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We have written down the Ward identity for a gravitational field interacting with a scalar Geld. It is
shown that in the limit in which the scalar Geld is taken on the mass shell, this identity becomes the principle
of equivalence.

'HE well-known identity, due to Ward, ' relating
vertex to propagator renormalization is a con-

sequence of gauge invariance of the second kind. This
identity has been widely generalized by many workers'
to cover the general case of gauge vector and pseudo-
vector mesons coupled to conserved currents. In the
present note, the Ward identity for the theory of gravi-
tation is presented. That such an identity should exist
follows from the consideration of the graviton as that
gauge boson which ensures the local conservation of
energy and momentum in the same sense that the
photon ensures the conservation of charge. ' The under-
lying group is, in this case, that of coordinate trans-
formations. The Ward identity relates the gravitational
vertex function to the self-energy insertion of a particle
due to all its interactions. Inquiry into the physical
meaning of this identity reveals that on the mass shell
it equates gravitational mass (vertex function) to
inertial mass (bare mass plus self-energy). The Ward
identity serves as the necessary generalization to the
principle of equivalence for off-the-mass-shell propaga-
tion. One sees in this way the mutual compatibility of
general relativity with quantum-6eld theory.

Before presenting the formal derivation, it is well to
set forth our fundamental assumptions:

(]) We adopt Gupta's point of view' by considering
gravity as a spin-2 field embedded in a Qat space. It is
minimally coupled to the energy-momentum tensor
T„„soas to ensure the conservation of this quantity.
Whether this fictitious Qat space is observable or not is
a very interesting question concerning the existence of
inertial frames; this point is presumably related to
Mach's principle. For the present, we simply bypass
this question, but hope to return to a detailed discussion
of this essential point at a future date.

(2) It is assumed. that the vacuum is invariant, not
only under special Lorentz transformations, but in
general as well.
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The proof of the Ward identity is straightforward.
Consider the propagator of a scalar Hermitian field
S(x,y) =(TP(x)g(y)) which in the absence of external
fields is a function of (x—y) alone. Under the infinitesi-
mal coordinate transformation

xo ~ xo+tto(a),

yo ~ yo+tto(y)
We then have

3S(*y) = I:a"(*)—a"(y) 3~.S(~—y) (2)

LNote that all indices are raised and lowered by the fiat
metric g„„o, except in Eq. (3) where this is not per-
missible. j By assumption (2), this difference must be
compensated by a change in the propagator due to a
change in an external gravitational potential g„„which
is set equal to zero after the increment is calculated.
The tensor character of g„„ implies

3g""= 3gor= (c)ott +c)recto) ) (3)
so that

I
a (~)—~ (y)la„s(*—y) = — d~'dy'd(

y Ls(*—x')(r"(x'—t,t—y')

where I'o"+I'"o is the gravitational vertex function,
hereafter denoted as F~". Taking Fourier components
and comparing coefficients of tt„(p) which are arbitrary,
gives

p„s(p) p„'s(p') = s(—p) I „"(p,p')s—(p') $p, p, 'g (5)—
or

I'„"(p,p') (p„p.') = p„s '(p—')+p„'s—'(p) -. (6)-
Equation (6) is the end of the formal development. One
may check the validity of the relation for a field without
interaction where S '= p' rrtos. In this case I'„„ is—the
p, p' matrix element of

~"=Lp'P (g. '/2) —(P P' mo')3—
We proceed further in the usual manner and go to

the limit p-+ p' and thence on to the mass shell.
Equation (6) becomes

r„„(p,p) = 2p„p„(~/~p')s '(p ) g„„s (p-—-
=2P„P„D—diI/dp'3

—g.'I P' —rrto' —11(p')3, (&)
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where II is the self-energy. Near the mass shell we have

II=m' rr—ts'+ (p' rr—t') (dII/dp')

whereupon Eq. (7) becomes

lim I' „=L
—(P' rrt'—)g „o+2P„P„j$1 dII—/dP']. (8)

Thus in the long-wavelength limit the coupling is the
same as with a noninteracting field of mass I, multi-
plied by the vertex renormalization factor L1—dII/
dp'j= Zi '. In usual fashion this factor is taken out by
the renormalization factors of S(p) Lcf. Eq. (5)j, so
that the Ward identity simply reduces to Z 'Z2=1
when one uses the renormalized mass. This result
implies the universality of the gravitational coupling to
the energy momentum tensor calculated with the true
inertial mass (for particles on the mass shell) whatever
the origin of the mass and independent of the
Lagrangian of the gravitational field. This is the

expression of the principle of equivalence. Off the mass
shell, Eq. (6) is the appropriate generalization of the
principle of equivalence.

We close with two remarks: (1) On the basis of a
previous paper, ' it is possible that theories which break
Lorentz invariance' lead to a graviton mass. (2) Because
of the Ward identity, it is probable that gravitation is
a renormalizable theory. We hope to return to these
problems as well as to the question of the meaning of a Qat
space in a filled universe in subsequent work.

We should like to express our gratitude to Professor
D. Speiser of the University of Louvain who alerted us
to the link between our Ward identity and the principle
of equivalence. One of us (R.B.) wishes to acknowledge
a stimulating discussion with Professor H. Bondi of
King's College on the subject matter of this paper.
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The general-relativistic equations governing the motion of a large mass under the inQuence of its own
gravitational Geld and its own pressure have been approximated by finite-difference equations. A spherically
symmetric, co-moving frame of reference was used. The pressure was assumed to be zero at the outer bound-
ary. Rest mass was assumed to be conserved and heat transfer by neutrinos, radiation, etc. , was not taken
into account. Numerical solutions were obtained on a computer for several simplified equations of state,
chosen to bracket the behavior of stellar material in late stages of collapse, and several masses. The maximum
stable masses obtained were of the same order of magnitude, but somewhat larger than the maximum stable
masses calculated statically. The behavior of light signals, of the metric coefficients, and of the hydro-
dynamic quantities as functions of time is described for collapse past the Schwarzchild radius. Such collapse
leads to regions where the surface area of concentric spheres decreases as the rest mass contained by the
spheres increases.

I. INTRODUCTION

'HE gravitational collapse of spherically sym-
metric masses under conditions where the general

theory of relativity is expected to apply has been cal-
culated by solving the field equations in finite-difference
approximation on d,igital computers. This paper pre-
sents results of this calculation for materials with
simple equations of state and for simple initial and,

bound, ary conditions. The purpose is to provid, e a
description of the collapse in the presence of nonzero
pressures, and, to verify current estimates of maximum
stable mass. The calculation can be extend, ed to take
into account pair production, heat transfer, and. other

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

mechanisms of interest for the description of astro-
physical processes.

ii. EQUATIONS

We consider an ideal fluid and neglect all heat trans-
fer except that due to the motion of the Quid itself.
The speci6c entropy of the Quid, at a given mass point
is then constant except when the mass point goes
through a shock. We neglect pair prod, uction and
annihilation, and the interaction of the Quid, with
external fields, so that rest mass is conserved, . Assuming
spherical symmetry lead, s to the metric'

ds'= a'(tt, t)c'dt' —b'(tt, t)dts' —R'(ts t)dQ' (1)
1L. D. Landau and E. M. Lifshitz, The Clussica/ Theory of

Fields (Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1962), 2nd ed. , pp. 331—332.


