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A new technique for calculating wave functions for atoms and ions is developed. Formal asymptotic ex-
pansions with largeness parameter Z (nuclear charge) of the form P=e z"Zo+ ", where k and the set of
o„s are functions of the electron coordinates, are determined through first order in 1/Z. In so doing, the
Schrodinger equation for a general atomic system with Q electrons is reduced to a set of 6rst-order partial
di6erential equations for successive u . These equations are then solved recursively. Screening and cor-
relation are exhibited explicitly in the resulting asymptotic atomic wave functions. Applications made to the
ground state of 2-electron systems show that the asymptotic wave function obeys the virial theorem through
first order. Magnetic susceptibilities within 5% of the accepted values are obtained for helium and singly
ionized lithium. Other expectation values, s(s~+ss), sq~, and s~2, are found to be in excellent agreement with
Pekeris's variational calculations utilizing many parameters. In the neighborhood of certain singular points
the large-Z asymptotic solutions obtained by a "matching technique" are shown to satisfy the correct cusp
conditions. In certain of these regions, (InZ)/Z terms enter. The omission of such terms in ordinary varia-
tional-perturbation wave functions may result in a loss of accuracy when computing expectation values
other than the energy.

ASYMPTOTIC WAVE FUNCTIONS FOR
ATOMIC SYSTEMS

1. INTRODUCTIOH

ECENTLV, approximate ground-state solutions to
the nonrelativistic Schrodinger equation for many-

electron atoms have received considerable attention.
Electron wave functions giving a reasonably correct
description of the electron density throughout configura-
tion space would facilitate calculation of weak-inter-
action effects. Of late, there have been refinements in
the experimental measurements of magnetic suscepti-
bility, electric polarizability, and quadrupole coupling
of atoms. The utilization of more accurate wave func-
tions would allow calculation of these effects to keep
pace with experiment. More accurate atomic-scattering
factors could also be obtained. In addition, if accurate
excited-state wave functions were known, transition
probabilities and optical-absorption and inelastic-scat-
tering cross sections could be calculated with much
greater precision.

The calculation of ground-state atomic wave func-
tions is usually performed by either a Hartree (Hartree-
Fock) calculation or by some other variational tech-
nique. It is well known that Hartree calculations usually
give the energy of the ground state to within 1 percent. '
However, these solutions do not incorporate interelec-
tronic repulsion correctly since they describe each
electron as moving in tbe average central field due to
all the others, and these are distributed throughout
their wave functions according to the statistical prob-
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sala University, Uppsala, Sweden, 1958).

ability that they will be found at any one coordinate.
Hence the electrons do not avoid one another because
of their mutual Coulomb repulsion but tend to avoid

regions of large average potential energy. Also such

techniques are derived from a variational principle, and

their application to excited states leads to problems of
orthogonality. '

Generalized variational techniques such as Hylleraas
or configuration-interaction expansions using a suffi-

ciently large number of undetermined parameters give

results for the upper bound to the energy to almost any
desired accuracy for small atomic systems. For example,
the ground state of helium has been computed to eight
figures using a 39-parameter wave function' and to ten
figures using a 1078-term wave function. ' However, the
wave functions so obtained are not uniformly con-
vergent. This is further brought to light in the fact that
the rigorous lower bound calculated with these wave
functions does not usually agree with the upper bound
in tbe last few figures. If the variational wave functions
were a close approximation to the exact solution over
most of the atomic con6guration space, one might
expect better agreement between the two limits. Further-
more, the number and type of correlation terms which

may be included in tbe trial wave function are usually
chosen ad hoc. Therefore the interpretation of the re-
sulting variational wave function for a two- or three-
electron system does not usually lead to any real insight
into general electron-electron correlation effects. Since
extensions of such expansions to atoms with many elec-
trons must become hopelessly complex, some other
techniques must be utilized to exhibit general correla-
tion effects and give wave functions of some reliability
for larger atomic systems.

2 M. Cohen and A. Dalgarno, Rev. Mod. Phys. 35, 506 (1963).' T. Kinoshita, Phys. Rev. 105, 1490 (1957).
4 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959);

126, 143 (1962).
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In this paper, we develop tlm method of asymptotic
expansions for obtaining atomic wave functions. We
look for asymptotic large-Z (atomic number) wave
functions of the form

(A)

The energy is also expanded as a power series in Z of
the form

E=—Z'(Css —Z 'Cts+Z 'Cs'+ +). (B)

Insertion of (A) and (B) into the Schrodinger equation
for any atom leads to a set of lower order partial di8er-
ential equations for h, as, and at. Although the energy
parameters may be determinable in a self-consistent
manner, we make use of the fact that Css and Ci' are
known exactly for atomic systems. ' C2' may be deter-
mined from an experimental analysis of the binding
energies of the isoelectronic series of interest.

In Sec. 2 of this paper, we apply our forms, lism to
separable atomic systems and show that truncated
asymptotic expansions are exact solutions to the sepa-
rable problem. In Sec. 3, the partial diGerential equa-
tions for a general atomic system are solved recursively
through the lowest orders. Screening and correlation are
exhibited explicitly in the resulting atomic wave func-
tions. The correlation effects are exhibited as a sum of
2-electron correlation functions which depend on the
principal quantum numbers of the electrons involved.

Asymptotic solutions of form (A) (naturally with
different largeness parameters) have been obtained pre-
viously for a wide class of electromagnetic-scattering
problems' and fiuid-dynamics problems. In those rare
cases where an exact solution could be obtained by the
method of separation of variables, a comparison be-
tween the asymptotic solution and the exact one has
shown: (1) The leading term or terins of the asymptotic
series represents the leading term or terms in the
asymptotic expansion of the exact solution. (2) The
asymptotic expansion including only a few terms is a
very good approximation to the exact solution over most
of the domain when the expansion parameter is of the
order of 2 or greater. From (2) we expect our asymptotic
expansion to be a good approximation to the exact
solution even for atoms or ions of low atomic number.
That this is the case is shown by the close agreement of
our results of Sec. 4 for the angular correlation in the
helium (Z= 2) wave function away from isolated singu-
larity points, with those obtained from a many-param-
eter variationally calculated wave function. From (1)
we expect our asymptotic series to represent the leading
terms in the asymptotic expansion in large Z of the
exact solution. This is shown in part at the end of Sec. 4.

In Sec. 5, we calculate some 6rst-order expectation
values for the helium ground state utilizing our asymp-

' C. W. Scherr, J. M. Silverrnan, and F. A. Matsen, Phys. Rev.
127i 830 (1962).

R. M. Lewis and J. 3. Keller, New York University, EM
Division, Research Report EM-194, 1964 (unpublished).

totic expansions. Our helium wave function is shown to
obey the virial theorem to first order. Magnetic suscepti-
bilities within 5% of the accepted values are obtained
for helium and singly ionized lithium.

In Sec. 7, we determine by a "matching technique"
the asymptotic expansions for helium which are correct,
within a small neighborhood of the singular points. The
expansions are shown to satisfy the "cusp condition" at
the origin exactly and the one at s» (interelectron dis-
tance)=0 to leading order. Since the wave-function
expansions in these regions have (lnZ)/Z terms, expec-
tation values for operators other than the energy will
include such terms in their high-Z expansions. Ordinary
perturbation theory expansions~ do not include such
log terms.

2. ASYMPTOTIC SOLUTIONS FOR SEPARABLE
ATOMIC SYSTEMS

The general Schrodinger equation for a system of a
nucleus with charge Z surrounded by E electrons can
be written in dimensionless form,

i=1 Si i=1 3')i S"g3

where s; is the distance in Bohr radii of the t'th electron
from the nucleus, E is the energy of the system in large
rydbergs (approximately 27.2 eV), and O~ is set equal to
zero when the electron-electron interaction is considered
to be turned o8 and taken as one for the actual atomic
problem. Let us consider the case when 0'= 0. The equa-
tion is then separable. That is, f= p(st)P(ss) P(s~),
where g(s) satisfies

The exact solution can then be represented by product
wave functions of hydrogenic character. If the Pauli
principle is invoked and the hydrogenic states are filled
two at a time in the order of increasing energy, one
builds up the periodic table with each element having
its proper valence and the correct ground-state sym-
metry properties (assuming I. Scoupling to be negl-i-

gible). Thus the independent electron model certainly
predicts some of the more important atomic properties
correctly and must in some sense represent a erst
approximation to the true solution. The energies of such
separable systems only include the Z' term and can
therefore be written

E=—Z'Eo large rydbergs.

Each electron with a principal quantum number e
contributes an amount 1/2n' to Es. The exponential
behavior of the wave function for an independent elec-

7 A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London) 247,
245 (1.958); A. L. Stewart, Advan. Phys. 47, 299 (1963); R. F».

Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).
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tron in orbital e is given by

In the next section when the general problem is solved
we will demand for Q~=O Ci'=0 Co'=0, C'=0
that P go over to a product of separable wave functions
each of which has an exponential behavior expressed by
(4). In order to make complete contact with the known
solution with the interaction turned off, we ask that each
electron for the given state of the atom or ion has the
same value of e with the interaction on or oH.

In the remainder of this section as a simple illustration
of the asymptotic expansion technique we apply it to
the separable problem (2). Substituting the formal
expansion

dr i/ds =P(P+ 1)/2nps'. (9.2)

Equation (9.2) is immediately integrated and gives

ri = —P(P+1)/2nos, (10)

where we have chosen the constant of integration equal
to zero. Defining ro=ao/ap, the equation for ro for an
$ state is

dfi/ds= (1/2npap) V Qi.

Integrating, we Anally obtain

results. In terms of the variable ri defined as ri= ai/ap,
Eq. (9) becomes

Bra/Bs= (1/2noao) V'ao, (9.1)

which, for an S state [F(8,g) =constj, takes the form

qf=e z"&'& Q a;(s)Z &

f =0 ro (P+ 1)P (P—— 1)/—Sno's' (12)

and (3) into (2), and taking the gradient

vy= Zyvh+—e »Q Z '-(va,)-
j'=0

and Laplacian

V'$=(Vh)' P a;Z s+' —2 P(vh Va, )Z s+'
j=p j~p

—V'h p a,Z r' '+ p Z iV'a;,
j'=0

we obtain, setting the coeKcient of the Z' term equal
to zero,

—-', (Vh)'ao ———Eoao

Since h=h(s), the equation can be written

(Bh/Bs)'= 2Ep,

vrhich admits the solution

h = (2Ep) 'I's=nos.

Setting the coefFicient of the Z' terms equal to zero gives

——,'(Vh) 'ai+no(8ao/Bs)+ (np/s) ap —(ap/s) =—Epai. (7)

The (vh)' term cancels the Eo term, and we are left
with a homogeneous equation for ap of the form

8Gp 1 Gp—1 —=0.
8$ ep S

Defining p= (1/np) —1, our result for ap can be written

ap =&(8,y)s~.

Thus to second order in the expansion in inverse powers
of Z, P is of the form

p(p+1)
e
—zupsse 1 Z—i

alps

(P+1)P'(P-1)
+Z ' + "+ . (13)

80.0'S'

For the 1S orbital, np ——1, (P=O), and the series trun-
cates after the first term. For the 2S orbital, np ———,', and
we obtain

g=e 'I s[1—2(Zs) ') (14)

which is the exact 2$ wave function. In the above
manner, we can generate all the S states for one-electron
systems. Choosing F(8,&) in ap as one of the appropriate
spherical harmonics and demanding truncation, we can
generate the exact wave functions for the case when the
angular momentum of the system is not equal to zero.
Thus we observe the well-known fact that the exact
solutions for the separable problem can be written as
truncated asymptotic series of form (2). This simplicity
arises because no interaction terms occur, and the energy
in the separable case can be written —Z'Ep. With inter-
action terms present, the energy is represented as an
in6nite expansion in decreasing powers of Z. This is one
of the reasons no such truncation is possible in the
general case.

3. ASYMPTOTIC SOLUTIONS FOR GENERAL
ATOMIC SYSTEMS

We assume an asymptotic solution of Eq. (1) exists
and is of the form

The condition that our solution go over to the correct
(9) separable form with no interaction present indicatesBai/Bs —P(ai/s) = (1/2np) V'ao

)=exp[—Zh(si, s, ,sg)j P a„(si,so, . ,sir)Z ".(15)
Setting the coefficient of the zeroth power of Z equal to n~p

zero, an inhomogeneous equation for a& of the form
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that there is no dependence of the function h on angular coordinates. Substituting Eq. (15) and the energy expansion

Zs P ( 1)wZ—wC s

w=p

into Eq. (1), we have, after cancelling out the exponential e z" from both sides,

—-' P P [(v;h)'a„Z "+'—L2v;h v~a +(V' 'h)a„)Z "+'+(V' a„)Z—"]
n 0 i=1

00 X 1 00 00. 00—g P —a.Z "+'+P g P —a.Z-"= —Z' P (—1)"Z-"C ' P u„Z-". (17)
n=l i=1 n=p i=l g&i c . . n=p

Setting the coe%cient of all Z' terms equal on both From Eq. (18), it follows that the coefficients of the at
sides of the equation, we obtain an eikonal equation terms on both sides of Eq. (20) are equal. The resulting
for h of the form equation for ap is therefore

p (v,h) s= 2C,'.

ah)
i

=2Css.
*=r as;)

(18a)

Since h is not a function of angles, Eq. (18) can be
written

1 Bap 1
+(1/n; —1)—as ——Crsas.

i=l n Si

a =Js g s;-"'e""
)

Equation (21) admits the general solutions

(21)

(22)
In order that our solution go over properly for the case
of no electron-electron interaction, h must be of the form where

(o;=1—n;, X;=n;Ct /X,

' In i

where the ith electron is taken to be in a state with
principal quantum number n;. It then follows that each
electron will contribute an amount 1/2n' to Cs'. Thus
Css ——Es and is therefore determined since Es is known.
For example, in the case of a filled shell atom whose
outer shell has a principal quantum number X,

n—I
Es ——2 Q (1/2n') Q (21+1).

0

In more conventional perturbation theory techniques,
the electron position coordinates in Eq. (1) are all
multiplied by Z, and this results in a 1/Z appearing as
the perturbation parameter multiplying the 1/s;, term.
It then follows immediately that the leading term of the
energy expansion is the unperturbed energy obtained
with 1/Z equal to zero, which is just the separable
energy —g Ep.

Equating coefBcients of Z' terms on both sides of
Eq. (17), we obtain

1—-', (v;h)sat+v;h v;ap+-', (V sh)as ——ap
Si

= —Cesat+Ctsap. (20)

and Jp is an arbitrary function of angles and of the
differences formed by taking the radial coordinates of
any two electrons, multiplying each by its principal
quantum number and then subtracting one from the
other. Choosing Js as a product of the appropriate
spherical harmonic functions of the angular coordinates
of those electrons not in 5 states, our solution goes over
correctly for the separable case. From the above form
of the X s, it follows that in any given ion or atom the
shielding factor for any electron is approximately pro-
portional to its average distance from the nucleus with
the interaction turned off.

Equating coefficients of the zeroth power terms, we
obtain an inhomogeneous equation for u~ of the form

1 aat 1 )1+ —1 l- &~ —C~'&t
n as; n; is;

= —Ouo g P —+-', P V' ao —C,'ao. (23)
i=l ~'&i S;;

Making the substitution aq=rtae and noting that both
functions ap and aI satisfy the same homogeneous equa-
tion, we find Eq. (23) reduces to

s In the energy expansion (16) C s is taken as necessarily
positive for +=0, 1, and 2. i='ni Bsi i=1j)i s .. 2g i=1ij 0
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I'zG. 1. The 1S' correlation
function C»(1,1) for the case
that both electrons lie on the
same side of the nucleus and on
the same straight line passing
through the nucleus (gals=0').
x is the ratio of the radial elec-
tron distances s /see.
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where C;, is the solution of

The solution to Eq. (24) can be written It should be noted that in the analysis of this section
we have tacitly assumed that no nonuniformities occur
in performing the two limiting procedures 0~ ~0, Z ~ co.

n;s;, 25

4. ASYMPTOTIC GROUND-STATE SOLUTIONS
FOR 2-ELECTRON ATOMS

i BC i BC i
s 8$; Q 8$~ s;;

(26)

C;;=

where

p,,Q "+(n D,;n;)s;+(n;—D;;n;)s; ~—
lnl

(27)

8,; is the angle subtended at the nucleus between
electronsi and j, D;;=cos8;;,

Qt;——(nt2+nto —2D;;n;n;)'t',

A;;= $Q;,+n; D,;n;7/s, (n,/—n;)s;7, for—n;s; &n;s;.

subject to the boundary condition that as either s; or s,
goes to inlnity or zero with the other held fixed, C;; goes
to zero. This condition follows, since C;, represents the
direct correlation term in our first-order solution. As the
electrons go in6nitely far apart from one another, the
electron-electron interaction contribution to the wave
function goes to zero. The solution of Eq. (26) is shown

by standard techniques' to be of the form

+ —~& (81+~2)
0

Operating on ao with the Laplacian, we obtain

Vcoao/ao =2X/s;+ X'.

(28)

Performing the integration in Eq. (25), we are led to
the result

ri=Cio(1, 1)+) lnsiso+o(X' —Co')(sr+so), (29)

where C;;(n;,n;) refers to the correlation function when
electron i is in an orbital with principal quantum num-
ber n; and electron j is in an orbital with principal
quantum number n;. Equation (27) for n;= n;= 1 gives

1 (sto+d(st+ s
Cro(1,1)=—lnl (30)

2d &(1+d) lsi —s, l~
with

d= (1—Dr&)/2 and Dro=cosftro.

The ground state of a two-electron atomic system
consists of a 1sr configuration. Since both electrons are
in orbitals with a principal quantum number of 1, we
obtain

coi ——coo ——0, Xt ——Xo ——X=Ci /2,

and Eq. (22) for ao gives

The isoelectronic energy expansion is well known for theIt is obvious from (27) that C~t dePends only on the case of 2-electron atomic systems. " In terms of large
ratio s;/s; and the angle between the electrons.

'0 H. A. Bethe and E. E. Salpeter, QNuntum Je/Iechunics of One
R. Courant and D. Hilbert, Methods of Mathematical Physics artd Troo Electrort Atoms (Springer-Verlag, Berlin, 1957),p. 153.

(Interscience Publishers, Inc. , New York, 1962), Vol. 2. Also see Ref. 5.
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FIG. 2. The 15~ correlation
function C~2(1,1) as a function
of x for several values of 6!1~

(the angle subtended between
the two electrons at the nu-
cleus). D=cosg~s.
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FIG. 3. The asymptotic solution P& LEq. (31)g as a function of
sm (Bohr radii) for the case of (hm

——0' and $&=0.3 Bohr radii.
Curves are drawn for helium and doubly ionized beryllium.

rydbergs, we observe that Cts= 0.625 and Cs' ——0.15765.
Using these values, we obtain A. =0.3525, and the co-
efficient p of the $1+$s term is —0.03. The first-order
asymptotic wave function for a 2-electron atomic
system is then

&
—(2—x)(ar+ss) f1 +@—1LC (1 1)

+)I ln($1$s)+p($1+$s)jj ~ (31)

Since the value 0.3125 for our shielding parameter X is
exactly the value found by performing a variational
calculation on a simple exponential product wave func-
tion, the leading term of i/1 is already well known. In
Fig. 1, Cts(1, 1) is plotted as a function of x (x=$s/$1)
for ets ——O'. This is the case when the two electrons are
both on the same side of tbe nucleus and lie on a straight
line which passes through it. We observe that Cts goes
to zero as the electrons go infinitely far apart. As the
electrons come near one another, Cts becomes more and
more negative leading to a smaller value for $1 and
therefore to a decreased probability of finding the elec-
trons close together. These are the correlation effects
one expects physically.

In point of fact, C~2 diverges logarithmically at s~ ——s2.
For the case of 0~2=0', the divergence is stronger and
a 6rst-order pole occurs. This type of singularity at a
point about which the asymptotic expansion changes
character is common to many asymptotic solutions. For
example, the WEB asymptotic solution of tbe simple
harmonic oscillator diverges in the neighborhood of the
classical turning point. The asymptotic solution also
changes character about this point. Often one can obtain
by a stretching technique an accurate nondivergent
asymptotic solution in the transition region where the
original asymptotic solutions diverged. For the harmonic
oscillator, such a stretched solution is the Airy function.
Simply stated, such singularity phenomena occur be-
cause tbe postulated form of tbe asymptotic expansion
is not adequate to represent the asymptotic expansion
of tbe true solution in this region due to problems of
nonuniform convergence. This wi11 be discussed further
in Secs. 6 and 7 when we obtain the asymptotic expan-
sion in the neighborhood of singular points. In another
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sense, one may sometimes think of the occurrence of
such singularities as due to our conversion of a problem
involving a second-order partial differential equation to
one where a set of first-order equations are solved re-
cursively. Somewhere in the process a boundary con-
dition may be lost. In trying to recover the correct
boundary value, the asymptotic solution overshoots the
mark. Thus we do not expect our asymptotic expansion
to be valid in some neighborhood of the points st=ss.
However, from the plots of our correlation function as a
function of x, as shown in Fig. 2 for various angles, we
expect radial correlation to be a general property of the
helium ground-state system. That is, one should observe
a reduced probability of finding two electrons having the
same value of the radial coordinate. Strong radial
correlation effects in the helium wave function have
been discussed elsewhere. "%e also observe from I'ig. 2
that the correlation eGect for any value of x decreases
with decreasing D~~ and therefore with increasing s~~

as expected.
In Fig. 3, we compare lft for helium and doubly

ionized beryllium for the case st=0.5, 8»=0'. It is
physically unreasonable that the true helium wave
function becomes negative in the neighborhood of s~2=0.
%e note from the figure that this phenomenon will

occur much farther from the point st ——ss in the case of
helium than for doubly ionized beryllium. Therefore it
is immediately obvious that our solutions become applic-
able closer to s~——s2 as Z becomes larger. As Z goes
toward infinity, our solution Pt will become applicable
over almost all configuration space.

It should also be pointed out that 1S orbitals give
rise to a logarithmic singularity when either electron
goes into the nucleus. The region in the neighborhood of
the nucleus in which this effect is large is small, even for
Z=2. It is of the order of 0.3 Bohr radii for this case.
A nondivergent asymptotic solution which is correct in
the neighborhood of the origin can be found by a
stretching technique. As our electrons go an infinite
distance away from the nucleus, the usual noncon-
vergence problems arise in the wave function. Since this
domain will not be of interest in computing expectation
values, we do not trouble ourselves about it here. Yo
avoid this problem, one has to use a density matrix
formulation of the problem.

In Fig. 4, we Plot Ift as a function of ss for the case
si=2, 8i2=0'. In the same figure, we plot the leading
term of ip&, which is just a product of screened expo-
nentials. We refer to this term as ps. Note thatlft
becomes less than ps in the neighborhood of s» ——0 and
larger than fs as the distance between electrons in-
creases. Because of the compensating effects in the
diferent regions, when a correct asymptotic description
of the wave function in the immediate neighborhood of
s»=0 and the origin is used in conjunction with our
asymptotic solution which is valid everywhere else, we

"C.Schwartz, Phys. Rev. 126, 1015 (1962).
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gt will be only slightly changed from the normalization
constant for fs. Assuming ft to have the same normali-
zation factor as Ps, we have calculated a correlation
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FIG. 5. Angular correlation eGects in helium.

Fro. 4. Spatial correlation in helium. gq and A (the leading
term of P&) as a function of ss for the case of 8qs ——0' and sq=2.0.
Note the decrease in the wave function pI as electron 2 approaches
electron i.
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TABLE I. Helium expectation values.

Operator

0 (sP+ss')
s (sl+ss)
-', (1/s&+ i/sm)

$12

$12

Expectation values
Pekeris~ Asymptotic Hylleraas"

1.193 1.186 1.077
0.9295 0,9453 0.8969
1.68832 1.68750 1.689
2.516 2.600 2.327
1.422 1.547 1.372

& Pekeris' data is originally given to 10 figures. All values given in
atomic units.

&L. Pauling and E. B. Wilson, Introductioe to Quantum Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1935), p. 224.

correction factor which is just the ratio of the two wave
functions. In Fig. 5, we compare our results with those
of Gilbert" who obtained this correction factor utilizing
a many-parameter variationally determined Hylleraas-
type wave function. In these plots, we are holding the
radial coordinates si and s2 fixed while changing the
distance between the electrons by varying the angle
subtended at the nucleus by the two electrons (for
t)is ——0' si2 ——si —s2,' for 8]2—180', si2 ——si+sis). We ex-
pect physically the greatest correlation to occur for ei2
smallest. This is borne out by the curves. In the case of
the S1,=2, s2=3 example, we run into the s1 approxi-
mately equal to ss distortion. phenomena. Our correla-
tion factor is I;oo low for small angles as expected. How-
ever, outside of this region our results agree quite well
with Gilbert's, and if we used the correct normalization
constant for Pi, we expect that the agreement would
be improved.

For large si and s2, it is known that the exact solution
for helium has an exponential behavior given by

) I/2 (sl+S2) (32)

S. EXPECTATION VALVES FOR 2-ELECTRON
ATOMIC SYSTEMS

In the previous section, we investigated the properties
of the asymptotic helium wave function and found
certain unphysical logarithmic divergences which occur
at s;=0, and s,.=s;. However, these inaccuracies in our
wave function have lit tie eGect on the expectation values
of those operators which are relatively insensitive to the

~ T. L. Gilbert, Rev. Mod. Phys. 35, 431 (1963).

where E is the energy eigenvalue. Putting in the energy
expansion for Z in terms of the C's and expanding the
exponential to first order in powers of 1/Z, we obtain
for Z large:

iP~g—iz—» &'1+'s&
t 1+-,'Z—'(X'—C ') (si+ss)g.

Comparing our asymptotic expansion, Eq. (29), with
this, we observe that it gives the correct high-Z asymp-
totic expansion of the exponential part of the exact
wave function for the above case.

values of the wave function in the neighborhood of these
points. Such operators as si2', si2, —,'(si'+ss'), —,'(si+s2),
and —', (1/si+1/sm) fall into the above class. Expectation
value computations to first order in 1/Z were perfornied
for these operators and our results, and a comparison
with the "exact" results of Pekeris' for helium and
singly ionized lithium are given in the Tables I and II.
For helium we have also included calculations based on
the two-parameter Hylleraas variational wave function
containing a correlation term linear in s12.

Our asymptotic calculations necessitated one numeri-
cal double integration over a finite domain for each
expectation value. These integrations were performed
on the /094 computer using a trapezoidal-rule numerical
integration scheme. Our numerical integration results
are generally good to four figures. For the calculation of
the nuclear magnetic shielding constant, 2 (1/si+1/s2),
the results were extrapolated to six significant 6gures.
The value of 1.68'/50 for this expectation value shows
that fi satisfies the virial theorem to first order in 1/Z. "
Our result for the diamagnetic susceptibility, —,(si'+s2'),
of helium is within ~ percent of the exact one.

In performing our computations, we form the product
Pi*OPi, where 0 is the operator under consideration and
calculate

(0), = dVfi~Ofi de i*Pi (33)

to first order in 1/Z. When performing integrations not
involving terms dependent on s12 or D12, it is convenient
to choose

d V= (4sr)' ds1ds2 sy $2
0 0

For integrations involving correlation terms, we take"

dV= 2ws ds du I dt(s' —t')
0 0 0

where s=si+sm, t=si —s2, and N=si2 For operators of
the form 0;=—',(si'+s2'), the )I,(lnsi+Inss) term is evalu-

TABLE II. Lithium+ expectation values.

Operator
Expectation values

Pekeris' Asymptotic

k (»'+sm')
~~ (si+ ss)
—,
' (1/sg+ 1/ss)

$12

$12

0.4463
0.5728
2.6879
0.9271
0.8623

0.4624
0.5868
2.6875
0.9925
0.9307

Pekiris' data is originally given to ten figures. All values given in
atomic units.

"R.E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 431
(1963).

'4 Reference 10, p. 147.
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where

a —~ x'lnx=xe
j L~(j+1)—1~)

k~'
(35)

2 2u2 2/2 2 2 1/2
y,u) = (0%')/(L1 —(1—y')'u')"' 2—y

e
' . 3'7) can be evaluated numericallyTbe lny term in Eq. (3'7 can e ev

by rewriting it
~(i+1)= d e " 'lny= —lnF(/7)dye y

0

g. "Making a change of.uated elsew ere.and has been eva u
in tbe C12 term,variables in eth integral containing

I~ u=l/s)
2 1/2 1/2 36)t~y=(1 —I—y= —( '—t')' '/L(s' —t')"'u))

el and whate s
' '

n be erformed separate y,
d ble integration over aremains is a ou

the form

I

C;=2 du u(1 —u' y;—') d f;(y,u) DnW(y, u) —lny), 37
0

with

1- ')u))'"1—(1—y')u)L2 —y')/(1+( —y u

dy f;(y,u) lny

u ln . (38)o,u)+ dyl fr(y, u)-f/(0, u))

tA'e obtain 6nally

0,„= 1 —!1 j+2)%'(3+j)—%'(3))}(')-
2(2Z) i Z

'

+o(1/Z') I (39)
2 2' (2+j)!2'

aues of operators s~2 areSimilarly, expectation values o
found to be of the form

—
~

7 j+4Le(6+j)—m(3 —21n4
2Z)/&&2'k j+3 3(j+5)

(«)
1/(3+ j)—1/3(5+ j)1/(3+j)—1/3(5+j)»&2'

~ ~

e same form as C; except that 0;/s' is
d d h kreplace y u' '

d b & in the integran an w
ex ansion of f in the neighborhood d of theasymptotic expans

nerall proven we takealtboug ih 't has not been genera y

f,(Z large) +$1, —
I

2 2n1n22dP P2+' dn(1 —n2P2) In(1—n

uad rat
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0

'
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ar e xi -+ 0)W&.(xr -+ 0), Z large) =&1 xi ~' '""e by "b' P.(Ziarge, x,
many-

m totic expansion ~ o

s
'

sformation of varia e

term formal asymp

Lt d
ds of Sec. 3. Suppose we wamethods of ec.

N33)
"H . , o Higher Ma/hemateca a

. That is,
r' ' '

Bloomington, Indiana,
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where j)0 (j as yet otherwise unspecified),

H(Zj xr)xspxs) ~H(Z j pr)xspxs).

Such a change of variables guarantees that when con-
sidering the Z dependence of terms in II:
(A) Terms in H which go as xr (k)0) will be small
when expressed in H. On the other hand k (0 terms will
be large. /Note that for xr small we expect terms

xrs(k) 0) in H to be smalLj (8) Terms Big/Bxr in H
will be of magnitude Z'(Bp/Bpr) in H. This implies that
if we look for a solution of the form P =P exp f(Z, grxs, xs),
the leading term of B&/Bxr in the neighborhood of xr =0
will be of magnitude Z' greater than the leading terms
of B&/Bxs or BP/Bxs in this region when each is re-
expressed as a function of $r, xs, and xs. LNote again
that for x& small we expect our boundary-layer solution
to vary more rapidly with xr (have a larger partial
derivative) than in the case of the asymptotic solution
away from the singular point. The proper stretching
accomplishes this. $

Thus we see that stretching is a way of ordering the
terms in H in the neighborhood of xr=0. When con-
sidering H, this ordering is expressed simply by the
dependence of the various terms on a single parameter
Z. We can again look for solutions of the standard
asymptotic form (15). The resulting system of partial
differential equations (P.D.E.) to be solved is naturally
simpler than the original problem. However, because of
our ordering the equations are only applicable near
x~——0. I et us call the formal two-term asymptotic solu-
tion to the stretched problem —+(Z; Pr, xs,xs). We
expect that if j has been chosen correctly that 4 is an
asymptotic expansion of ib which is valid for Z large,
sr small. Since jr=z'xr the solution

@(Pr large)

corresponds to f,(xr small, Z large), and therefore we
expect

%($r large) ~ fr(xr small) .

This is called the "matching condition. "Only the correct
value of j will allow this condition to be satisied even
though certain constants and/or functions in + are
determined from it. Once it is satisfied, the solution + for
(& small obviously corresponds to ib, (Z large, x& small)
and is therefore the desired asymptotic expansion in the
neigbborhood of x~=0. Another important consideration
in determining the requisite value of j is that we expect
at least some of the operators present in the P.D.E. for
rr of the original asymptotic expansion will also be
present in the P.D.E. for m~, the coe%cient of the
erst-order term in +. In addition, we also expect some
second-order partial derivative terms to appear in the
equation for tttr. For the case of fr becoming divergent
at x&——0, x2 ——0, it may be necessary to perform diferent
stretchings on variables xr and x&, but essentially the
same considerations go through for understanding the

"matching principle. " From physical considerations,
one can usually ascertain whether g varies more rapidly
(its partial derivative is greater) with respect to one
variable than the other in the neighborhood of the
singular point. It is then the former variable which
receives the greater stretching.

In the foregoing we have introduced the idea of
stretching and have indicated how the matching principle
is fulfilled. We now state more explicitly the form of the
matching principle" utilized in this paper:

"The two-term expansion of fr (when it is expressed
in terms of stretched variables) in powers of 1/Z is equal
to the two-term expansion of 4' (when it is expressed
in terms of ordinary variables) in powers of 1/Z. "

For the case that iver is singular at xr ——0, de6ning

ibr(z; Pr, xs,xs) =ibr(Z; Pr/Z', xs,xs),

Pr@=itr (expanded for Z large, keeping 2 largest
orders),

@(Z;xr, xs, xs) =e(z; Z'xr, xs,xs),

O'E=4(expanded for Z large, keeping 2 highest
orders),

where a tilde over a symbol indicates it has been re-
expressed in terms of unnatural variables, the "match-
ing principle" asserts

+a= rz.

7. SOLUTIONS IN THE NEIGHBORHOOD
OF SINGULAR POINTS

Before we begin our investigation, we would like to
summarize the notation used in this section. 's

ibr.'The helium ground-state asymptotic wave function
obtained in Sec. 4 is written in terms of ordinary
variables as

gr. When Pt, above is rewritten in terms of the stretched
variables associated with the singular point under
investigation, it is denoted by

p,=Pt+(t/Z)r-, j exp( —Zk),

where rj. is written in terms of d~.

ib&~. PUt is the expansion of Pr in powers of 1/Z, keeping
only the two leading terms.

t'r~. Fr@ is the expansion of Fr in powers of 1/Z, keeping
only the leading term.

re Van Dyke, Pertgrbateol 3fethods t'e Ellis 3Eeohortks (Aca-
demic Press Inc. , New York, 1964), p. 90.

~9 In'~region Ib, these de6nitions are modiaed slightly by in-
cluding an mggq term in +.
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O'. The asymptotic solution of the stretched problem
in terms of stretched variables is denoted by

@=[1+mi/Z7 exp( —Zk')

where h'=h for regions I and they are not equivalent
in regions II.
4". When 4' is written in terms of unstretched variables,
we denote it by

4 = [1+m&/Z7 exp( —Zk') .

4s. 4 s is the expansion of 4' in powers of 1/Z, keeping
only the two leading terms.

mi~. mis is the expansion of mi in powers of 1/Z,
keeping only the leading term.

Our helium ground-state asymptotic solution
diverges in the following regions:

Ia (t=0, u&0),
Ib (u=0, sWO),

IIa (si=0, s2WO),

IIb (si=0, s2 ——0).

To find the correct asymptotic solutions for regions I we
rewrite the 2-electron Schrodinger equation in coordi-
nates s, t, I as

t'~V ~V ~V ~V
u(s' —t')

~ + + +2s(u —t )
& Bs' Bu' R' 8$8Q

8V Big Bf 8$
+2t(s —u') +4su—+2(s —t2)——4ut-

BNBt 8$ BN 8f

P4zsug —(s' —t')P+Eu(s' —t') P =0, (41)

with E given as before by (16). Regions Ia and Ib are
considered removed from the origin. Thus we do not
have to consider any stretching in s and expect that the
exponential dependence on s (shielding effect) will be
the same for the Ia and Ib solutions as for the original
asymptotic solution. Therefore we look in regions Ia
and Ib for stretched solutions of the form"

@=e ~s "&'[1+mi/Z+m2/Z'+ +7. (42)

In the Appendix, we have substituted the above into
Eq. (41) and have kept terms through order 1/Z con-
sidering P=P(s, t,u) Certain t.erms automatically cancel
one another in Eq. (A1). These terms are enclosed in
curly brackets and need not be considered further.
Now consider the general double stretching

(=Z't, y =Z&'u.

"N here is taken as the general expansion, but only terms
through m& will be of importance in satisfying the "matching
theorem. "

Vnder each term of Eq. (A1), we express the order of
that term in Z when considered as a function of $, y,
and Z in terms of the j, k of the transformation. For
the case j=O, k=0 (no stretching), the largest terms
are of order Z', and, equating them equal to zero, we
obtain

us'P. '—2(Bmi/Bs7 —ut2P. '—2 (hami/Bs) 7
—2s[u' —t27ami/au+4Xsu —s'+ t'

—C,'[us' —ut'7=0. (43)

It is a simple matter to show that this equation is satis-
fied by the ri [Eq. (29)7 of our original asymptotic ex-
pansion. We will indicate this as expansion A. The terms
in Eq. (A1) entering the leading equation for expansion A
[Eq. (43)7 are indicated by writing an A under the term.
The A follows the j, k order of the term and is set off
from it by a semicolon. Since there is one term, —s' in
(A1), which is independent of j and k, it is necessary
that other terms in (A1) which depend on j and k are
also of order Z', if we are to be able to equate the
coeS.cient of this power of Z equal to 0. For the region
Ia, no stretching is required on the si2 variable and
j=0, k=-,' are the proper values of j and k. For the
case j=1, k= —„we obtain the expansion in region Ib.
For both cases, the P.D.E. to be satisfied by m~ is
found by setting the coeKcient of the Z' terms equal to
zero. The terms entering the equation for mq in region Ia
have a Ia written under them in Eq. (A1). Similarly,
those entering in region Ib have a Ib written under
them. When a term enters the equation for mi in a few
regions, these regions are written below the term and are
set off from one another by commas. Note that of the
four differential operator terms present in A, two are
present in Ia and one is present in lb. If, for example,
we had chosen j=1, k = 1 as the proper stretching in Ib,
none of the differential operator terms present in A
would have entered the equation for m&. Needless to
say, pursuance of the j=1,k=1 solution for mi would
have indicated that no match with the asymptotic
expansion A was possible.

We now write down the P.D.E. for mi in region Ia as

8 my Bmy Q Bmy 1 4A—2 —2— =———(g' —cm~) (44)
BP Bs s Bu u s

where $=Z't't. Now we have ri of expansion A which
can be written

s2—t')
ri(s, t,u) =X ln ~+-', P'—Cp'7s

4.

1 u+ds——ln— , (43)
2d (1+d) gati

where d= [(u' —t2)/(s' —t')7'i' This is immediately seen
by referring to Eq. (29) and rewriting it in terms of the
variables s, t, and N. Following our prescription at the
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end of Sec. 6,

1 si2+dis

2d (1+d ) i
P/z'i'i

u(1—P/Zu' 'I'""=,«(/z,
with

Expanding for large Z,

F =li ln-'s'i 1— i+2/. —Cm )s
(

zs'I

smallDefining zv=s, we observe that for $ large, w sm
we can write

M, = —InH-ao+ 2u+4w'y (54)

with
3fi= —1n$+ao+g(w),

y(w) =-,'u+-,'w'+ +

(55)

(SSa)

for m large. Substituting, we o tain

Therefore we look for a general solutio
'

n of 48) of the
form

1 1 s~- 1 f1 1~ (1=-i —
i

1+ ei ——i+oI-
2di 2 ~uk — 2Z ~u2 s') Z2

P (1 1~ 1~-
dis=u 1+ —,—,I+o —

I

we obtain

Fis li ln—+-', [l%.
'—C2'js+—ln

d'Q 1 3 1 dp—+———
dzo 2 78 zv

which has the general solution

P=Ci du zv e
—3/2 —1/2w

1
dam '/'e '"" w el!2m'

(s6)

—Dn2u —ln(1+u/s) j +O((lnZ)/Z). (46)

O'Mi/BP=2(BMi/Bs) .

To complete the match we expect for large $

Mi= —lnf+P a, (s)$ ' with a ~;~=0.

Substituting (49) into (48) we obtain

BGg'—'+Z(i-2)(i-1); 2F-'-Z 2 k-'=0 (5o

In order to satisfy the matching p
' 'p, din rinci le, m1~ obtained

from mi of Eq. (44) must be equal to Frit given by q.
(46). Choosing

m, =X lns'+-,'[X'—C,'js
47)—(s/2u) [ln2u —ln(1+u/s)+Mij, (4

and substituting into Eq. (46), we find MiAnd 3f1 satisfies the
heat-Row equation

( 8)

Substituting V=1/2w, we obtain

dv
e V——

V1/2

dV
e
—V

V1/2

v dggeu

(58)
~3/2

with

&(V)=

dV
e g(V),

V1/2

~Q3/2

(59a)

(59b)

59b has been chosen soThe lower limit on integra 5
h t contributions from partial integrations wita no o

'
ll inte-result rom i . or't F V large m small we partia y

'

grate to higher negative powers of V, giving

3/2 2 VSI2 22 Vv)2 j

Now the homogeneous term would ad pdmit odd owers of
$ which is unp ysica .g.

'
1 Therefore we set C1——0. Now we

write our solution

ant. Since must be even in t and there-Thus
ao~

——constan . ince m
i '

g next set the coefFicients o inlore in g we nex
to 0 obtaining

(51)—2(Ba2/Bs)+1= 0,
which has the solution

which results in

~(V)=! 2 (61)
Vn(2" ')u

1X3X5X.. .X(2u —1) 1

—1C2= 2$.

For nig er vaueh' h lues of j we find recursively

(52) w ihich gives as its leading terms

V= + + +=—+-'+ +, (62)
(J—2)(J—1)

(53)
which is the previously obtained expansnsion 55a . %e
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can now write Therefore

1 /mi= X lns'+-,'(X'—C2')s $i——e &e "' 1+—
I

Xln —
I
1——(s/2u)/ln2u —ln(1+u/s) —lng+uo+P(ie) j. (63) Z 0 4 5 Zs')

We rewrite w= s/P= s/Zt2. Thus for Z large, w is small,
and p(re) is given by (62). Therefore

with

+-, ( -C, ).+C,. I, (71)

m, =X lns'+-,'(X'—C,')s

s—(ln2u —ln(1+ u/s) —ln)+ aors
2N

and

1 r/Z+ d is
C~2

——— ln
2di (1+di)

I
g/Z'I'I

/'Z2 P/Z- i

(71a)

+of —I. (64)
Z 4ut' EZV For large Z,

ao= 2 lnZ. (65)

Truncating (64) according to the prescription at the end
of Sec. 6 to obtain m~~, we note that for nz~~ to match lead;ng to
riii we must choose

s'—p/z

7'&
1+———

IZ't's 2Z s' Pj
Z"-'m s 1 (su

+-I —+1 I.
2&@

(72)

s
Pi@——e &e "&' 1— — +Z ' X ln~~s'+ —('A' —C2')s

z'I'4 fpf
222 (+41"t2I 1—xxP'—

p'1 t2
g(1')=e'— 1"+ .+ I

3X5
(66)

1(sy (1)
+-I —+1 +oI I (73)

2( P (Zat2jwhich leads to

Now that we have determined Mi completely, to
obtain the expansion near g=O we partially integrate Truncating (keePing three terms this time), we find

(59b) to increasing powers of V, obtaining

@(V)=-; inV —V+ P (67) Now from the Appendix we see that the equation for
= f1x3x "x(2i—1)3(i) mj. in region Ib takes the form

In terms of our variables P and s,

&=2 ln — +Ol-
2s 2 s ks'

1 g2

y= in) —-', ln2s ———.
2 $

BtÃi $Bmi P 1 Bmi 1
+2- —+2 —+-

By y B'rB) ys 'r By
(74)

mi= Go(s)+'rg(ie), (75)

Using a power series construct as in case Ia, we are led
to an mi of the form

Substituting into (55) for P/s small, we obtain

Mi= ——', ln2s+ —', lnZ ——,'($'/s), (69)

where w= P/s as before. Substituting (75) into (74), we
find that x(ie) satisfies

and our solution m~ no longer shows the singularity for
t small which appeared in the original asymptotic ex-
pansion rj.. Thus the correct solution to be used in
region Ia is

mi= X ln~s'+ ~ (X'—C2')s+——
2 lnZ —ln2u

2N-

(76)

which has the solution

1
X=C e ""+ e "t' e"I'die. (77)

~ ZV 112

4ze(dx/dw)+2Lw+1$y —1=0,

1 1 1)
x(ie) =—1+—+0 —

I

2w w w')Now let us consider region Ib. We choose the
stretching

In order that our solution be even in t, we choose C= 0.
1 Zt' (Zt'i' For m large, we integrate by parts to obtain

+»I 1+- I+-:»2s+- +oI I
. (7o)

sl 2 s ksl

g=z'f2t, y=zu. For Z large, ie large, comparison with (73) indicates
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that one should take

as = X In-,'s'+-,' ()).2—C22)s+-,'
Now according to a theorem proved by Kato, " the

exact wave function satisfies the cusp condition at Q= 0
(79) of the form

in order to match everything except the 1/Z')2 term.
Now for t small, tt) small, one can integrate (77) to

higher powers of zv to obtain

X(~)=2 2(—1)" te" . (80)
3X5X X(222+1)

We now note that if we had included an m»2/Z')2 term
in expansion (42), mits would have satisfied the homo-
geneous part of Eq. (74), and any function mt)2(s, () is
an acceptable solution. Ke shall now show that nest~

cannot enter our asymptotic solution in the neighbor-
hood of )=0. Let us first write down our asymptotic
solution in region Ib as

Zts) Zts) 2

P=e tz "' 1+-'u 1—— ~+0
3 s) sl

mits(s, &)+ +Z 'P, ln-'s'+-,'(X' —C2 )s+ 2'$ . (81)

u=p, 5=0

=-22L1—Z-'(~ In-.'ssyPS+-2') j. (86)

Therefore, in the limit that Z —+~, this cusp condition
is identically satisfied.

In order to obtain our expansion for one or both of
the electrons near the origin, it is convenient to rewrite
the Schrodinger 2-electron equation in terms of variables
Sy) $2' Q.

82$ 2 c)it c)2it 2 Btt 82$ 4 c)$
+— + +— +2 +——

Bsy $]. Bsy 8$2 $2 t9$2 BQ Q BQ

(si —$2 +u ) c) lP ($2 —si +u ) c) lt'

+ +
BSiBQ 8$28Q$2Q

18$ 1

it' c)u s=p, i=p 2

Performing these operations on our solution (81a), we
Gnd that

BP Big—(~,~, )=O(z't') —(~,7, )
BQ 8$

One observes that

1 85$yt 28$ 1—=e &z—x). Ztu+
83 12$ Z' ' 8$

From Part 8 of Sec. 6, we expect that in region Ib

(82)

Z Z 1
+&(S+ + 0 0(&&)=

Sy $2 Q

we can write

d= ((u ($2—s—i) j 4sis2} (88)

For the case that electron 1 is near the nucleus, let us
assume an integral stretching of the form b=zst is
correct. Noting that in terms of Q, s~, and s2, d in r~ is
expressed as

1 1 c)mt)2—e
—(z—X)s +

12$Z~~2 Z~12 a&

(g3R) &)&=e «& "e &'«"&'& 1+2 '
l~ 1«—+1«s&)

Z

it&/Bu= 'e-lz ")'- (83b) +—', (X'—C2') (b/Z+s2)+ Cis, (89)

1 u+dt(gt/Z+S2)
ln

2di -(1+di)(s2—pi/Z)

with
Now assume mits(S, $) is expressible as a power series
about (=0. For jth order term in series (mi)2'),

(84)
andam»2~/at=f7't~ '=j p 'Z"'' — '

us (s —( /Z)2 i/2—
(89a)

4(~,/Z)s,

Z'~' Q' —S ' 't

2 hss
(89b)

which leads to an expansion for Z large of the form

This would contribute a term of order Z' in BP/Bt, in
addition to the term already present of order Z '~', and For large Z,
condition (82) would not then be fulfilled. Thus in the
vicinity of )=0, mits must vanish identically and there-
fore will not contribute to (81). Thus, finally, for the
solution in region Ib, we write

1 pztsy )r Ztsy '-
4=e ""' 1+su 1—-I I+O(

3&s& &si
(1

+oi —[.
Z-u+$2 ~Z I

(90)

+Z P Inss +2(X C2')S+-2, $ . (8») 2 T. Kato, New York University Research Report CX-25,
1956 (unpublished).
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Therefore, truncating to two orders,

1
$1+=e & "&"e «1+—

L
—X 1nZ+Xb+X inb+ X ln$2+2 (X'—C2 )$2]

Z
(91)

This suggests that we look for a solution of the stretched equation of tbe form

0'=e ' "&"e «(1+Z 'Lm &'&($)+m &'&($2)$+Z 'm2+ +). (92)

Making this ansatz and substituting into the stretched P.D.E.,

-82( 2 8$- 82$ 2 8$ 82' 4 8$ $ 82$
Z' +— + +— +2 + +

8(1 $1 8/1 8$2 $2 8$2 8u u 8u u 8$]8u

$,' 82&&t u 82/
+Z2

(1u 8$18u $1 8$18u

$2 1 t12 u- 82$ Z'Z1
+— +2 —Z'(Co' —Z 'C1'+Z 'C2'+ +)+ + 4'=0 (95)I Z Qsg $2 Bs28Q $2 u

we obtain, from setting the coeKcient of Z&1& terms equal to zero,

A solution of this equation is

8'm]." 2 —am], &"

, + 2
851 —$1 — 8/1

C 2

m1"&=X b+ln&1 — —— — +C
2)1 2 m $1'

where C is a constant to be determined.
From setting the coeKcient of the Z&'& terms equal to zero, we obtain

(95)

-amz(') 8 m 1——+-'2(C22 —X2) + +2 ——1
$2 — 8)1 —$1 —8)1

Bm2

Bs2

1 Bm Bm 2—C22+C12Lm1&1&+m1&2&j+ Lu2 —$2$ + ——=0. (96)
bu 8u 8u8$1 u

Choosing to set the 6rst parenthesis itself equal to zero, Thus the matched stretched solution is
we obtain

m1&'&=X In$2+2p. '—C2'($2.

For Z large, we can rewrite

m1&»=), Z$1+lnz$1-
2Zsi 2Z

%=e ' "&'2e «1+Z-' X ln$ +-'(X'—C2')$2
(97

r 1 1 «d&e2&

+X~ $1+In/1 — —— —InZ
~

. (99)
2)1 2 „P )

Z8$

and performing the usual truncation procedure,
and therefore

(95b) ' (1—XZ 'L."(Z$1)'+O(Z$1)']
+Z 'L—X lnZ+X ln$2+2(X2 —C2')$2j}, (100)

m1&2&'& =)LZ$1+ lnZ$1+O(1/Z)+ C$ .

Considering (97) and (95b) in (92), we observe that the
matching condition with (91) is made if we choose

for the case of $1 small (in region IIa). Thus tbe correct
(98) asymptotic expansion has no divergences at $1=0. TbeC= —lnZ.

To obtain the expansion for $1 small, we integrate by
(j7$1 (e2z81/$12)+. C (95a) parts to higher powers of $ to obtain

%=e ~z "&"e «{1+Z 'L—XlnZ+X ln$2

+2 (l1 —C, )$,—X(-'$1'+O(b')) j},
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solution shows the expected physical characteristic that
for one electron very near to the origin the shielding
e8ect of the outer electron upon it goes to zero.

The cusp condition at $&=0 satisfied exactly by the
correct wave function is

Our asymptotic solution identically satisies this cusp
condition.

In region IIb, we perform additional integral stretch-
ing on s2 and u. We define fr =Zsq, h ——Zs;, and 7=Zu.
One can readily show' that for this case

8
Z 0

lp 8$1 ql 0

Pr&r
——e &&~&»(1+Z—'L—2X InZ+X(h+h)101

+&&(lnh+lnh)+Cr2(h h v)3 (104)
with

Now for our asymptotic solution (100),

= —Zg+e &z "&"e z'rL —-', Z&&sr+0(sr2) 1, (102)
OS'

which in the limit sr ——0 becomes

~ 7+d(h+h) ~
!Crz(h) h)v) = ——Inl

I (1+~) I h —hI &

)v' (5 —h)'~—'"
4$rh

~$l sy-O

= —ZiP(sr ——0) . (103) Transforming Eq. (87) to new coordinates, we obtain
the usual "perturbation theory" equation in the form

2 r&it &izlp 2 jp r&2', 4 r&p (t&2 t 2+p2) r&2', (p
2 ( 2+~2) g2g,

,+— + +— +2 +——+
&&h h ~h &&h h ~h r&7 7 &&7 $17 851&&'r

We look for a solution of (105) of the form

12
+2 (—Co'+Z 'Cr' —Z 'Cz'+ +)+—+—P——~=0. (105)

4 h- Zv

4= e &&'+&'&(1+Z 'Lmr&'&(h)+mr&'&(h)+HE&(h h,y)1+Z m2(gr h p)+ ' ' '+). (106)

Substituting (106) into (105), one finds that mr&&& and m&&'& satisfy equations of the form (94) in their respective
variables. Therefore, from the analysis for region IIa& it follows that mr&'& and mr "& will be matched with the first
three terms of the coefficient of 1/Z in Kq. (104). We find the remaining equation satisfied by 3Er to be

r&'Mr 1 r&3I& r&'3IIr -1 r&3E& BMg 4 &&My h' —h'+y' h' —h'+y' r&M'x

+2 —1 + +2 —1 +2 +-
~h' -6 - &&$r &&h' -h —~h r&v' v &&v — Bv hv

-he t 2+~2- r&2~r -( 2 t&2+~2

hv - ~h~v — hv

O'Mg 2
(107)

&&hBy

Since we have already taken proper care of the func-
tions depending only on either variable h or h near the
origin with our choice of mr&'& and mr&'&, we expect that
near the origin

3Er=Cy+O(yl), (108)

where C is a constant to be determined and 1 represents
one of the fundamental smallness distances y, h, or h.
Substitution of (108) into (107) gives C=z. Although
we have not shown the matching condition fulfilled for
My with C~2, we have determined the leading term of
Afar near the origin. Thus for region IIb, keeping only
the leading terms of mr&" and mr&", we have

it =e "e—"L1—2X(1 Z/Z)+-,'
—aXZ(sP+sz')+O(yl/Z) j, (109)

assuming no other constants are brought in by matching
Der. Note that (109) identically satisfies the cusp con-

dition (101)for s& or sz equal to zero. The cusp condition
at u=0 is exactly satisfied in the limit that Z~ee.
Thus, in the neighborhood of the origin,

/=1 —Z(sr+s2)+u/2 —2X(lnZ)/Z+O(P), (109a)

in the limit of infinite Z, our P gives correct" behavior.
This is to be compared with perburbation theory where
the coeflicient of the u term near the origin does not go
over to its exact theoretical value in the in6nite Z case."
Since ordinary perturbation theory assumes at the out-
set no lnZ terms are present in the wave-function ex-
pansion, whereas we have shown that in certain spatial
regions they must be included, it is not surprising that
the perturbation theory wave functions and expectation
values calculated from them will show certain failings.

I V. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).
~ Reference 13, p. 435.
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APPENDIX: ORDERING OF TERMS FOR ji k COORDINATE STRETCHING

The values of j, k for the regions A (no stretching), Ia, and Ib are, respectively, (j=0, k=0), (j=0,k=-, ), and

(j= 1, k = -,'). Equation (A1) is as follows:

am1
us' fZ'}+{Z(mi—2X)}+ V —{2Am'}+{m2}— 2

(—j A. Ia) 8$
(-j;A, Ia)

1( 8m 2 Bml
+—

! 2&mm —2 +2& +
Z& as as(-j-1) (-j-1) (-j-1)

8 ml a mx)

au' r
(j—1; Ib)

8$
(—2k- j;A)

( —2k —j; A)

—ut2 fZ'}+{Z(mg—2X)}+ X' —f2Am'}+ {m2}— 2

Bm2
+— 2Xm2 — 2

Z 8$
( —2k- j—1) ( —2k —j-1)

8$
( -2k —j—1)

8 ml a'mx)
+ +

as' at' au' r
(—2k- j—1) (-j—1) (j -2k-1)

+2su'
BN

(—j;A, Ia)

1 (a'mi am2 am' —2st'
ZEasau au au(-j-1) (-j-1) (-j-1)

am' 1 ( a'mg
+—

I

au Zk asau
(j—2k; A, Ib) (j—2k —1)

Bm2 8ml)+ X
BQ BN

(j—2k —1) (j-2k -1)

1 amp)+2ts'—
z auatr

1 a'm|)
2tu' — !+4su —{Z}+X—Im, }z auatr

1 Bml+- m2 + Xmi
Z 8$

(j-1;Ib) (-j—1) ( —j;A, Ia) (-j-1) (-j-1) (-j-1)
1 amp ( my ) ( mg ml 1 Bm].

+ 2(s' — t') — +4Zsu! {1}+—!
— s'! 1 + —+ t' 1 + ——4ut-

(j—1; Ib) (j—2k —1) Z zr i z Z Z t9$
(0; A, Ia, Ib) ( —1) ( —2k;A) ( —2k -1) ( —j-1)

+us'L —{Z'}+Z(—fm|}+(CP})+fCPmy} —{my}— Cg'j
(—j;A, Ia)

—ut2( —{Z'}+Z(—{mg}+{CP})+{Cg'mg}—fm2} — C2'1 =0. (A1)
( —j—2k)


