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where II is the self-energy. Near the mass shell we have

II=m' rr—ts'+ (p' rr—t') (dII/dp')

whereupon Eq. (7) becomes

lim I' „=L
—(P' rrt'—)g „o+2P„P„j$1 dII—/dP']. (8)

Thus in the long-wavelength limit the coupling is the
same as with a noninteracting field of mass I, multi-
plied by the vertex renormalization factor L1—dII/
dp'j= Zi '. In usual fashion this factor is taken out by
the renormalization factors of S(p) Lcf. Eq. (5)j, so
that the Ward identity simply reduces to Z 'Z2=1
when one uses the renormalized mass. This result
implies the universality of the gravitational coupling to
the energy momentum tensor calculated with the true
inertial mass (for particles on the mass shell) whatever
the origin of the mass and independent of the
Lagrangian of the gravitational field. This is the

expression of the principle of equivalence. Off the mass
shell, Eq. (6) is the appropriate generalization of the
principle of equivalence.

We close with two remarks: (1) On the basis of a
previous paper, ' it is possible that theories which break
Lorentz invariance' lead to a graviton mass. (2) Because
of the Ward identity, it is probable that gravitation is
a renormalizable theory. We hope to return to these
problems as well as to the question of the meaning of a Qat
space in a filled universe in subsequent work.

We should like to express our gratitude to Professor
D. Speiser of the University of Louvain who alerted us
to the link between our Ward identity and the principle
of equivalence. One of us (R.B.) wishes to acknowledge
a stimulating discussion with Professor H. Bondi of
King's College on the subject matter of this paper.

' F. Englert and R. Brout, Phys. Rev. Letters 13, 321 (1964).
e 1~or example J. Bjorken, Ann. Phys. (N. Y.) 24, 174 (1963);

I. Bialynicki-Birula, Phys. Rev. 130, 465 (1963).
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The general-relativistic equations governing the motion of a large mass under the inQuence of its own
gravitational Geld and its own pressure have been approximated by finite-difference equations. A spherically
symmetric, co-moving frame of reference was used. The pressure was assumed to be zero at the outer bound-
ary. Rest mass was assumed to be conserved and heat transfer by neutrinos, radiation, etc. , was not taken
into account. Numerical solutions were obtained on a computer for several simplified equations of state,
chosen to bracket the behavior of stellar material in late stages of collapse, and several masses. The maximum
stable masses obtained were of the same order of magnitude, but somewhat larger than the maximum stable
masses calculated statically. The behavior of light signals, of the metric coefficients, and of the hydro-
dynamic quantities as functions of time is described for collapse past the Schwarzchild radius. Such collapse
leads to regions where the surface area of concentric spheres decreases as the rest mass contained by the
spheres increases.

I. INTRODUCTION

'HE gravitational collapse of spherically sym-
metric masses under conditions where the general

theory of relativity is expected to apply has been cal-
culated by solving the field equations in finite-difference
approximation on d,igital computers. This paper pre-
sents results of this calculation for materials with
simple equations of state and for simple initial and,

bound, ary conditions. The purpose is to provid, e a
description of the collapse in the presence of nonzero
pressures, and, to verify current estimates of maximum
stable mass. The calculation can be extend, ed to take
into account pair production, heat transfer, and. other

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

mechanisms of interest for the description of astro-
physical processes.

ii. EQUATIONS

We consider an ideal fluid and neglect all heat trans-
fer except that due to the motion of the Quid itself.
The speci6c entropy of the Quid, at a given mass point
is then constant except when the mass point goes
through a shock. We neglect pair prod, uction and
annihilation, and the interaction of the Quid, with
external fields, so that rest mass is conserved, . Assuming
spherical symmetry lead, s to the metric'

ds'= a'(tt, t)c'dt' —b'(tt, t)dts' —R'(ts t)dQ' (1)
1L. D. Landau and E. M. Lifshitz, The Clussica/ Theory of

Fields (Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1962), 2nd ed. , pp. 331—332.
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where dQ'= d8'+sin'86$, p, is a radial coordinate, and
2irR(ts, t) is the circumference of a circle going through
points of a given p at time I,. Choosing a coordinate
system which moves with the Quid. lead, s to the energy
momentum tensor:

Ti'= Tss= Ts'= P, Tpp= p—(c'+e),

where I' is the pressure, e the internal energy per gram,
and p the rest mass density of the separated particles
making up the fluid, i.e., the rest mass excluding e/c'.
If ts is defined as the rest mass between the point
labeled and the center, the assumption of rest-mass
conservation becomes

coordinate system' defined by the metric

F2= g"g2dg2 —t»dg2 —g2d'Q2

If G were zero, I' would become the y= (1—v'/c') 't'
of special relativity corresponding to the Lorentz trans-
formation connecting, at a given time, the coordinate
systems defined by (1) and (13).

The divergence equations T,~.
, A,

——0 are

(To'; e) I:p(1+e/c')] + I (b/b)+ (2RIR) jpw = 0 (14)

(TP, s) P'+ (a'/a) pwc'= 0

Of the six equations: (4) through (7), (14), and (15),
only four are independent. Using (3) in (14) gives

4m pR'b= 1,

and the Einstein field equations become:

(3) e+P (1/p)
' =0. (16)

Using (12), (7) for R', and (15) for a', (5) becomes the
equation of motion:

4~G c'/ RB' RR"~ .
PRsR=

I
R+ ———

I

= —mG, (5)
c' 2 ( a'c' bs )

RR' RR"q
(Ts', Tp') 4m GpwR'= c'I R+

a'c' b' )
R'c /ac) b )

, (6)
ab 4 b ) ac)

(T 1 T P)

a'8 bR'
+ —R',

u b
(7)

where ' means 8/Bt, ' means r)/Bts, and w, the specific
enthalpy, is

(8)w= (1+e/c +P/pc ) .

Shown in parentheses to the left of Eqs. (4) through (7)
are the energy momentum tensor components involved, .
We have introduced into (4) and (5) the total mass

up to point p,

m(ts, t) =4ar p(1+ e/c')R'R'dts

Defining also

I=A/a,

F= 4m pR'E',

(1o)

(11)

Eq. (4) can be integrated from 0 to ts, giving

I'= 1+(I/c)' —(2rNG/Rc') . (12)

I is the 1-component of the 4-velocity in a Schwarzchild

(Tp ) 47rGpI 1+ IR R
C2

c' RB' RR'$ '
=—R+ —

I

—=m'G, (4)
2 a'c' b' )

u = —a(47rPR'(I'/w)+ (mG/R')+ (47rPGR/c')). (17)

Using (3), (7) becomes the equation of mass
conservation

(pR') '/pR'= a(N'/R—') . (18)

These equations have been obtained independently
and discussed by Misner and Sharp. ' Equations (15)
through (18), together with the definitions of I, I', m,
and w, and the equation of state, determine the solution
of the problem of spherically symmetric Quid, motion,
with rest mass conservation and no heat transfer.
Taking d,erivatives with respect to local clock time,
(1/a) 8/alt, to be equivalent to time derivatives in the
nonrelativistic limit, Eqs. (16) through (18) are seen
to differ from the nonrelativistic equations of energy
conservation, motion, and continuity, respectively (in
Lagrangian coordinates), only through the introduction,
into the equation of motion (17), of the factor I'/w
multiplying the pressure gradient a,nd of the added
gravitational term 47rPGR/c'.

These equations were solved. on digital computers
(mainly the CDC-3600), using a finite-difference method
similar to the one generally used for solving hydro-
d,ynamic problems in a l,agrange coord, inate system. 4

Mathematical details of the method, will be mad, e avail-
able elsewhere. Shocks were treated by means of an
artificial viscosity, similar to that of Richtmyer and von
Neumann, ' that is, by means of a scalar stress which is
zero where no pressure or density discontinuity tends
to form, and spread, s the discontinuity over three or
four zones where it does tend to form. For the descrip-
tion of complete collapse, it makes no di6erence whether
an artificial viscosity is introd, uced or not; such an
artificial viscosity is never operative.

~ Reference 1 pp. 32'lt G.
e C. W. Misner and D. H. Sharp, Phys. Rev. 136, 3571 (1964).
4 R. D. Richtmyer, DQ'erence Methods for Initial Vatne Problems

(Interscience Publishers, New York, 1957) Chap. X.' J. von Neumann and R. D. Richtmyer, J. Appl. Phys. 21,
232 (1950).
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Initial conditions for these equations were varied.
The boundary conditions used were

P=O, a=1 at p=p, ,
N=O, R=O at @=0. (19)

The condition a=1 at @=p,„makes coordinate time
equal to the clock time of an observer Inoving with the
outer boundary. This boundary, in the problems run
so far, did not come into a region where general rela-
tivistic effects were important, even when the inner
part of the material collapsed, completely.

The conditions at p=0 lead to 1'(p, =0)= 1, if p and
e are not to be infinite there.

III. RESULTS

A. Collapse versus "Bounce."Mass Loss

Consider material at rest and, in local thermodynamic
equilibrium. I et the total rest ma, ss of the separated,
particles making up the material be p, and its total
energy be 3fc2. If the assembly is not in hydrostatic
equilibrium and M:p, ,„,gravitational collapse begins.
If there is no external interaction, and, no radiation or
other mass loss, both M and, p, ,„remain constant, as
d,oes therefore their d, ifference, the bind, ing energy

pressure gradient just balances the gravitational
attraction. If we indicate quantities at the outer
bound, ary at this turnaround, time by an asterisk, we
are asking whether the equation of hyd, rostatic
equilibrium

t 1 dP~*( 2MG~ MG 4irG
(»)

kpw dpi E R*c'3 R*' c'

can be satisfied for any R*. Equation (21) follows
imrriediately from (17) if time d, erivatives are set to
zero and the independent space variable is changed froin
p to R. Barring negative pressures, it has no solution
if 1'= 0, i.e., if 2MG/Rc'= 1, anywhere.

Under our boundary condition, P*=O. We estimate
(1/pw)*(dP/dR)* by assuming first, that the internal
energy of the assembly increases approximately adia-
batically according to a y law (the shocks which do
occur change the adiabat very little), and second, by
writing the expression as a constant, e, times the ratio
of the average specific internal energy at turnaround,
E,(RO/R*)"~'), to R*. e will depend on the form of
P(R) at turnaround time and on y, and should be of
order unity. We d,efine n as the ratio of R* to the
Schwarzchild radius R,. With these assumptions, (21)
becomes an algebraic equation for e ..

8= (p,„—M)c'=
@max

Lc' 1'(c'+~)3~—p (2o)
+3~3

Q 1

2~o (Ro) '~'
—=~z.

c2 EZ,i (22)

Even if M is below the maximum stable mass for the
material in question (e.g. , in the case of cold neutrons,
below 0.72 3f0, the Oppenheimer-Volkoff limit' ),
the assembly is not expected to settle into the equi-
librium configuration appropriate to its mass and initial
entropy. It will have too little binding energy. Except
for radiation and mass loss, it seems likely to oscillate
about an equilibrium point, until viscous d,amping
transforms enough of the excess kinetic energy into heat
for the material to come into hydrosta, tic equilibrium at
a higher entropy than the initial one.

If M is above the maximum stable equilibrium mass,
there may still be a range of masses for which collapse
will not occur. Since the binding energy of an assembly
(with a polytropic equation of state) initially in a non-
equilibrium state is less than that of a polytrope of the
same mass, its material will not settle into as compact
a configuration a,s the polytrope and, the gravitational
pull due to general relativity will not be as pronounced, .
Such a range was found to exist for the simple cases
studied. It is not very wide, but may be of importance
in stellar evolution.

A rough criterion for predicting from the initial
conditions whether or not such an assembly will
collapse can be obtained, by estimating whether an
outer ra, d,ius can be found, for which the force due to the

' J. R. Oppenheimer and G. M. Volko8, Phys. Rev. 55, 374
(1939),

E is specified, by the initial cond. itions. This method
fails for y= —,', for which, in any case, no stable relativ-
istic polytrope exists.

Equation (22) is clearly only indicative of the situa-
tion to which the fall will lead, . In particular, e is not
constant. Furthermore the rad. ius at which the balance
between pressure gradient and force of gravity is most
precarious, in critical cases, is not that of the outer
mass point, which has been kept large by the zero
boundary pressure. It occurs in the outer half of the
material. Nevertheless, the minimum value of nE
for which (22) has a real solution should give the order
of magnitude of the minimum radius insid, e of which
most of the mass can come to hyd, rostatic equilibrium.
Physically, if n 1, the quantity I' which multiplies the
pressure gradient term in (17) will fall significantly
below unity at the time at which the mass should turn
around; the term u'/c' in I' Lsee Eq. (12)$ will have
been reduced by the cumulative effect of the outwa, rd.
pressure gradient below its free-fall value of 23EG/Rc'.
Since R, R, the difference between F and, 1 will not
be negligible. As a result, the pressure grad, ient becomes
ineffective, and, the assembly continues to collapse.
Since the pull of gravity increases as the pressure
grad. ient d,ecreases, the effect is expected, to be cata-
strophic. On the other hand, , if n is signi6cantly greater
than 1, these effects will be small and, collapse will be
avoided.
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M
(~o)
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1.1024
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0.8924
1.1024
1.3039

@max

{Mo)

0.6999
0.9099
1.1285
1.6845
0.9099
1.1285
1.3388

8
(3Ioc')
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0.0175
0,0261
0.0524
0.0175
0.0261
0.0349

E0
(km) Rs/Ro

32.0 . , I
0.0638
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42.656 0.1134
34.88 !':;; 0.0758
37.426 0.0873
39.58 "' ' 0.0976
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2.0
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0.62
1.4
1.06
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5o
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Yes
Yes
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X Collapse?
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6X 10'4
3X10»

~ ~ ~
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]016

~ ~ ~

3X10»

W. A. Fowler, Astrophys. . 132 565 (1960).

rivate communication).
( }

1964). Also, H. S. Zapolsky (priva esky Phys Rev Letters 12 635
h N Y) ll 393 (1960)' E. E. Salpeter, Ann. Phys. (N. Y.
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state (iii). Figures 8 through 13, which»ow the va»a-
tions of similar quantities in a case of collapse, are
discussed in part 8 of this section.

In several of the assemblies which bounced, some ma-
terial was moving at more than escape velocity at the
time of the last con6guration calculated (Fig. 2). The
upper limit to the amount of material which can escape
from an assembly of initial binding energy 80 and initial
mass p, o is given from the conservation of energy and.
of rest mass by

(23)

where J3r(tt) is the binding energy of a relativistic
polytrope of rest mass p, the highest binding energy

possible for an assembly of that rest mass. For y= 5/3,
this polytropic binding energy is about 0.04c Mo at the
maximum stable polytropic mass of about 0.8Mo, and,

goes to 0 at 0.3Mo.'
While not enough relativistic polytropic configu-

rations are available at this time to make a thorough
survey, the problems run appear to allow escape of an
amount of the order of the maximum mass allow'ed, by
Eq. (23). For instance, the 0.7Mo problem, which has
an initial bind, ing energy of 0.01c 3IC, allows escape of
at least 0.0523fo, together with about 0.003c'Mo of
excess kinetic energy over that need, ed for escape.
The remaining 0.65M O has a binding energy of
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2MG/Rpc'= 0.0062 and
E I Eq. (22))=0.05.

u——ansG/Rs, I'—2nsG/R, (25)

replacing (17) and (12), respectively Eq. (25) has the

assembly past its Schwarzchild radius may take an
infinite time as measured by clocks at infinity, it is of
some theoretical interest to see how the hydrodynamic
quantities and the geometry evolve during this collapse.
As was suggested by Oppenheimer and Snyder, " this
behavior is qualitatively similar to that which occurs
when the pressure is zero.

The decrease in the pressure gradient term of Eq.
(17) that occurs when 1' falls significantly below unity
leads quite rapidly to a cond, ition where the equations
governing the motion of the material are
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sphere (see caption, Fig. 8 for details of the initial configuration)
The approach of R to zero at @=8.53fp and t=0.6645 sec is shown
in Fig. 15.

0.013c'3IO, as compared with 0.018c'3lo for a poly-
trope of that mass.

B. Description of Continued Collajpse

Continued, collapse is characterized by material
falling inside 'its own" Schwarzchild, radius,
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R, (IJ,) = )2m(p)G5/c') R(p) . (24)

This event occurs first, in our coordinate time, at a
point insid. e the assembly. The SchwarzchiM rad, ius
there does not have the same clear meaning which it has
when calculated, for the mass of the whole assembly.
The rate at which light signals are propagated insid, e
the assembly is d, iscussed in Sec. IV.

While the continuation of collapse of any part of;the
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FIG. 11.a= Qgop versus p at times during the collapse of the 21 Mo
sphere (see caption, Fig. 8 for details of the initial configuration).

"J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
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is becoming larger rather than smaller.
Differentiating (26) with respect to p and using (18),

we obtain

p/p = ,'(—B/-R) ,'(—Rm-'/R'm) . (28)

m'/m can be evaluated by using the Tp' and Ti' equa-
tions, (4) and (5), which give

the time rate of change of the circumference variable.
The sum of local measurements of radial distances,

I I I I I I I I I I

0 2 4 6 8 10 l2 l4 l6 20 22 24
p. (SOLAR MASS ES }

FIG. 12.I' versus p at times during the collapse of the 21 Mo sphere
(see caption, Fig. 8 for details of the initial configuration).

I09

IOS

pR'I'= constant in time. (29)

So long as there is no interaction between neighboring
materials, no shock forms, and the entropy at each mass
point remains constant. Hence

Bm'/R'= mp(c'+—e)/P.

In our approximation, m/m —+0 while p(1+e/c')/P
remains finite. Hence, (28) gives

10 eR'&~'&~'= constant in time,

aR '&~"I'= constant in time, (30)
o IO

E 0

O
l-

IO
10

O~ IO

4 8 l2 I6
F, (SOLAR MASSES )

20

C

where the second equation above also requires that the
specific enthalpy m becomes very large compared, with
1. Substituting for a from (30) into (26) and integrating
gives:

R' 'I' =Rp' '"r[Rp—(3—-',y) (Bp)], y(2
R=RQ exp( —

[ Rp[ f/Rp) y= 2 (31)

IO

IO
0 4 8 12 l6 20

fL (SOLAR MASS E S )

Fin. 13. The three terms in the equation of motion (17),1= 4saP'R'1'/rp, 2= —MGa/R 3=p47raPGR/c', versus p at two
times during the collapse of the 21 3IIo sphere (see caption,
Fig. 8). The progressive failure of the pressure gradient term is
clearly seen by comparing the upper and lower figures.

solution
2R

N2R= =2m', a constant in time.
8

(26)

Each shell, dp, of material for which R, has become
much larger than R therefore falls freely since the pres-
sure gradient term through which neighboring shells
interact has become vanishingly small. The interaction
by means of Eq. (15), for Ti",& is also small. In any case,
since P' no longer affects the motion, (15) can only
affect the w'ay in which proper times compare in neigh-
boring regions. In this connection, we recall that B is

where Rp, Rp are the values of R and R measured at the
given mass point sometime after free fall begins, t being
measured, from that time.

For y&2, the collapse therefore takes place in a
finite interval of coordinate time, which is different for
each shell of material. The fact that densities and pres-
sures go to ~ as R goes to 0 does not alter these con-
clusions, as the pressure gradient term, P'RsI'/to, goes
to zero there as RR' —const R".

All of these extrapolations are verified, by the machine
calcula, tions. Figures 8 through 13 show, for the follow-
ing case

M = 21M 0, Rp 10'km, K=0.05——, p=-', pe,

the same quantities as were shown in Figs. 2 through
7 for an assembly which bounced. We note that eventu-
ally F and, R' become negative, and the surface area of
concentric spheres decreases as one moves outward, in

p space.
This curvature can also be obtained if it is assumed

that p and e are spatially uniform. The integration of
the field, equations then lead, s to an implicit equation
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for R as a function of p, :

fi=27rpRCI —R(R ' R—')' +R slil (R/R, )j
—1/2

E.=
8+Gp (1+e/c')

(32a)

For assemblies of rest mass exceeding some critical
value

0.3

0.2

—l.5x IO
4

O

IO

E

~K

p, =m'pE. ,', (32b) 0. I' —0,5x IO

E d.ecreases with increasing p outside p, =p, while, at
p, =p„J'=E, The Schwarzchild, rad, ius of the assembly
decreases with increasing p, even more rapidly than E.,
so that for p, &p,, we have E&E, and the addition of
rest mass causes the Schwarzchild radius to retreat
back inside the assembly. If negative pressures are
allowed, this configuration can be static, and is then
one of the Schwarzchild interior solutions,

Figure 14 shows the ratio of the Schwarzchild radius
R, (p), defined by (24), to R, as a, fun. ction of p at various
times during the collapse. We note, by comparing Figs.
12 and 14, that the region of negative I" is inside the
region where 2mG/Rc')1. Figure 15 shows R and 8
versus coordinate time for the point at which R first
approaches zero.

IV. DISCUSSION

The results described, although preliminary, lead to
the conclusion that the upper mass limit for stability of
a bound. system against relativistic gravitational col-
lapse is of the same ord, er of magnitud, e whether calcu-
lated, for falling material with a finite amount of kinetic
energy or for a static configuration. While the excess
kinetic energy of the falling material d,oes offer the

10

10

10

210

2
RC ol

0.5x IO I.Ox IO 1.5x IO

[ t —0,6645] (sec)

Fro. 15. I R(p) J~' and B(p) versus t during free fall at @=8.5
JI/Io, the point where E. 6rst approaches zero for the 21 M@
collapse. R'i' is linear in f as is predicted by Eq. (31) with y =5/3.

possibility of throwing oQ mass and leaving behind. a
core light enough to be stable, in ord, er for this possi-
bility to be realized, , the pressure grad, ient must over-
corne the pull of gravity at the point of separation be-
tween what is to become the core and what is to be
thrown off. If the pressure does not become high enough
to do the job until the point of separation is at about the
Schwarzchild rad, ius for the mass enclosed, , then the
mechanism for turning material around fails. Static
configurations near the limit of stability are only a
few Schwarzchild radii in extent, so that our criterion
for failure of the pressure grad, ient will lead to about the
same maximum masses as the equilibrium calculations.

For the case of complete collapse described, above,
m(p) approaches a finite limit at the value of ii where
first J' —+0. This limit is, however, greater than any
value that m has had at that point earlier. This is
required. by Eq. (5), 8 being negative everywhere or,
in the limit, 0. Therefore, in spite of the fact that there
are negative contributions to the mass enclosed, be-
tween the two values of p for which R=0 (see Pigs. 9
and 16), it does not seem possible, at least under the
circumstances of our problem, for this mass to d,isappear
and leave flat space behind.

The path of light signals through the collapsing as-
sembly was calculated by integrating numerically:

IOO

(dp/dt)g, p= &4a-pR'ac (33)

during the collapse, for signals started at regular inter-
vals from the center and from the outside of the as-
sembly. The results are shown in Fig. 17. Light signals
do iiot leave the region where 2mG/Rc') 1, although
they enter it in finite coord, inate time. The region
where I'(0 is entirely enclosed by the region where
2mG/Rc') 1.

If F(0 in some element of rest mass, the total
energy there

IO

-2
10

10 0
I I I I

4 8 12 16
p. (SOLAR MASSES )

I

20 21

FIG. 14. 2MG/Rc'= ft, (p)/R(p) versus p at various times during
the collapse of the 21 Mo sphere (see caption, Fig. 8 for details
of initial conditions). c'dm =1' (cs+ e)did (34)
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is negative. The partial annihilation of der, if permitted,
would not change the sign of the total energy. Neither
would. an increase of c. Since I'=0 at the boundary of
regions of negative 1,pressure grad, ients could not push
the material out of such regions. The annihilation of
material at the center of the assembly, where I'&0,
and the subsequent transport of radiation, either into
or possibly through the region of negative F, may pro-
vide a means for reducing nz Lsee Eqs. (9), (11), (I2)$
but the effect of such reduction on the gravitational
binding of a region of negative total energy is unclear.

Whether rad, iation can proceed, from a region where
I'(0 to a region where 2mG/Rc'(I and hence escape
the assembly is also unclear. Configurations described.
by Eq. (32) (for p&ir, ) do contain a region next to the
outer boundary where both I'(0 and 2mG/Rc'(1
obtain but such a region might not be physically realiz-
able as it requires I' to change sign at its boundary. We
have not obtained, such regions in our calculations. They
would, seem to be ruled, out by Penrose's proof" that
the null geodesics issuing from a trapped, 2-surface
converge toward, the future, together with Hernand. ez
and Misner's proof" that the Schwarzchild, surface
inside the matter is such a trapped surface.

The relevance of these calculations to astrophysical
questions is now being studied. The effects of as-

phericity, of heat transfer by neutrinos or radiation,
of pair creation and annihilation, and, of interaction with
outlying material must in general be treated. One of
the simple results obtained, so far may nevertheless
be applicable. Supernovae are now presumed, to be
occasioned, by the inward, fall of a fraction of the highly
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Fro. 16. M(p) versus p at various times during the collapse of
the 21 M~ sphere (see caption, Fig. 8 for detaiis of the initial
conditions}.

"R.Penrose, Phys. Rev. Letters 14, 57 (1965)."Hernandez and C. W. Misner, Astrophys. J. (to be published).
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FIG. 17. Light cones (arrows) for the 21 M o collapse (see cap-
tion, Fig. 8 for details of initial configuration). Each signal is
labeled with its time of origin.

evolved core of certain stars. ' ' According to at least
one model of this evolution, due to Colgate and, White, "
the amount of material which falls far enough so that
its gravitational field, must be corrected for general
relativistic effects is of the ord, er of magnitud, e of one to
two solar masses. This occurs because it is mass of this
order of magnitud, e which first fails to support itself in
a Newtonian gravitational Geld upon cooling. We have
followed the fall of a I Mo core of this type, using the
initial conditions obtained by Colgate and White from
the classical evolution of a star of total mass 2MO, and
also using a fit to Salpeter's equation of state. " The
core still bounced. . Whether enough of the energy re-
leased, by neutrinos during the collapse and, bounce
would be absorbed in the (very high density) sur-

rounding medium to prevent its falling on the core and
thereby collapse it, remains to be calculated.

' S. A. Colgate and R. H. White, University of California
Lawrence Radiation Laboratory Report UCRL-7777 (1964)
(to be published).
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