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where II is the self-energy. Near the mass shell we have
I =m?—mo+ (p2—m?) (d11/dp?)

whereupon Eq. (7) becomes
lim Du=[— (=m0 + 20 1= a1/dp]. (9)

Thus in the long-wavelength limit the coupling is the
same as with a noninteracting field of mass 7, multi-
plied by the vertex renormalization factor [1—dIl/
dp¥]=Z:* In usual fashion this factor is taken out by
the renormalization factors of S(p) [cf. Eq. (5)], so
that the Ward identity simply reduces to Z7Z,=1
when one uses the renormalized mass. This result
implies the universality of the gravitational coupling to
the energy momentum tensor calculated with the true
inertial mass (for particles on the mass shell) whatever
the origin of the mass and independent of the
Lagrangian of the gravitational field. This is the

BROUT AND F.

ENGLERT 141
expression of the principle of equivalence. Off the mass
shell, Eq. (6) is the appropriate generalization of the
principle of equivalence.

We close with two remarks: (1) On the basis of a
previous paper,’ it is possible that theories which break
Lorentz invariance® lead to a graviton mass. (2) Because
of the Ward identity, it is probable that gravitation is
a renormalizable theory. We hope to return to these
problemsaswell as tothequestion of the meaning of a flat
space in a filled universe in subsequent work.

We should like to express our gratitude to Professor
D. Speiser of the University of Louvain who alerted us
to the link between our Ward identity and the principle
of equivalence. One of us (R.B.) wishes to acknowledge
a stimulating discussion with Professor H. Bondi of
King’s College on the subject matter of this paper.

5 F. Englert and R. Brout, Phys. Rev. Letters 13, 321 (1964).
¢ For example J. Bjorken, Ann. Phys. (N. Y.) 24, 174 (1963);
1. Bialynicki-Birula, Phys. Rev. 130, 465 (1963).
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The general-relativistic equations governing the motion of a large mass under the influence of its own
gravitational field and its own pressure have been approximated by finite-difference equations. A spherically
symmetric, co-moving frame of reference was used. The pressure was assumed to be zero at the outer bound-
ary. Rest mass was assumed to be conserved and heat transfer by neutrinos, radiation, etc., was not taken
into account. Numerical solutions were obtained on a computer for several simplified equations of state,
chosen to bracket the behavior of stellar material in late stages of collapse, and several masses. The maximum
stable masses obtained were of the same order of magnitude, but somewhat larger than the maximum stable
masses calculated statically. The behavior of light signals, of the metric coefficients, and of the hydro-
dynamic quantities as functions of time is described for collapse past the Schwarzchild radius. Such collapse
leads to regions where the surface area of concentric spheres decreases as the rest mass contained by the
spheres increases.

I. INTRODUCTION

HE gravitational collapse of spherically sym-

metric masses under conditions where the general
theory of relativity is expected to apply has been cal-
culated by solving the field equations in finite-difference
approximation on digital computers. This paper pre-
sents results of this calculation for materials with
simple equations of state and for simple initial and
boundary conditions. The purpose is to provide a
description of the collapse in the presence of nonzero
pressures, and to verify current estimates of maximum
stable mass. The calculation can be extended to take
into account pair production, heat transfer, and other

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

mechanisms of interest for the description of astro-
physical processes.

II. EQUATIONS

We consider an ideal fluid and neglect all heat trans-
fer except that due to the motion of the fluid itself.
The specific entropy of the fluid at a given mass point
is then constant except when the mass point goes
through a shock. We neglect pair production and
annihilation, and the interaction of the fluid with
external fields, so that rest mass is conserved. Assuming
spherical symmetry leads to the metric!

ds*= a*(u,t)*di— 0 (u,t) dp?— R (u,1)d0?, (1)
L. D. Landau and E. M. Lifshitz, The Classical Theory of

Fields (Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1962), 2nd ed., pp. 331-332.
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where dQ*= d6>+-sin’6d¢?, u is a radial coordinate, and
27R(u,t) is the circumference of a circle going through
points of a given p at time . Choosing a coordinate
system which moves with the fluid leads to the energy
momentum tensor:

T11=T2=T3 =P, T0=—p((;2+e), (2)

where P is the pressure, e the internal energy per gram,
and p the rest mass density of the separated particles
making up the fluid, i.e., the rest mass excluding e/c2
If p is defined as the rest mass between the point
labeled and the center, the assumption of rest-mass
conservation becomes

4rpR%=1, (3)
and the Einstein field equations become:
(T¢) 47er<1+ >R2R’

€
2
2 RE? RR'N’
=-—<R—I———— i>Em’G, “)

2 a?c? b2
4rG . c2 RE2 RR'A\
(T) —-PRE= ——<R-l— - =—mG, (5)
c? 2 2 2
RR2 RR™
(TAT?) 4nGowRd= C2<R-|——— )
a’c? b
R /ale\’ b
)
db b ac.
dR bR
(TOI,T10) 0=—+T——R’ , (7)
a

where * means 9/0¢, ’ means 8/du, and w, the specific
enthalpy, is

w= (14¢/c*+P/pc?). (8)

Shown in parentheses to the left of Egs. (4) through (7)
are the energy momentum tensor components involved.
We have introduced into (4) and (5) the total mass
up to point u

e T O
Defining also 0 .
u=R/a, (10)
I'=4mpR°R’, (11)
Eq. (4) can be integrated from 0 to u, giving
=1+ (u/c)*— (2mG/Rc?). (12)

# is the 1-component of the 4-velocity in a Schwarzchild
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coordinate system? defined by the metric

ds*=e’c?dr?— M dR?— R*dQ2?. (13)

If G were zero, I' would become the y= (1—12/¢?)~1/2

of special relativity corresponding to the Lorentz trans-

formation connecting, at a given time, the coordinate

systems defined by (1) and (13).

The divergence equations 7', =0 are

(Td 1) [o(t+e/AT+L(D/b)+ (2R/R)Jpw=0, (14)

(Ty®, 1) P'4(d'/a)pwc=0. (15)

Of the six equations: (4) through (7), (14), and (15),

only four are independent. Using (3) in (14) gives
é+P(1/p)=0. (16)

Using (12), (7) for B/, and (15) for a’, (5) becomes the

equation of motion:

4 =—a(@rP'R*(I'/w)+ (mG/R*)+ (4w PGR/c?)).

Using (3),
conservation

)

(7) becomes the equation of mass

(pR?)/pR*=—a(u'/R’). (18)

These equations have been obtained independently
and discussed by Misner and Sharp.? Equations (15)
through (18), together with the definitions of #, T', m,
and w, and the equation of state, determine the solution
of the problem of spherically symmetric fluid motion,
with rest mass conservation and no heat transfer.
Taking derivatives with respect to local clock time,
(1/@)a/dt, to be equivalent to time derivatives in the
nonrelativistic limit, Egs. (16) through (18) are seen
to differ from the nonrelativistic equations of energy
conservation, motion, and continuity, respectively (in
Lagrangian coordinates), only through the introduction,
into the equation of motion (17), of the factor I'/w
multiplying the pressure gradient and of the added
gravitational term 4w PGR/c2.

These equations were solved on digital computers
(mainly the CDC-3600), using a finite-difference method
similar to the one generally used for solving hydro-
dynamic problems in a Lagrange coordinate system.*
Mathematical details of the method will be made avail-
able elsewhere. Shocks were treated by means of an
artificial viscosity, similar to that of Richtmyer and von
Neumann,’ that is, by means of a scalar stress which is
zero where no pressure or density discontinuity tends
to form, and spreads the discontinuity over three or
four zones where it does tend to form. For the descrip-
tion of complete collapse, it makes no difference whether
an artificial viscosity is introduced or not; such an
artificial viscosity is never operative.

2 Reference 1 pp. 327 fi.

3 C. W. Misner and D. H. Sharp, Phys. Rev. 136, B571 (1964).

4R. D. Richtmyer, Difference Methods for Initial Value Problems
(Interscience Publishers, New York, 1957) Chap. X.

§J, von Neumann and R. D. Richtmyer, J. Appl. Phys. 21,
232 (1950).
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Initial conditions for these equations were varied.
The boundary conditions used were

P=0, a=1atpu=pmax,

#=0, R=0atu=0. (19)

The condition a=1 at u=pum.x makes coordinate time
equal to the clock time of an observer moving with the
outer boundary. This boundary, in the problems run
so far, did not come into a region where general rela-
tivistic effects were important, even when the inner
part of the material collapsed completely.

The conditions at u=0 lead to I'(u=0)=1, if p and
e are not to be infinite there.

III. RESULTS
A. Collapse versus ‘“Bounce.” Mass Loss

Consider material at rest and in local thermodynamic
equilibrium. Let the total rest mass of the separated
particles making up the material be umax and its total
energy be Mc% If the assembly is not in hydrostatic
equilibrium and M {umax, gravitational collapse begins.
If there is no external interaction, and no radiation or
other mass loss, both M and um.x remain constant, as
does therefore their difference, the binding energy

Kmax

[—T(+e)Jdu. (20)

B= (].l,max'—M)Cz’—‘—‘/

0

Even if M is below the maximum stable mass for the
material in question (e.g., in the case of cold neutrons,
below 0.72 Mo, the Oppenheimer-Volkoff limit),
the assembly is not expected to settle into the equi-
librium configuration appropriate to its mass and initial
entropy. It will have too little binding energy. Except
for radiation and mass loss, it seems likely to oscillate
about an equilibrium point, until viscous damping
transforms enough of the excess kinetic energy into heat
for the material to come into hydrostatic equilibrium at
a higher entropy than the initial one.

If M is above the maximum stable equilibrium mass,
there may still be a range of masses for which collapse
will not occur. Since the binding energy of an assembly
(with a polytropic equation of state) initially in a non-
equilibrium state is less than that of a polytrope of the
same mass, its material will not settle into as compact
a configuration as the polytrope and the gravitational
pull due to general relativity will not be as pronounced.
Such a range was found to exist for the simple cases
studied. It is not very wide, but may be of importance
in stellar evolution.

A rough criterion for predicting from the initial
conditions whether or not such an assembly will
collapse can be obtained by estimating whether an
outer radius can be found for which the force due to the

6 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374
(1939).
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pressure gradient just balances the gravitational
attraction. If we indicate quantities at the outer
boundary at this turnaround time by an asterisk, we
are asking whether the equation of hydrostatic
equilibrium

1 dP\* 2MG MG 4xG
(-
w d R*¢? R¥2 2
can be satisfied for any R*. Equation (21) follows
immediately from (17) if time derivatives are set to
zero and the independent space variable is changed from
u to R. Barring negative pressures, it has no solution
if I'=0, i.e., if 2MG/Rc*=1, anywhere.

Under our boundary condition, P*=0. We estimate
(1/pw)*(dP/dR)* by assuming first, that the internal
energy of the assembly increases approximately adia-
batically according to a v law (the shocks which do
occur change the adiabat very little), and second, by
writing the expression as a constant, #, times the ratio
of the average specific internal energy at turnaround,
€o(Ro/R*)*r, to R*. n will depend on the form of
P(R) at turnaround time and on v, and should be of
order unity. We define « as the ratio of R* to the
Schwarzchild radius R,. With these assumptions, (21)
becomes an algebraic equation for «:

B3 2eo/Ro\ 373
=n[—(;> ]EnK .

a—1 2 \R,

K is specified by the initial conditions. This method

fails for y=4%, for which, in any case, no stable relativ-

istic polytrope exists.

Equation (22) is clearly only indicative of the situa-
tion to which the fall will lead. In particular, » is not
constant. Furthermore the radius at which the balance
between pressure gradient and force of gravity is most
precarious, in critical cases, is not that of the outer
mass point, which has been kept large by the zero
boundary pressure. It occurs in the outer half of the
material. Nevertheless, the minimum value of #K
for which (22) has a real solution should give the order
of magnitude of the minimum radius inside of which
most of the mass can come to hydrostatic equilibrium.
Physically, if a~1, the quantity I' which multiplies the
pressure gradient term in (17) will fall significantly
below unity at the time at which the mass should turn
around; the term #%/¢® in T’ [see Eq. (12)] will have
been reduced by the cumulative effect of the outward
pressure gradient below its free-fall value of 2MG/Rc2.
Since R,~R, the difference between I" and 1 will not
be negligible. As a result, the pressure gradient becomes
ineffective, and the assembly continues to collapse.
Since the pull of gravity increases as the pressure
gradient decreases, the effect is expected to be cata-
strophic. On the other hand, if « is significantly greater
than 1, these effects will be small and collapse will be
avoided.

(22)
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The behavior of assemblies of 2.1 Mo, 21 Mo, and
210 My was calculated, using the equation of state
P=2pe/3, corresponding to an adiabatic index y=4%.
The assemblies were started from rest and from
uniform rest mass and internal energy densities. The
choice of uniform initial conditions was made, in part,
because assemblies which start from complete New-
tonian equilibrium were found to be more difficult to
follow on the computer, the regions of extreme curva-
ture occurring close to the center thereby necessitating
fine zoning and long computing times; and, in part,
because gravitationally unstable configurations of
astrophysical interest, while not known, are now held
likely to occur at the center of highly evolved stars,”8
where the assumptions of uniform density and tempera-
ture may be no worse than any other guess.

All the assemblies collapsed for K <1 and bounced for
K>2, where bounce is defined as a state in which all
the material is either at rest or moving outward
(Fig. 1). For uniform initial conditions, if R, is the
initial outer radius, the values of €o/c? and of 2M G/ Roc?
determine the path of a given mass fraction u/pmex in
the plane of R/R, and {(2MG/R¢)'2

Calculations were then made on the collapse of cold
neutron spheres, varying both the mass and the equa-
tion of state. The neutrons were started from densities
for which the Fermi energy is well in the nonrelativistic
range, and were assumed to follow the equation of
state of a nonrelativistic degenerate Fermi gas (y=3%)
to begin with. The value of K for which collapse oc-
curred was then bracketed for three equations of state:

P=2%pe(y="5/3) throughout the density range (i)
P=%pe, p<p*

= (1/13) (p—p*)e+3p%, p>p*
with p*=1.7X 10" g/cm3.

(if)

(ii) represents a “soft” high density neutron equation
of state, y=14/13. It is approximately the one used by
Misner and Zapolsky® to fit calculations of Ambart-
sumyan and Saakian on processes converting a high
kinetic neutron into a baryon at rest. As would be
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F16. 1. R(u,t)/R(u,0) versus i 2MG/R?(umax,0)]!/2 for various
mass fractions during the collapse and bounce of 2.1, 21, and
210 Mo, v=>5/3 spheres. The initial conditions in each case were
R,/R=06.2X1073, eo/c?=3.84X107% corresponding to a K (Eq. 22)
of 2.

expected for y<% (Ref. 6), an assembly in which p
exceeds p* does not come into equilibrium. The inner-
most region collapses to ever increasing densities.

P=3%pe p<p*
= (p—p*)et3p"e, p> 0%,
with p*=5X10" g/cm?.

This choice represents a ‘hard core” high-density-
neutron equation of state, y=2. When y=2, at very
relativistic thermal energies, the speed of sound
approaches the speed of light. However, at lower
thermal energies, stiffer equations of state have been
envisaged, notably one by Salpeter'® discussed briefly
in Sec. IV.

The results of these calculations are summarized in
Table I. For equations of state (i) and (i), K~1

(iii)

TasLE I. Results of calculations on cold neutron spheres.

Equation M Hmax B Ry Final Maximum
of state (Mo) (Mo) (Moc® (km) Rs/Ry K Collapse? (g/cmd) (g/cm3)
@) 0.6890 0.6999 0.0109 32.0 . 0.0638 2.0 No 6101 2% 101
@) 0.8924 0.9099 0.0175 34.88 0.0758 1.4 No 3X 1015 106
@) 1.1024 1.1285 0.0261 37.426 T 0.0873 1.06 Yes cee oee
@) 1.6321 1.6845 0.0524 42.656 0.1134 0.62 Yes
(ii) 0.8924 0.9099 0.0175 3488 . 0.0758 1.4 Yes oo eee
(iii) 1.1024 1.1285 0.0261 37.426 0.0873 1.06 No 0.9X 105 3X 101
(iii) 1.3039 1.3388 0.0349 39.58 7 0.0976 0.84 Yes oo cee

po=108 g/cm3
€=23.64X1018 erg/g

7F. Hoyle and W. A. Fowler, Astrophys. J. 132, 565 (1960).
8 H. Y. Chiu, Phys. Rev. 123, 1040 (1961).

9 C. W. Misner and H. S. Zapolsky, Phys. Rev. Letters 12, 635 (1964). Also, H. S. Zapolsky (private communication).

10 E, E. Salpeter, Ann. Phys. (N. Y.) 11, 393 (1960).



1236 M. M.

indicates the demarcation line between collapse and
bounce. If masses of the same entropy and equation of
state are compared, eR¢( is constant, and K
depends on the mass alone: for cold, nonrelativistic
neutrons in particular:

2 105\ 473
K=<7) y =1 whenM%lMo.

Misner and Zapolsky?, using y=5/3, obtained a maxi-
mum stable polytropic mass of about 0.8 M o.

Figures 2 through 7 show profiles of the 4-velocity,
the circumference variable R, the rest mass density p,
the quantities ¢ and T, and the three terms in the
equation of motion, Eq. (17), versus the radial variable
w at various times during the implosion and subse-
quent bounce of a 1.1 Mg assembly with equation of

1.0
0.8

0.6 t=0 (u=0) /

EJECTED
MATERIAL

t=65xI10 sec

04+
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-0.4}F
COMPRESSION
—osb APRES SHOCK

-0.8}F

(o] 0.2 04 0.8 08 L.O 1.2
#(SOLAR MASSES)

F1G. 2. u/c versus p at several times during the collapse and
bounce of a 1.1 Mo sphere, equation of state (iii), with initially
uniform density (oo=10"1) and specific internal energy (eo/c?
=4.04X107%) corresponding to K=1.06 [Eq. (22)].
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F16. 3. R versus p at several times during the collapse and bounce
of the 1.1 Mo sphere (see caption, Fig. 2, for initial conditions).
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Fi16. 4. p versus p at several times during the collapse and bounce
of the 1.1 Mo sphere (see caption, Fig. 2, for initial conditions).
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F16. 5. a=goo!/? at several times during the collapse andfbounce of
the 1.1 M sphere (see caption, Fig. 2, for initial conditions).
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Fi1G. 6. I" versus u at several times during the collapse and bounce
of the 1.1 Mo sphere (see caption, Fig. 2, {or initial conditions).
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Fic. 7. The terms of
Eq. (17) (1=—4raP'R°T/w,
2=amG/R? 3=4raPGR/c?)
at various times during the
collapse of the 1.1 Mo
sphere. (Initial conditions
are given in the caption of
Fig. 2). Figure 7(a) (t=4.7
X 10~ sec) shows the initial o5 L1 1
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center. In 7(b) (=65 (@)
X107 sec) the rarefaction
has reached the centerand a
reflected compression wave
can be seen. In 7(c) (¢=7.3
X107¢ sec) the rarefaction
has steepened into a shock;
the oscillations are numer- I
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icalin origin. In 7(d) (¢=3.7
X107% sec) the shock has
reached the outer surface
and blown off ~0.1 M. 0"
The acceleration terms are
in equilibrium.
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state (iii). Figures 8 through 13, which show the varia-
tions of similar quantities in a case of collapse, are
discussed in part B of this section.

In several of the assemblies which bounced, some ma-
terial was moving at more than escape velocity at the
time of the last configuration calculated (Fig. 2). The
upper limit to the amount of material which can escape
from an assembly of initial binding energy B, and initial
mass po is given from the conservation of energy and
of rest mass by

Bp(u)=Bo(wo), (23)
where Bp(u) is the binding energy of a relativistic
polytrope of rest mass p, the highest binding energy

Lo 12 o 02 04 06 08 LO .2
4 (SOLAR MASSES)

@

possible for an assembly of that rest mass. For y=15/3,
this polytropic binding energy is about 0.04¢>M ¢ at the
maximum stable polytropic mass of about 0.8M, and
goes to ~0 at 0.3M .0

While not enough relativistic polytropic configu-
rations are available at this time to make a thorough
survey, the problems run appear to allow escape of an
amount of the order of the maximum mass allowed by
Eq. (23). For instance, the 0.7M 4 problem, which has
an initial binding energy of 0.01¢2M , allows escape of
at least 0.052M o, together with about 0.003¢2M, of
excess kinetic energy over that needed for escape.
The remaining 0.65M o has a binding energy of
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46! assembly past its Schwarzchild radius may take an
infinite time as measured by clocks at infinity, it is of
some theoretical interest to see how the hydrodynamic
quantities and the geometry evolve during this collapse.
o As was suggested by Oppenheimer and Snyder,” this
m1o Fic. 8. u/c versus u ﬁt behavior is qualitatively similar to that which occurs
. sac various times during the :
0864411 collapse from rest of a when the pressure is zero. )
wsswarrsec | y=5/3, 21 Mo sphere The decrease in the pressure gradient term of Eq.
wosesasesec | having an initially uni-  (17) that occurs when T' falls significantly below unity
e -0’ form density (po=10" lead: . dl diti h th t
N 120664501s0c g/cm®) and specific in- €208 quite rapi y to a condition where the equations
- ternal energy (e/c governing the motion of the material are
- =9.61%10~7). These in-
- itial conditions give o~ 2 2.
NS 2MG/Roc*=0.0062_and i~ amG/R, w=ImG/R, (25)
-10°F K [Eq. (22)]=0.05. . .
(Ea- G2)] replacing (17) and (12), respectively Eq. (25) has the
- sE I T IO O B Y I I 20
'O za 6802141618202 '°|9
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EKT— 10 16
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o' 10
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F16. 9. R versus u at times during the collapse of the 21 Mo
sphere (see caption, Fig. 8 for details of the initial configuration)
The apprg)ach of Rtozeroat u=8.5 Mo and 1~0.6645 sec is shown
in Fig. 15.

0.013¢*M o, as compared with 0.018¢2}/ ¢ for a poly-
trope of that mass.

B. Description of Continued Collapse

Continued collapse is characterized by material
falling inside ““its own” Schwarzchild radius,

R (w)=[2m(w)G]/*>R(n). (24)

This event occurs first, in our coordinate time, at a
point inside the assembly. The Schwarzchild radius
there does not have the same clear meaning which it has
when calculated for the mass of the whole assembly.
The rate at which light signals are propagated inside
the assembly is discussed in Sec. IV.

While the continuation of collapse lof any part of the

O 2 4 6 8 1012 14 |6 18 20 22
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Fi6. 10. p versus p at times during the collapse of the 21 Mo sphere
(see caption, Fig. 8 for details of the initial configuration).
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F16. 11. a = 4/goo versus u at times during the collapse of the 21 Mo
sphere (see caption, Fig. 8 for details of the initial configuration).

11 J, R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
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Fi16. 12.T versus u at times during the collapse of the 21 M ¢ sphere
(see caption, Fig. 8 for details of the initial configuration).
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Fic. 13. The three terms in the equation of motion (17),
1=—47waP'RT'/w, 2=aMG/R?, 3=4raPGR/c?, versus u at two
times during the collapse of the 21 M@ sphere (see caption,
Fig. 8). The progressive failure of the pressure gradient term is
clearly seen by comparing the upper and lower figures.

solution .
R?R
WR=——=2mG,

(26)
a?

a constant in time.

Each shell, du, of material for which R, has become
much larger than R therefore falls freely since the pres-
sure gradient term through which neighboring shells
interact has become vanishingly small. The interaction
by means of Eq. (15), for 7*;xis also small. In any case,
since P’ no longer affects the motion, (15) can only
affect the way in which proper times compare in neigh-
boring regions. In this connection, we recall that E is
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the time rate of change of the circumference variable.
The sum of local measurements of radial distances,

Eodu EdR
o 4mpR? Jo T
is becoming larger rather than smaller.

Differentiating (26) with respect to u and using (18),
we obtain

p/p=—%(R/R)—§(Bm'/R'm).

27

(28)

m'/m can be evaluated by using the 7' and 7! equa-
tions, (4) and (5), which give

Em'/R' = —1hp(c®+€)/P.

In our approximation, m/m— 0 while p(1+¢/c%)/P
remains finite. Hence, (28) gives

pR32=constant in time. (29)

So long as there is no interaction between neighboring
materials, no shock forms, and the entropy at each mass
point remains constant. Hence

eR3¥(rDI2=constant in time,

aR3(rD2=constant in time, (30)
where the second equation above also requires that the
specific enthalpy w becomes very large compared with
1. Substituting for e from (30) into (26) and integrating
gives:

Re-3Pv=R¢=[Ro— (3—37) | Ro| ], <2

R=Ryexp(— | Ro|t/Ro), (31)
where Ro, R, are the values of R and R measured at the
given mass point sometime after free fall begins, ¢ being
measured from that time.

For v<2, the collapse therefore takes place in a
finite interval of coordinate time, which is different for
each shell of material. The fact that densities and pres-
sures go to « as R goes to 0 does not alter these con-
clusions, as the pressure gradient term, P’RT/w, goes
to zero there as RR'— const R”.

All of these extrapolations are verified by the machine
calculations. Figures 8 through 13 show, for the follow-
ing case

y=2

M=21M ¢, Ro=10%m, K=005, p=2pe,

the same quantities as were shown in Figs. 2 through
7 for an assembly which bounced. We note that eventu-
ally T and R’ become negative, and the surface area of
concentric spheres decreases as one moves outward in
W space.

This curvature can also be obtained if it is assumed
that p and e are spatially uniform. The integration of
the field equations then leads to an implicit equation
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for R as a function of u:

w="2mpR—R(R2— RV R sinL(R/R.)],
1/2
] . (32a)

For assemblies of rest mass exceeding some critical
value

3c?
Ro= [——————
87Gp(1+¢/c?)

ue=m%R2, (32b)
R decreases with increasing u outside p=p, while, at
= e, R=R,. The Schwarzchild radius of the assembly
decreases with increasing u even more rapidly than R,
so that for u>u, we have R>R, and the addition of
rest mass causes the Schwarzchild radius to retreat
back inside the assembly. If negative pressures are
allowed, this configuration can be static, and is then
one of the Schwarzchild interior solutions.

Figure 14 shows the ratio of the Schwarzchild radius
R, (u), defined by (24), to R, as a function of p at various
times during the collapse. We note, by comparing Figs.
12 and 14, that the region of negative I' is inside the
region where 2mG/R¢*>1. Figure 15 shows R and R
versus coordinate time for the point at which R first
approaches zero.

IV. DISCUSSION

The results described, although preliminary, lead to
the conclusion that the upper mass limit for stability of
a bound system against relativistic gravitational col-
lapse is of the same order of magnitude whether calcu-
lated for falling material with a finite amount of kinetic
energy or for a static configuration. While the excess
kinetic energy of the falling material does offer the
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FiG. 14. 2MG/Rc*= R;(u)/R (u) versus u at various times during
the collapse of the 21 M@ sphere (see caption, Fig. 8 for details
of initial conditions).
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Fic. 15. [R(x) 12 and B (u) versus ¢ during free fall at u=8.5

M@, the point where R first approaches zero for the 21 Mo
collapse. R1”2is linear in ¢ as is predicted by Eq. (31) with y=5/3.

possibility of throwing off mass and leaving behind a
core light enough to be stable, in order for this possi-
bility to be realized, the pressure gradient must over-
come the pull of gravity at the point of separation be-
tween what is to become the core and what is to be
thrown off. If the pressure does not become high enough
to do the job until the point of separation is at about the
Schwarzchild radius for the mass enclosed, then the
mechanism for turning material around fails. Static
configurations near the limit of stability are only a
few Schwarzchild radii in extent, so that our criterion
for failure of the pressure gradient will lead to about the
same maximum masses as the equilibrium calculations.

For the case of complete collapse described above,
m(u) approaches a finite limit at the value of u where
first R— 0. This limit is, however, greater than any
value that m has had at that point earlier. This is
required by Eq. (5), R being negative everywhere or,
in the limit, 0. Therefore, in spite of the fact that there
are negative contributions to the mass enclosed be-
tween the two values of u for which R=0 (see Figs. 9
and 16), it does not seem possible, at least under the
circumstances of our problem, for this mass to disappear
and leave flat space behind.

The path of light signals through the collapsing as-
sembly was calculated by integrating numerically :

(du/dt) dsmo= F4mpR2%ac (33)
during the collapse, for signals started at regular inter-
vals from the center and from the outside of the as-
sembly. The results are shown in Fig. 17. Light signals
do not leave the region where 2mG/Rc*>1, although
they enter it in finite coordinate time. The region
where I'<0 is entirely enclosed by the region where
2mG/Rc*> 1.

If <0 in some element of rest mass, the total
energy there

cdm=T (¢ &)du (34)
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is negative. The partial annihilation of dy, if permitted,
would not change the sign of the total energy. Neither
would an increase of e. Since I'=0 at the boundary of
regions of negative T', pressure gradients could not push
the material out of such regions. The annihilation of
material at the center of the assembly, where I'>0,
and the subsequent transport of radiation, either into
or possibly through the region of negative I'; may pro-
vide a means for reducing m [see Egs. (9), (11), (12)]
but the effect of such reduction on the gravitational
binding of a region of negative total energy is unclear.

Whether radiation can proceed from a region where
I'<0 to a region where 2mG/Rc?<1 and hence escape
the assembly is also unclear. Configurations described
by Eq. (32) (for u>p.) do contain a region next to the
outer boundary where both I'<0 and 2mG/R¢*<1
obtain but such a region might not be physically realiz-
able as it requires I' to change sign at its boundary. We
have not obtained such regions in our calculations. They
would seem to be ruled out by Penrose’s proof!? that
the null geodesics issuing from a trapped 2-surface
converge toward the future, together with Hernandez
and Misner’s proof® that the Schwarzchild surface
inside the matter is such a trapped surface.

The relevance of these calculations to astrophysical
questions is now being studied. The effects of as-
phericity, of heat transfer by neutrinos or radiation,
of pair creation and annihilation, and of interaction with
outlying material must in general be treated. One of
the simple results obtained so far may nevertheless
be applicable. Supernovae are now presumed to be
occasioned by the inward fall of a fraction of the highly
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Fic. 16. M (u) versus u at various times during the collapse of
the 21 Mo sphere (see caption, Fig. 8 for details of the initial
conditions).

12 R, Penrose, Phys. Rev. Letters 14, 57 (1965).
18 Hernandez and C. W. Misner, Astrophys. J. (to be published).
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Fic. 17. Light cones (arrows) for the 21 Mo collapse (see cap-
tion, Fig. 8 for details of initial configuration). Each signal is
labeled with its time of origin.

evolved core of certain stars.”-® According to at least
one model of this evolution, due to Colgate and White,
the amount of material which falls far enough so that
its gravitational field must be corrected for general
relativistic effects is of the order of magnitude of one to
two solar masses. This occurs because it is mass of this
order of magnitude which first fails to support itself in
a Newtonian gravitational field upon cooling. We have
followed the fall of a 1 M core of this type, using the
initial conditions obtained by Colgate and White from
the classical evolution of a star of total mass 2M o, and
also using a fit to Salpeter’s equation of state.’® The
core still bounced. Whether enough of the energy re-
leased by neutrinos during the collapse and bounce
would be absorbed in the (very high density) sur-
rounding medium to prevent its falling on the core and
thereby collapse it, remains to be calculated.
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