II ~III ~

u=C+F(r), r=X,

where C is a constant and

with
F(r) =2r+A ' ln

~

r r+
~

8' ln—
~

r r— —

A '=2m[(1 —a'/m') '~'+17,
8-'= 2m[(1—a'/m') '~' —17

so that
dF(r)/dr= 2[1—2mr/(r'+a')7 '.

It diverges to W ~ as r ~ r+.
Thus for one class of null geodesics N is unbounded

as r —+ r+ even though X tends to a hnite limit. It can
be seen that there will be classes of non-null geodesics
behaving in a similar manner.

%e conclude that the metric is geodesically incom-
plete asr —+r+andu~ —~ andasr &r and u~+ ~.—

3. SYMMETRIC DOUBLE-NULL COORDINATES

In order to proceed further we introduce a second null
coordinate w=F(r) —u and obtain the metric in the
symmetric double-null form

ds'= [1—2mr/(r'+ a') 7du dw

A and 8 are both positive. F(r) is monotonic in each
of the regions

I: r&t+&r
II: r+) t'& r

III: r+&s &r.

4. THE EXTENSION WHEN 0(a'(m'
We introduce a new manifold 5K* with coordinates

P, ( running from —~ to ~ (see Fig. 1 (a)).
Let thelines cot/ —$) =0, [cot(tp+ ()=07subdivide it

into open regions labelled (n, —)*, (n+1, —)*,
[ ( ,n)*, (——,n+1)*, . 7,etc. , accordingastheycon-
tain the points with (=0 and, tP= nzr, P= (n+1)~,-

(for integer n). We let (n,p) be the subregion
(n, —)*Q(—,p)*, and define the submanifold DR, to
consist of those subregions with ~n p~ (~1 t—ogether
with the lines separating any two such subregions. Let
(n, —) stand for 9R,P(n, —)* and similarly de6ne
(—,n). It follows at once that (n, —) consists of the
union of (n, n —1), (n,n), (n, n+1), and the two lines
that separate them. Similarly for (—,n) with respect
to (n —1, n), (n,n), (n+1, n)

Now define u as a function of P, P by g(u) = tan(f+ $),
where g(u) is a function which is to be unbounded with
continuous nonvanishing derivative, and whose precise
definition may be given independently in each of the
regions (—,n) We take g. (u) = &h(u) according as n is
odd/even, where h(u) is a fixed monotonic increasing
function to be specified later.

Similarly, we define w as a function of $, P by
f(w) = tan(p —$) and fixing f(w) in each of the regions
(n, —) by taking f(w) = &h(w) according as n is
odd/even.

%e now have a continuous nonsingular mapping of
the (u,w) plane onto each of the regions (n,p). We fzx r
as a function of $, P by specifying that (n,p) be a map of
ORz if nWp and max(n, p) is odd; of 5Kzz if n= p, and
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(g) g c.8 c rn (Q) Q "-N These regions together cover the whole of 5R, except for
the isolated points P„withcoordinates $=0,p = (22+ 2)2r

The metric on BR, which results from the mapping we
have described is

d '=Q(EA)L 4'+—dH,
where Q is defined implicitly by

( 2m' )sec'(0+E)sec''(P —i)
Q(~,~)=-I I-

r'+ a2 g'(u) f'(tr))

(6)

X(c) g =o

PMrsa
(d) Q &rq

of ORiri if 22Np and minf22, p} is odd, and by taking
r=r+ on the boundary separating 5Riz from 5Rz and
r =r on the boundary separating 5RzI from 5Rzzz so that
r is a continuous function of $, f.

It follows that each of the regions (22, —) L(—,22)j is
a continuous nonsingular map of OR(22), r) /OR(u, r)$.

FIG. 1. The manifolds BR, and 5R,~ are illustrated in Figs. 1(a)
and 1(b), respectively. Broken lines are used to sketch some of the
Killing vector paths (r constant) and solid lines are used to show
the horizons (where the Killing vectors become null), and the
boundaries at infinite r. The null lines are everywhere at 45'
to the axes. The manner in which the distant Bat-space parts
of the BRz and 5Rzzz regions are compressed into 6nite parts of the
(P,p) plane by the coordinate transformations recalls the conformal
diagrams used by R. Penrose, in Relativity Groups and Topology,
(Gordon and Breach Science Publishers, New York, 1964), p. 565.

For purposes of comparison we show the eRect of similar co-
ordinate transformations on the Kruskal diagram —the case u'=0
LFig. 1(c)j and on the corresponding diagram for the case a2)m2
[Fig. 1(d)j using exactly the same conventions. Since the precise
transformations do not need to be specified the diagrams do not
have any scale on them. In the Kruskal case we have included the
manifold obtained by continuing through the singularity at r=0
to the region of negative r. For analytical continuity two negative
r regions should be Gtted to the positive r region to complete the
square as shown by arrows, but in order to retain the convention
that P is spacelike and P timelike the regions have had to be sepa-
rated and rotated relative to each other by 90 . This emphasizes
that analytical continuation through r=0 is purely formal when
a'=0 since in this case an irremovable singularity (represented
by a double line) develops at r=0 thus breaking oR the physical
connection between the regions of positive and negative r which
existed for nonzero values of a~. In the limit when m =0, the nega-
tive r part of Fig. 1(c) becomes the appropriate diagram for Rat
space. In the case when a'=m2 the regions of large positive and
negative r are marked I and III, respectively, although the precise
boundary between these regions has ceased to exist.

For practical computations, the original form of the metric in
terms of r and I or ze is much more convenient than the new form
in terzns of g and P. When 0 (a~ (m~ the new form has the essential
function of providing coordinate patches to cover the special
points left out by the original analytic patches, but when u'=m'
the new form is no more than a framework for exhibiting the com-
plete manifold 5R,t.

and thus depends on our choice of h.
By choosing h(u) =ea"—e ~" we ensure, as can easily

be verified, that Q is positive definite and Ci everywhere
in 5R, which implies that at all points of 5R, the metric
is nonsingular and the curvature finite. Q is in fact
analytic within the regions 5Rz, 5Rzz, 5Rzzz, but not on
the boundaries between them.

The manifold OR, with metric (6) and this definition
of h is completely covered by subregions [isomorphic
to OR(u, r)] which are analytic manifolds —except for
the isolated points I'„.Therefore, 5R. is an analytic
manifold except possibly at these points even though
its metric is not explicitly analytic everywhere in the
coordinate system we have chosen.

By taking a slightly different coordinate system we
can see that 5R, is analytic at the points P„also.We let
the modified coordinates be P, P introduced in exactly
the same way as $, P except that we replace h chosen
as above by h chosen by letting

h(u) = ea" for u) h, ,

h(u) =—e " for u(k2,

where k~ and k~ are two constants with kz& k2. The
values of these constants and the definition of h(u) in
the intermediate range k2~& N~& k~ are of no importance
because the only purpose of bringing in the new system
is to investigate the points E„where I and m become
infinite simultaneously. (h could not be analytic through-
out the intermediate region although it could if desired
be made infinitely differentiable, and so the metric can
no longer be analytic everywhere within 5Rz, 5Rz, 5R»z
although it could be infinitely differentiable. ) The
modified metric is

d '= Q(k,0)L 4'+d&'l, —
where, near the points I'„,

Q($,4') =csc'(4'+8 csc'(4' —$)G(r)

The function G(r) is defined only near r=r~ and r=r
where it is positive definite and analytic:

G(r)= — (r r)i++a))a near r=—r+,
~2(r2+ ~2)

~2Br

G(r) = (r+ r) &~+a) '" near r =—r
~2(r2+ F22)
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Near the points P2„where r is near r+ we have

—1L—2mr/(re+a')) =cot(it+)) cot(g —$)A'G(r),

and near the points P2„+jwhere r is near r we have

—$1 2m—r/(r'+a')) = cot(P+g) cot(tP —$)B'G(r) .
It follows that r and G(r) are analytic functions of $, P
near the points F„andconsequently so is Q.

It has been established that the manifold 5K, is
analytic and well behaved everywhere. It is also geo-
desically complete since every geodesic may be con-
tinued to unlimited values of the afIine parameter
within 5Kz, 5Kzz, or 5Kz~z unless it reaches one of the
boundaries r=r~, and within 5K, it is possible to cross
every such boundary and continue on the other side.

S. THE EKTENSION WHEN a'=m'

So far we have ignored the two interesting special
cases a'=0 and a'=m' (see Fig. 1). The former is the
Schwarzschild case which has been adequately dealt
with by Kruskal, so we shall not consider it further.

Ke shall now adapt our previous method to the latter
case. Ke introduce a second null coordinate ~ as before,
except that we must replace F(r) given by (3) by Ft(r)
given by

Ft(r) =2r+4m ln~ (r—m)
~

—4m'(r —m) '. (7)

Since we now have r+——r =m, the manifold 5Kzz no
longer exists —OR(l, r) is divided into only two open
manifolds 5Kz and 5Kzzz by the line r =m. As before 5Kz

and 5Kzzz can be analytically extended in two distinct
ways —to OR(l, r) or to OR(w, r).

Again we introduce OR*, the ($,P) plane, and define
the mapping

I,= tan-', (P+(), w= cot-', (P—P) .
The lines on which I and m become in6nite divide 5K~

into regions which we label (—,e)*t or (e, —)*taccord-
ing as they contain the points $=0, tP = 26' or (2'+ 1)n..
As before we define (e,p) t to be the subregion
(n, —)*tg(—,p)*~ and we take OR, t to consist of the
subregions with e=p or e =p —1 together with the lines
separating two such subregions. We let (e, —)t stand
for OR, tg(e, —)*t and similarly define (—,e) t.

We fix r as a continuous function of ($,P) by specifying
that (e,p) t be a map of ORr if riA p and an;», if e =p and
by setting r =m on the boundaries. It can be shown that
r is in fact C~.

The resulting metric on 5K,~ is given by

d~' =Q'(44) L 4'+~5'7, — (g)

where Qt(P,P) is defined implicitly by

Qt(5 0)= L(r m)'/(r'+m'—))
X—' sec'L-', (ii+ &)) csc'L-,'(it —&)) .

It is clearly analytic and positive definite within the

FIG. 2. A cross section u=const, y= const of the fu114-dimen-
sionai Kerr metric (in the case 0 &a'&m') is represented in order
to show the relative positions of the features which have been re-
ferred to in Sec.6. The horizons r =r+ are marked with heavy lines.
The broken lines mark other lines r =const and the faint continu-
ous lines mark lines 0=const. The regions of positive and negative
r are separated outside the ring by a Riemann cut.

As u' increases the horizons r =r+ approach each other, meeting
when a'=m' (at which stage r+ r= m) and dis——appearing beyond
this point. As e' decreases to zero, the outer horizon expands until
in the Schwarzschild limit r+ ——2re, while the inner horizon con-
tracts to a point and the ring singularity contracts to a point
singularity within it so that the regions of positive and negative
r become completely cut oH from one another.

subregions BRz and 5Kzzz and it can be shown to be con-
tinuous (Cs) everywhere.

The manifold OR, t with metric (8) is an analytic ex-
tension of 5Kz and 5Kzzz since it is completely covered
by the regions (m, —) t and (—,e)t which are isomorphic
to OR(w, r) and OR(e, r), respectively. There are no ex-
ceptional points this time.

Ke deduce that this manifold is geodesically complete
by similar arguments to those used in the previous case.

6. IMPLICATIONS FOR THE
4-DIMENSIONAL CASE

Ke have con6ned our attention to the axis of sym-
metry because it is easy to see exactly what is going on
there. Nevertheless it seems probable that the basic
topological properties of the 4-dimensional manifold
are essentially the same.

When the Kerr solution was first discovered, the
feature which attracted immediate attention was the
irremovable ring singularity at r =0, coso =0 in the
spheroidal type coordinate system we are using. It
connects the regions of positive and negative r, and has
the property of a quadratic branch point in the complex
plane, i.e., by passing through, looping round, and then
passing through a second time in the same direction one
returns to the space from which one started. It is
possible for a timeline line to pass through in either
direction. The negative r part of the manifold is identical
in structure with what the positive r part would become
if the parameter m (which we have taken to be positive)
were replaced by its negative.

Another salient feature is the existence of stationary
null hypersurfaces at r=r+ when 0(a'(m' and at
r=m when a'=m', to which attention has been called



(8) oc.g crt (b) 4 rn considering the geodesic equation for r which is

dr/dr = &[E'—1+2mr/(r'+ a'))' ",

FIG. 3. The diagrams show the forms of typical trajectories
followed by particles falling through the r =r+ horizon from a type
I region with diferent energies. The orbits are marked (1), (2),
or (3) according as the energy is high, medium, or low (in the
sense de6ned in Sec. 7) . Figure 3 (a) shows the case when 0 &o' &ez'
Lcf. Fig. 1(a)], the initial type I region having been taken to be
(0,1). Figure 3(b) shows the case when o'=za' Lcf. Fig. 1(b)],
the initial type I region being (0,1) .

by Boyer and Price. 5 They are always on the positive
r side of the ring (see Fig. 2). They have exactly the
same horizon property as the stationary null lines r =r+
or r =m on the axis, namely that timelike lines can cross
them in one direction only. They can be regarded as
dividing the 4-space into 4-dimensional submanifolds:

5Rz(4), for which r& r+;

3)Izz(4), for which r+& r &r;
0IIzzz(4), for which r &r.

These regions are generalizations of the gpss, ggzr, ggrrr
which we have been considering on the axis and as
before BRzz(4) is empty when a'='m'.

It seems reasonably likely that the analytic extension
of the full Kerr manifold can be obtained by fitting
together these manifolds in exactly the same way as we
have done on the axis. If this is the case then the(P, f)
diagrams which have been obtained can be thought of as
illustrating the basic topology of the full 4-dimensional
manifold except that the ring singularity which exists
within BRzzz(4) cannot be represented in a two-dimen-
sional picture. '

7. TYPICAL ORBITS

To illustrate the physical significance of our results
we consider some of the possible motions of a test
particle on the axis of symmetry (see Fig. 3). One may
obtain many of the properties of free-particle orbits by

' R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 61,
531 (1965).

6 See the work of R. H. Boyer and R. W. Lindquist (to be
published). Note added ~rI, proof. See the work of R. H. Boyer and
R. W. Lindquist Lreported at the London Conference on Rela-
tivistic Theories of Gravitation, 1965 (to be published)]. These
authors have examined the full 4-dimensional manifold when
0(a'&m', and their results conhrm the above conjecture in
this case.

where v- is the proper time. In the limit E' —+~ we have
just the null geodesics u= const, and m = const.

The expression L1—2mr/(r'+a')) plays the part of a
squared potential. At large positive r it has the effect
of an attractive force which in the bmit is the same as
that due to a nonrotating mass m. Closer in, the force
reverses its direction —there is a potential barrier block-
ing the ring in the region about r=0. The barrier has
maximum height 1+m/

~

a
~

at the point r = —
~
a

~

.
Beyond this point the force changes direction again and
becomes repulsive so that in the limit of large negative r
its eGect is the same as that of a nonrotating negative
mass —m. Thus a free particle can only pass right
through the ring between the regions of large positive
and large negative r in either direction if it has
E'&1+m/~a~. The energy corresponding to escape
velocity is E'= 1. Unless it has E') 1, a particle cannot
exist at indefinitely large distance in either the I spaces
or the III spaces. Therefore orbits fall into three classes:

(1) high energy, E'&&1+m/
~ a~,

(2) medium energy, 1&~E'(1+m/~ a~,
(3) low energy, E'(1.
In order to calculate the form of the orbits one must

use a second geodesic equation, e.g. , the I, r equation

Although exact treatment is awkward it is easy to see
the general characteristics of the trajectories. The
following remarks refer primarily to the case 0(m'(. a'.
Where necessary the appropriate modification for the
case m, '= g' is inserted in brackets.

Class (1):The particle travels directly from r = ~ to
r= —~, e.g. , through

(0,1) -+ (1,1)~ (2,1) L(0,1)t -+ (1,1)t),

or from r= —~ to r= ~, e.g. , through

(2, 1) -+ (2,2) ~ (2,3) L(1,1)t -+ (1,2)t),

except in the limiting case E'=1+m/~ a~ when it will
never pass the position r= —

~a~ but will spend an
infinite proper time approaching it.

Class (2):A particle in the distant part of a III region
will always remain there; after penetrating a certain
distance it will be repelled. A particle initially in the
distant part of a I region will at first fall inwards, but
the potential barrier across the ring will cause it to
bounce out again into a subsequent I region after enter-
ing the III region. In the limiting case 8'= 1 it will go
no further than the mouth of the ring, r=0. With higher
energy it will penetrate farther towards r= —

~
a ). If it
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starts in (0,1) it will progress through

(0,1)~ (1,1)~ (2,1) —+ (2,2) ~ (2,3)

$(0,1)t -+ (1,1)t—& (1,2)&j.

Class (3): Such a particle cannot exist in the outer
parts of III. It must follow the same sequence as has
just been described for class (2) particles, but instead
of following it once it will continue to fall in and bounce
out indefinitely. The oscillations are identical in the
sense that if in one period the motion is given by u = f(r),
in the next period it will be given by u = j(r)+C, where

C is a constant. Since I is an ignorable coordinate this
constant has no local significance at all—it is only
relevant for large-scale analytic considerations. Its
effect will be to prevent the orbit from appearing as a
periodic function of it in the $,f diagram. C may be
evaluated by contour integration of the right-hand side
of Eq. (9) in the complex r plane giving the result

C=2zrzzsE(3 —2L")(1—E') "'.
Since C —+ 0 as E —+ 0 the motion will become periodic
in f in the zero-energy limit. This result could also have
been obtained by observing that one of the zero-energy
solutions is )=0, the others being obtained by dragging
this orbit along by the Killing vector field. (In the case
m'= a' a zero-energy solution does not exist, but as the
energy approaches zero the orbit approaches the lines
r=m. ) As was to be expected, C —+~ in the opposite
limit E—& 1, at which the motion ceases to be oscillating.

8. QUESTIONS OF UNIQUENESS
AND CAUSALITY

Finally we come to the question of uniqueness. The
two extensions we have described are clearly not unique
since there are several ways in which different parts may
be identified. Since they are both periodic in 1( one could
obtain a universe which was cyclic in time by identifying
parts for which the value of 1( differed by 2rzzr for sozne

integer e. Causality would not of course be preserved
in such a universe.

A different type of identification is the kind discussed

by Fuller and Wheeler with reference to the Schwarzs-
child solution. In this case this would mean that the
large r regions of different 3Rz(4) and ORzzz(4) submani-
folds would be regarded as lying in distant parts of the
same Oat space background rather than in different ones
as we have assumed until now. In the Schwarzschild
case there were only two such regions to be identified,
leading to the idea of a wormhole. In our case there are
infinitely many regions, which may be identified in any
combinations we may choose. We might obtain a picture
bearing a closer relation to a honeycomb or, in a more
disordered situation, to an ant s nest, in which a large,
possibly infinite number of holes of assorted positive
and negative masses are connected by a single sub-

terraneous tunnel consisting of the region 9Rzz(4) if they
exist and, the parts of the 5Rzzz(4) in the neighborhood
of the ring singularities. Fuller and Wheeler~ pointed
out that causality could not be violated in the Schwarzs-
child case. However, there is nothing to prevent its
violation here. We have seen that free particles of any
energy may enter or emerge from the positive mass holes
and that particles with sufficiently high energy to pass
through the rings, and light rays in particular, may
enter or emerge from negative mass holes as well. There-
fore, identifications of this type will, in general, imply
the possibility of causality violation. It is true that if the
identified regions were sufficiently far apart in the (P,$)
plane free particles would not pass between them. For
example, in the case a'(m' a free particle entering from
(0,1) would emerge only in (2.3) or, if it could pass
through the ring, in (2,1).If it entered through the ring
in (2,1) it would emerge only in (2.3). Similarly, for the
case us = rzz', a particle entering from (0,1)t would emerge
either in (1,2)t or through the ring in (1,1)t and one
entering through the ring in (1,1)t would emerge only
in (1,2) t. Nevertheless, a nongeodesic particle could get
to any region higher in the (P,$) plane than the one at
which it entered, e.g. , a rocket ship with sufFicient fuel
reserves to bring it to near-zero energy, E'=0 after its
arrival in the tunnel and to restore it to a sufficiently
large value of E' when it approached the region in which
it wished to emerge. This would violate causality if the
initial and final regions had the same Rat-space back-
ground and were sufficiently far apart in it.

Apart from these internal identifications the mani-
folds 5R, and 5R,t appear to be unique in that they are
the only complete analytic extensions of the submani-
folds. One should be cautious about making a claim of
this kind, since Misner and Taub' have shown that the
Taub-space part of Newman, Unti, and Tamburino's
space can be continued analytically in two essentially
distinct ways. However this possibility arises from the
curious pathological nature of the space concerned, and
neither continuation is able to remove the incomplete-
ness. The Kerr space is perfectly normal in this respect
on the axis and appears to be so everywhere so that,
because our method of continuation has been essentially
straightforward, there seems to be no reason to doubt
its uniqueness.
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