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An analysis is made of an experiment recently proposed by Shapiro as a new test of general relativity
theory. This consists in measuring the transit times of radar signals reflected from one of the inner planets.
It is found that if the observations are expressed in terms of measurable orbital parameters, as they must
be eventually, this experiment has the unexpected property of being sensitive to a nonlinear term in Ein-
stein s theory. Great care must be taken in deciding what is actually measurable, and it is shown that the
process of reconciling the results of calculations performed with mathematically different but physically
equivalent forms of the metric is of considerable help in making this decision.

I. INTRODUCTION

'T has recently been proposed by Shapiro' that a
~ series of measurements of the transit times of radar

signals reQected from one of the inner planets, in their
dependence on the orbital positions of the earth and the
planet, would provide a new test of the general theory of
relativity. The geometry of the situation is shown in
I'ig. 1, in which the sun is at the origin, the earth
has instantaneous rectangular coordinates (—x.,d), and
the planet (Venus or Mercury) has coordinates (x„,d).
We shall use units such that the speed of light and the
Newtonian gravitational constant are equal to unity.
Then if the mass srt of the sun (which is of the order of a
kilometer in these units) is neglected, the round-trip
transit time is equal to 2(x,+x„).An additional con-
tribution of order m is expected on the basis of general
relativity theory, and it is this term that is the subject
of the present paper.

We follow Shapiro in ignoring the motions of the
earth and the planet during a single transit. These
motions are by no means negligible, but may be taken
into account in a straightforward way in reducing the
observational data. We also follow Shapiro in neglecting
the departure of the radar path from the straight line
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y= d. Path curvature is easily seen to produce a con-
tribution to the transit time that is of order m', which
we neglect since we shall work only to erst order in m.

The analysis in this paper has as its primary objective
the determination of the extent to which one particular
but important aspect of the theory would be tested by
the proposed experiment. This aspect has to do with
the structure of the space-time Inetric in the vicinity of
the sun. About 1922, Eddington' considered what would

happen if one were to drop the requirement that the
metric tensor be a solution of the field equations of
general relativity theory, but retain the requirement
that the equations of motion of matter and electro-
magnetic radiation be determined from the metric in
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FIG. 1.The unperturbed path with the sun at the origin, the earth
at (—x.,d), and the planet at (xv, d).

' A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1957), p. 105. It should
be noted that the theory of C. Brans and R. H. Dicke, Phys.
Rev. 124, 925 (1961) can be put in this form.
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the same way as in general relativity. This corresponds
to modifying Einstein s theory in a special but never-
theless instructive and interesting w ay, and then
determining the effects produced by these modifications
on the three tests of the theory. This program of
investigating the effects of an altered metric has been
carried further by Robertson, ' and the present paper
applies it to the planetary radar reQection experiment.

The most general static spherically symmetric metric
may be written in the form

ds'= L1—(2nm/r)+ (2Pm'/r')+ )dt'
—$1+ (2ym/r)+ j(dx'+dy'+ds') (1)

where r'=x'+y'+ 's, and n, p, y . are numerical
coefFicients that are all equal to unity in Einstein's
theory. As remarked above, we assume that the equa-
tions of motion of matter and electromagnetic radiation
are given in terms of this metric tensor by Einstein's
equations. In this way we can calculate the dependence
of the measured. quantities on n, p, y, which, in
turn, measure the time or space distortions that are
linear or nonlinear in m and therefore in the gravita-
tional-field strength. While this procedure is to some
extent arbitrary, it is well defined and provides a
common basis for comparison of various possible
experimental tests of general relativity theory.

With the conventional definition of the gravitational
constant, we must choose zz=+1 in order for planetary
orbits to agree with Newtonian theory in lowest order.
Then since the first-order gravitational red shift depends
only on the o. term in the metric, no new information
concerning the metric is provided by such a measure-
Inent. This conclusion is equivalent to the statement
that the first-order red shift follows correctly from any
theory of gravitation that is consistent with the
equivalence principle. ' With this choice of n, the gravi-
tational deQection of starlight by the sun is proportional
to 1+y, and the advance of the perihelion of a planetary
orbit is proportional to 2(1+7)—P. e The precession of
the spin axis of a spherical gyroscope that is in a free
orbit about a nonrotating attracting body of mass
m is proportional to 1+2&."Our primary objective,
then, is to derive the dependence of the m-proportional
term in the expression for the radar transit time on P
and p.

The secondary objective of this paper is to stress the
care that must be taken in comparing the predictions of
general relativity theory w'ith observations. This might
at erst seem to be a trivial matter, since a comparison
between theory and experiment in any area of physics
is essentially a comparison between two sets of numbers

'H. P. Robertson, in Space Age Astronomy, edited by A. J.
Deutsch and W. E. Klemperer (Academic Press Inc. , ¹w York,
1962), p. 228.

4 A. Einstein, Ann. Physik 35, 898 (1911).
L. I. SchiB, in I'roceedilgs ol Theory of Gravitation, edited by

L. Infeld (Gauthier-Villars, Paris and PWN-Polish Scientific
Publishers, Warszawa, 1964), p. 71.

that represent the same physical quantity, one set calcu-
lated from the theory and the other from the observa-
tions. However, it is not always easy, in dealing with
general relativity, to know what is measurable and what
is an artifact of the choice of coordinate system, which

in this theory is completely arbitrary. Difhculties of this

type arose in connection with the gyroscope-spin-preces-
sion experiment, which was proposed several years ago
as a new test of Einstein's theory' and which has been
undergoing extensive implementation since then. ' ' A
convenient device for avoiding these difFiculties consists
in exploiting the coordinate invariance of the physically
observable quantities by calculating them in different
coordinate systems. Quantities so calculated are of
course all obtainable from each other by suitable trans-
formations. However, the process of reconciling them
without using these transformations forces the investi-
gator to discard coordinate-dependent artifacts, and
retain only physically meaningful relations between
measurable quantities.

The radar transit time is calculated in the next
section by making use of both standard and isotropic
forms of the Schwarzschild metric. The different ex-

pressions thus obtained are then reconciled in Sec. III
by a careful examination of the measurability of the
various parameters that appear in them. Finally the
entire calculation is done over in Sec. IV with the
generalized metric of Eq. (1), and the dependence of the
result on P and y is obtained. '

II. CALCULATION OF THE RADAR
TRANSIT TIME

The standard form" of the Schwarzschild metric may
be written in spherical coordinates as

ds'= P1—(2m/r) ddt' —f1—(2m/r)) 'dr'
—r'(de'+sin'edge) (2)

or in rectangular coordinates as

ds'= L1 —(2m/r) ddt'
—{zzz,+ (2mxzx, /r') L1—(2m/r) 7

—')dx'dxt, (3)

where r'= x'+y'+s'. We shall work entirely in terms of
the universal coordinate time that appears in Eqs. (2)
and (3). While not directly measurable, it serves,
because of the static character of the metric, to relate
events that occur at widely different space-time points.

6 L. I. SchiB, Proc. Nat. Acad. Sci. 46, 871 (1960).
W. M. Fairbank and C. W. F. Everitt (private communi-

cation).' H. W. K.noebel (private communication).' A summary of the results of this paper, together with an appli-
cation of the same ideas to Einstein's three tests, the gyroscope
spin precession, and the second-order gravitational red shift, has
been presented by one of us (L.I.S.) at the American Mathematical
Society 1965 Summer Seminar on Relativity and Astrophysics.
An abbreviated version of these lectures will be publsihed in the
Proceedings of the Seminar, and is available as ITP-181, 1965
(unpublished)."P. G. Bergznann, Irztroztztetzorz to the Theory of Retatzezty
(Prentice-Hall, Inc. , New York, 1946), pp. 203, 212.



PROPOSED PLANETARY RADAR REFLECTION EXPERIMENT

The 6nal results must of course be converted to proper
time as measured on the earth, since all observations are
made there. However, this common transformation can
be made in a straightforward way, and need not be
dwelt on further; it does not affect the relationships
between measured quantities that are derived below.

While we shall make use of the spherical form (2)
in the next section, it is more convenient to calculate
the transit time from Eq. (3) since the unperturbed
path is most simply expressed in rectangular coordinates
(see Fig. 1).As remarked in Sec. I, the deviation of this
path from the straight line y=d can be neglected, so
that dy=ds=0 to first order in m. The equation of
motion of the electromagnetic signal is ds=0, so that
Eq. (3) may be written to first order as

dt =L1+ (m/r)+ (mx'/r') )dx, (4)

where now r'=x'+d'. Integration of Eq. (4) gives for
the round-trip coordinate transit time t8 when earth
motion is neglected:

ts=2(x,+x„)+4m1n/(r„+x„)/(r, x,)j-
2mlDx. /r. )+—(xn/r~)3 (5)

This is equivalent to the result obtained by Shapiro. '
The isotropic form" of the Schwarzschild metric in

spherical coordinates is

1—(m/2r)-'
dS = dt'

, 1+(m/2r)

—
l 1+(m/2r) j'(dr'+r'd8'+r' sin'Odg')

in rectangular coordinates, the last parenthesis is
replaced by (dx'+dy'+ds'), where again r'= x'+y'+s'.
Equation (4) is now replaced by

dt= t 1y(2m/r) jdx, (6)

which integrates to

tr=2(x, +x„)+4mlnti(r~+x~)/(r, x,)j. (7)—
This result, also obtained in Ref. 1, is significantly
different from Eq. (5). Moreover the discrepancy per-
sists when both are converted to earth proper times since
this conversion is the same, to first order in m, in both
forms of the metric.

III. EXPRESSION IN TERMS OF MEASURABLE
QUANTITIES

The discrepancy between Eqs. (5) and (7) can be
reconciled through a careful examination of the meas-
urability of the parameters that appear in them. Since
we are interested in a difference between terms that are
of 6rst order in m, it follows that 6rst-order corrections
to m, r„x„r„,and x„will not help matters insofar as

"R.Adler, M. Bazin, and M. Schiffer, Introduction to General
Retatieety (McGraw-Hill Book Company, New York, 1965),
p. 176.

they are applied to the 6rst-order terms. On the other
hand, it is necessary to determine whether or not the
zero order term 2(x,+x~) has the same meaning, to
first order in m, in the two expressions.

It is apparent that x,+x„cannot be measured
directly. Standard measuring rods are of no use, and
light signals are equivalent to the radar signals with
which we are concerned. A plausible way in which to
proceed is first to express x,+x~ in terms of r„r~,
and tt (see Fig. 1). Then since r, and. r„are themselves
not directly measurable to sufhcient accuracy, they may
be expressed in terms of the observed orbital periods,
eccentricities, and elapsed times since perihelion for the
earth and. the planet. The angle g can also be expressed.
in terms of these quantities, together with the elapsed
time since conjunction. In this way x,+x„is ultimately
given in terms of measured times and orbital eccen-
tricities. As remarked in Sec. II, it is convenient to
express these measured times in terms of the universal
coordinate time, which to first order in m is the same
for both forms of the metric. All of these times, as well
as tq or fr, are readily convertible to earth proper times.

The first step consists in expressing x,+x„in terms ofr„r„,and tt. Since r'= x'+y'+s' in both forms of the
metric, the ordinary formulas of Euclidean geometry
are applicable so far as relations between these co-
ordinate (but not proper) quantities are concerned.
Thus we may use the law of cosines for this purpose:

x,+x~= (r,'+r„' 2r,r~ co&)'t2. —

Next we must find the relation between r„,say, and the
measurable orbital parameters. This is accomplished by
solving the equations of motion of the planet with the
standard and itotropic metrics in turn; for this problem
the spherical forms of the metric are more convenient
than the rectangular forms.

It is sufhcient for the present discussion to consider
only circular orbits, although finite eccentricity can be
taken into account with some additional complication.
Then r =r„,8=~/2, and p= drtt/dt is con—stant and equal
to 27r/T~, where T~ is the orbital period expressed in
universal coordinate time. Of the three equations of
motion with the standard form of the metric, " the 8
and p equations are then satisfied identically, and the
r equation becomes

(9)j'= m/r„',

which is exactly the same as in Newtonian theory. We
thus obtain Kepler's third law for the relation between
coordinate radius and period:

r = (mT '/47r')'". (10)

~ C. Mgller, The Theory of Relativity (Qxford University Press,
New York, 1952), p. 349.

When the isotropic form of the metric is used, the equa-
tion analogous to Eq. (9) is

j'= (m/r, ') [1—(3m/r„)j,
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through terms of second order in m. Thus with sufficient
accuracy for our purpose, Eq. (10) is replaced by

r, = (mT, '/4m')'I' —m.

Thus the transition from the isotropic to the standard
form of the metric is accomplished by replacing r, by
r,—m and r~ by r~ —m. This has the effect of changing
x,+x„given by Eq. (8) into

x,+x„—mL(x, /r, )+(x„/r„)5.

It follows that tz given by Eq. (7) then becomes equal
to ts given by Eq. (5), and the discrepancy has been
removed.

We conclude that the round-trip coordinate transit
time expected from Einstein's theory is given by Eq. (5)
if the orbits are circles, provided that its zero order
part, 2(x,+x„),is computed from g and the orbital
periods in accordance with Newtonian theory since the
Newtonian equation (10) is valid with the standard form
of the metric. In reality the orbits are somewhat ellip-
tical, so that this conclusion may not be strictly correct
for the actual situation.

IV. DEPENDENCE ON g AND y

We are now in a position to determine the extent to
which the radar transit time depends on the parameters
p and y that appear in the generalized metric, given by
Eq. (1) with n=1. The generalized form of Eq. (6) is
easily seen to be

dt= D+ (1+v) (mlr)5d*,

which may be integrated to give for the round-trip
coordinate transit time:

to=2(x,+x~)+2(1+y)m lnL(r~+x„)/(r,—x.)5. (13)

It might be concluded from Eq. (13) that this experi-
ment would only supply information on the value of p,
and this is the natural expectation when an electro-
magnetic-propagation experiment is under considera-
tion. "However, the discussion of the last two sections
shows that the first-order part of tg has no meaning
until a prescription is given for specifying the zero-

"The physical basis for this expectation has been discussed by
L. I. Schiff, J. Soc. Indust. Appl. Math. 10, 795 (1962).

order part. It can shown that Eq. (11) now becomes

@'= (m/r~')L1 —(y+2P) (m/r~)7,

so that Eq. (12) becomes

r„=-(mT~'/4n')'"3 (m—/3) (y+ 2P) .

with this substitution into the zero-order part of Eq.
(13), the expression for tg becomes

2(x,+x„)+2(1+y)mln L(r~+x~) /(r, x,)7—
—(2m/3) (v+2P) L(*.lr.)+(x./r. )7 (14)

Again, this is valid for circular orbits provided that the
zero-order part is computed from p and the orbital
periods in accordance with Newtonian theory.

The d.ependence of the expression (14) on the non-
linear p term in the metric is, as remarked above, un-
expected. Indeed, if only first-order electromagnetic
propagation were involved, p should not appear. How-
ever, the dynamics of the planetary motion also enters
the problem, through the calibration of the zero-order
distance x,+x~ in terms of the orbital periods. Further-
more, the relativistic correction to particle motion,
even for a circular orbit, is expected to involve y and
P on an equal footing, as is the case with the advance of
the perihelion of a planetary orbit. " Thus radar
ranging may be looked on as a method for exploring
details of planetary motion that are not accessible to
optical astronomy. Our results, then, endow the
proposed radar reQection experiment with the added
significance that it and the planetary perihelion ad-
vance are the only observations thus far considered
that are sensitive to a nonlinear term in Einstein s
theory.

Note added ws proof We thank D. r. I. I. Shapiro for
pointing out to use that the presence of the last
(p-dependent) term in Eq. (14) may be masked by un-
certainties in the effective planetary radii. It seems to
us that the possibility of such masking adds to the im-
portance of radar reAection experiments with instru-
mented space probes, since they present relatively well
defined targets.
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