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A new technique for calculating wave functions for atoms and ions is developed. Formal asymptotic ex-
pansions with largeness parameter Z (nuclear charge) of the form y=¢"%2q,Z~™", where % and the set of
a,’s are functions of the electron coordinates, are determined through first order in 1/Z. In so doing, the
Schrodinger equation for a general atomic system with &V electrons is reduced to a set of first-order partial
differential equations for successive a.. These equations are then solved recursively. Screening and cor-
relation are exhibited explicitly in the resulting asymptotic atomic wave functions. Applications made to the
ground state of 2-electron systems show that the asymptotic wave function obeys the virial theorem through
first order. Magnetic susceptibilities within 5%, of the accepted values are obtained for helium and singly
ionized lithium. Other expectation values, % (s1+s2), 5122, and s12, are found to be in excellent agreement with
Pekeris’s variational calculations utilizing many parameters. In the neighborhood of certain singular points
the large-Z asymptotic solutions obtained by a “matching technique” are shown to satisfy the correct cusp
conditions. In certain of these regions, (InZ)/Z terms enter. The omission of such terms in ordinary varia-
tional-perturbation wave functions may result in a loss of accuracy when computing expectation values
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other than the energy.

ASYMPTOTIC WAVE FUNCTIONS FOR
ATOMIC SYSTEMS

1. INTRODUCTION

ECENTLY, approximate ground-state solutions to

the nonrelativistic Schrodinger equation for many-
electron atoms have received considerable attention.
Electron wave functions giving a reasonably correct
description of the electron density throughout configura-
tion space would facilitate calculation of weak-inter-
action effects. Of late, there have been refinements in
the experimental measurements of magnetic suscepti-
bility, electric polarizability, and quadrupole coupling
of atoms. The utilization of more accurate wave func-
tions would allow calculation of these effects to keep
pace with experiment. More accurate atomic-scattering
factors could also be obtained. In addition, if accurate
excited-state wave functions were known, transition
probabilities and optical-absorption and inelastic-scat-
tering cross sections could be calculated with much
greater precision.

The calculation of ground-state atomic wave func-
tions is usually performed by either a Hartree (Hartree-
Fock) calculation or by some other variational tech-
nique. It is well known that Hartree calculations usually
give the energy of the ground state to within 1 percent.!
However, these solutions do not incorporate interelec-
tronic repulsion correctly since they describe each
electron as moving in the average central field due to
all the others, and these are distributed throughout
their wave functions according to the statistical prob-
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ability that they will be found at any one coordinate.
Hence the electrons do not avoid one another because
of their mutual Coulomb repulsion but tend to avoid
regions of large average potential energy. Also such
techniques are derived from a variational principle, and
their application to excited states leads to problems of
orthogonality.?

Generalized variational techniques such as Hylleraas
or configuration-interaction expansions using a suffi-
ciently large number of undetermined parameters give
results for the upper bound to the energy to almost any
desired accuracy for small atomic systems. For example,
the ground state of helium has been computed to eight
figures using a 39-parameter wave function® and to ten
figures using a 1078-term wave function.* However, the
wave functions so obtained are not uniformly con-
vergent. This is further brought to light in the fact that
the rigorous lower bound calculated with these wave
functions does not usually agree with the upper bound
in the last few figures. If the variational wave functions
were a close approximation to the exact solution over
most of the atomic configuration space, one might
expect better agreement between the two limits. Further-
more, the number and type of correlation terms which
may be included in the trial wave function are usually
chosen ad hoc. Therefore the interpretation of the re-
sulting variational wave function for a two- or three-
electron system does not usually lead to any real insight
into general electron-electron correlation effects. Since
extensions of such expansions to atoms with many elec-
trons must become hopelessly complex, some other
techniques must be utilized to exhibit general correla-
tion effects and give wave functions of some reliability
for larger atomic systems.

2 M. Cohen and A. Dalgarno, Rev. Mod. Phys. 35, 506 (1963).

3 T, Kinoshita, Phys. Rev. 105, 1490 (1957).

4 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959);
126, 143 (1962).
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In this paper, we develop the method of asymptotic
expansions for obtaining atomic wave functions. We
look for asymptotic large-Z (atomic number) wave
functions of the form

v=e¢""aytarZ a2+ - +). (A)

The energy is also expanded as a power series in Z of
the form

E=—Z7YCo—Z-1C+2-%C?+-+++).  (B)

Insertion of (A) and (B) into the Schrédinger equation
for any atom leads to a set of lower order partial differ-
ential equations for %, @, and @;. Although the energy
parameters may be determinable in a self-consistent
manner, we make use of the fact that C% and C;? are
known exactly for atomic systems.® Ce? may be deter-
mined from an experimental analysis of the binding
energies of the isoelectronic series of interest.

In Sec. 2 of this paper, we apply our formalism to
separable atomic systems and show that truncated
asymptotic expansions are exact solutions to the sepa-
rable problem. In Sec. 3, the partial differential equa-
tions for a general atomic system are solved recursively
through the lowest orders. Screening and correlation are
exhibited explicitly in the resulting atomic wave func-
tions. The correlation effects are exhibited as a sum of
2-electron correlation functions which depend on the
principal quantum numbers of the electrons involved.

Asymptotic solutions of form (A) (naturally with
different largeness parameters) have been obtained pre-
viously for a wide class of electromagnetic-scattering
problems® and fluid-dynamics problems. In those rare
cases where an exact solution could be obtained by the
method of separation of variables, a comparison be-
tween the asymptotic solution and the exact one has
shown: (1) The leading term or terms of the asymptotic
series represents the leading term or terms in the
asymptotic expansion of the exact solution. (2) The
asymptotic expansion including only a few terms is a
very good approximation to the exact solution over most
of the domain when the expansion parameter is of the
order of 2 or greater. From (2) we expect our asymptotic
expansion to be a good approximation to the exact
solution even for atoms or ions of low atomic number.
That this is the case is shown by the close agreement of
our results of Sec. 4 for the angular correlation in the
helium (Z=2) wave function away from isolated singu-
larity points, with those obtained from a many-param-
eter variationally calculated wave function. From (1)
we expect our asymptotic series to represent the leading
terms in the asymptotic expansion in large Z of the
exact solution. This is shown in part at the end of Sec. 4.

In Sec. 5, we calculate some first-order expectation
values for the helium ground state utilizing our asymp-

5 C. W. Scherr, J. M. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962).

6 R. M. Lewis and J. B. Keller, New York University, EM
Division, Research Report EM-194, 1964 (unpublished).
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totic expansions. Our helium wave function is shown to
obey the virial theorem to first order. Magnetic suscepti-
bilities within 5%, of the accepted values are obtained
for helium and singly ionized lithium.

In Sec. 7, we determine by a “matching technique”
the asymptotic expansions for helium which are correct,
within a small neighborhood of the singular points. The
expansions are shown to satisfy the “cusp condition” at
the origin exactly and the one at si5 (interelectron dis-
tance)=0 to leading order. Since the wave-function
expansions in these regions have (InZ)/Z terms, expec-
tation values for operators other than the energy will
include such terms in their high-Z expansions. Ordinary
perturbation theory expansions’ do not include such
log terms.

2. ASYMPTOTIC SOLUTIONS FOR SEPARABLE
ATOMIC SYSTEMS

The general Schrodinger equation for a system of a
nucleus with charge Z surrounded by N electrons can
be written in dimensionless form,

N N 7 N 1
—3 § V=3 —+0 X > —y=FEy, (1)

=1 §; =1 j>i SC-J'

where s; is the distance in Bohr radii of the 7th electron
from the nucleus, £ is the energy of the system in large
rydbergs (approximately 27.2 eV), and O is set equal to
zero when the electron-electron interaction is considered
to be turned off and taken as one for the actual atomic
problem. Let us consider the case when ®=0. The equa-
tion is then separable. That is, ¢~ ¢(s1)¢(s2)" - - p(sw),
where ¢(s) satisfies

— 1V~ (Z/5)p—Ep=0. @

The exact solution can then be represented by product
wave functions of hydrogenic character. If the Pauli
principle is invoked and the hydrogenic states are filled
two at a time in the order of increasing energy, one
builds up the periodic table with each element having
its proper valence and the correct ground-state sym-
metry properties (assuming L-S coupling to be negli-
gible). Thus the independent electron model certainly
predicts some of the more important atomic properties
correctly and must in some sense represent a first
approximation to the true solution. The energies of such
separable systems only include the Z? term and can
therefore be written

3)

Each electron with a principal quantum number #
contributes an amount 1/2#%2 to E,. The exponential
behavior of the wave function for an independent elec-

E=—Z%E, large rydbergs.

7 A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London) 247,
245 (1958); A. L. Stewart, Advan. Phys. 47, 299 (1963); R. E.
Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).
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tron in orbital # is given by

~egZsin (4)
In the next section when the general problem is solved
we will demand for @=0, C12=0, Cy?=0, ---, C2=0
that ¢ go over to a product of separable wave functions
each of which has an exponential behavior expressed by
(4). In order to make complete contact with the known
solution with the interaction turned off, we ask that each
electron for the given state of the atom or ion has the
same value of # with the interaction on or off.

In the remainder of this section as a simple illustration
of the asymptotic expansion technique we apply it to
the separable problem (2). Substituting the formal
expansion

$=eTD 3 4(8)2 )

=0
and (3) into (2), and taking the gradient

Vo= —Z6Vite? Y Z-i(Va,)

7=0
and Laplacian

Vip=(Vh)? X a;Z~#2—2 3 (Vh- Va;)Z~1

7=0 =0

-V Z a,-Z‘f*'l—}- Z Z‘fV%,-,

=0 =0

we obtain, setting the coefficient of the Z2 term equal
to zero,
—%(Vh)2a0= —Eo(lo. (6)

Since %= h(s), the equation can be written
(91 35)2=2E,,
which admits the solution
h=(2E)%s=qys.
Setting the coefficient of the Z! terms equal to zero gives
—3(VE)%a1+ao(dao/ 3s)+ (ao/s)as— (ao/s) = — Eoas. (7)

The (V£)? term cancels the E, term, and we are left
with a homogeneous equation for a, of the form

ado 1 (/2]

——[—— 1]——=0. (8)

as Q) )

Defining 8= (1/a) —1, our result for @y can be written
Q= F(B,q&)sf’ .

Setting the coefficient of the zeroth power of Z equal to
zero, an inhomogeneous equation for a; of the form

da1/ds—B(a1/s)= (1/2a0)Viaqy 9

ASYMPTOTIC LARGE-Z ATOMIC WAVE FUNCTIONS

115

results. In terms of the variable 7, defined as »;=a1/ay,
Eq. (9) becomes

dr1/ds= (1/2aa0) Vays, 9.1)
which, for an S state [F(6,¢)=const], takes the form
dr1/ds=B(B+1)/2aes. (9.2)

Equation (9.2) is immediately integrated and gives
r1=—PB(+1)/2a0s, (10)

where we have chosen the constant of integration equal
to zero. Defining re=as/ay, the equation for 7, for an
S state is

dry/ds=(1/2aa0)V3as. (11)
Integrating, we finally obtain
re=(B+1)B%(B—1)/8as’s?. (12)

Thus to second order in the expansion in inverse powers
of Z, ¢ is of the form

B(B+1)
2048

o= e*z""”’s'f’l:l—Z‘1

(B+1)8*6—1)
Az

+-- -+] . (13)
8ay?s?
For the 1S orbital, ap=1, (3=0), and the series trun-
cates after the first term. For the 25 orbital, ¢g=3%, and

we obtain
p=e2eI%[1—2(Zs)™ ], (14)

which is the exact 25 wave function. In the above
manner, we can generate all the S states for one-electron
systems. Choosing F(6,¢) in a, as one of the appropriate
spherical harmonics and demanding truncation, we can
generate the exact wave functions for the case when the
angular momentum of the system is not equal to zero.
Thus we observe the well-known fact that the exact
solutions for the separable problem can be written as
truncated asymptotic series of form (2). This simplicity
arises because no interaction terms occur, and the energy
in the separable case can be written —Z2E,. With inter-
action terms present, the energy is represented as an
infinite expansion in decreasing powers of Z. This is one
of the reasons no such truncation is possible in the
general case.

3. ASYMPTOTIC SOLUTIONS FOR GENERAL
ATOMIC SYSTEMS

We assume an asymptotic solution of Eq. (1) exists
and is of the form

Y=exp[—Zh(sy,52," * *,Sx)] 2 an(81,82, - *,s5)Z 7. (15)
n=0

The condition that our solution go over to the correct
separable form with no interaction present indicates
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that there is no dependence of the function /4 on angular coordinates. Substituting Eq. (15) and the energy expansion®

0

E=—22Y (—1)*Z~%C,?

w=0

(16)

into Eq. (1), we have, after cancelling out the exponential ¢e~2* from both sides,

w N

—3 3 3 (Vi) 2an 272 —[2V ik Vian+ (Vi) an 12714 (Viia,) Z77]

n=0 =1

ooNl ©

N 1

— 2 = 2 Y —a =2 f: (—1)»Z—C,2 i aZ™. (17)

n=1 i=1 Si

Setting the coefficient of all Z? terms equal on both
sides of the equation, we obtain an eikonal equation
for # of the form

N
2 (Vih)2=2C¢2.

=1

(18)

Since % is not a function of angles, Eq. (18) can be

written
N /0h\?
£ cacw

i=1\ 9s;

(18a)

In order that our solution go over properly for the case
of no electron-electron interaction, # must be of the form

N i
h=z~’

i=1

(19)

where the ith electron is taken to be in a state with
principal quantum number 7. It then follows that each
electron will contribute an amount 1/2%2 to C¢2 Thus
Co?=E, and is therefore determined since E, is known.
For example, in the case of a filled shell atom whose
outer shell has a principal quantum number N,

Fo=2 3 (1/209) S (21+1).
n=1 =0

In more conventional perturbation theory techniques,
the electron position coordinates in Eq. (1) are all
multiplied by Z, and this results in a 1/Z appearing as
the perturbation parameter multiplying the 1/s;; term.
It then follows immediately that the leading term of the
energy expansion is the unperturbed energy obtained
with 1/Z equal to zero, which is just the separable
energy —Z%E,.

Equating coefficients of Z! terms on both sides of
Eq. (17), we obtain

N 1
2 I:“ 3(Vih)?ar+ Vih- Viaot+3(Vih)ao——ao :I
=1 Si

= C02(11+C12(lo . (20)

8In the energy expansion (16) C,? is taken as necessarily
positive for w=0, 1, and 2.

n=0 i=1 j>i Sij

w=0 n=0

From Eq. (18), it follows that the coefficients of the a:
terms on both sides of Eq. (20) are equal. The resulting
equation for a, is therefore

1

At day
2 [:———~—I—(1/ni—1) do]=C12(lo. (21)

i=1 Ly 9s; Si

Equation (21) admits the general solutions

N
ag=Jo [T siwiehs=,
=1

(22)

where
W= 1—%,', )\i=1’liC12/N,

and J, is an arbitrary function of angles and of the
differences formed by taking the radial coordinates of
any two electrons, multiplying each by its principal
quantum number and then subtracting one from the
other. Choosing J, as a product of the appropriate
spherical harmonic functions of the angular coordinates
of those electrons not in .S states, our solution goes over
correctly for the separable case. From the above form
of the A\/’s, it follows that in any given ion or atom the
shielding factor for any electron is approximately pro-
portional to its average distance from the nucleus with
the interaction turned off.

Equating coefficients of the zeroth power terms, we
obtain an inhomogeneous equation for @: of the form

N 1 day 1 1
EEIEE
i=1 Lau; 9s;  \n; i

N 1 N
= —@ao Z Z —+% Z Vizao—C22ao. (23)

i=17>i §;5 =1

Making the substitution ¢1=71a0 and noting that both
functions @, and @, satisfy the same homogeneous equa-
tion, we find Eq. (23) reduces to

N 1 (971 N 1 1 N
2 ——=—03 2 —+— 2 Via—C. (24)
i=ly. Js; i=li>ig. 2gyi=t
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The solution to Eq. (24) can be written It should be noted that in the analysis of this section
\ . we have tacitly assumed that no nonuniformities occur
=0 % T Cytd i": " f Vi*ag dse é": (;\2, s, (25) in performing the two limiting procedures ® — 0, Z— o,
i=17>% i=1 a, i=1
- ) o 4, ASYMPTOTIC GROUND-STATE SOLUTIONS
where C;, is the solution of FOR 2-ELECTRON ATOMS
19C 1 4C 1 The ground state of a two-electron atomic system
_—t (26) consists of a 1s? configuration. Since both electrons are

n; 08,' n; 6Sj Sij

subject to the boundary condition that as either s; or s;
goes to infinity or zero with the other held fixed, C;; goes
to zero. This condition follows, since C;; represents the
direct correlation term in our first-order solution. As the
electrons go infinitely far apart from one another, the
electron-electron interaction contribution to the wave
function goes to zero. The solution of Eq. (26) is shown
by standard techniques® to be of the form

b

(27)

—ngn;  (8iQii+ (ni— Ding)si+(ni— Dyjng)s;

C¢j= In
Qs A

where

0;; is the angle subtended at the nucleus between
electrons 7 and 7, D;;=cosb;;,

Qsj= (n*+n;?—2Dsmm;) 12,
and
Aii=[Qsj+ni— D |[si— (ni/ns)s;], for mnisi<ns;.

It is obvious from (27) that C;; depends only on the
ratio s;/s; and the angle between the electrons.

9 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1962), Vol. 2.

in orbitals with a principal quantum number of 1, we
obtain =0, M=he=A=Ci/2,
and Eq. (22) for a, gives
Qo= eMarten) (28)
Operating on a, with the Laplacian, we obtain
Vi2ao/ao=2N\/s;+\2.

Performing the integration in Eq. (25), we are led to
the result

r1= C12(1,1)+}\ 1ns132+%()‘2'—c22)(sl+s2) ) (29)

where C;;(nin;) refers to the correlation function when
electron 1 is in an orbital with principal quantum num-
ber #; and electron j is in an orbital with principal
quantum number #;. Equation (27) for n;=n;=1 gives

1 S12+d(31+52)

Cp(l,1)=——1In ———————~—),
24 \(1+d)|s1—s2|

d=(1—D13)/2 and Djy=-cosby,.

The isoelectronic energy expansion is well known for the
case of 2-electron atomic systems.!® In terms of large

(30)
with

0 H, A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and Two Electron Atoms (Springer-Verlag, Berlin, 1957), p. 153.
Also see Ref. 5.
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F1c. 2. The 15? correlation
function Ci2(1,1) as a function
of x for several values of 62
(the angle subtended between
the two electrons at the nu-
cleus). D=cosbis.

10 Lt 1.25 L5

—

rydbergs, we observe that C12=0.625 and C5?=0.15765.
Using these values, we obtain A=0.3125, and the co-
efficient 8 of the s;+s; term is —0.03. The first-order
asymptotic wave function for a 2-electron atomic
system is then

Yr=e~E N et (14 7-1Cpy(1,1)
+X In(s159)+B(s1+s52) ]} .

O a4 2.3 4 5 6 .7 .8 .9

31

I
I
l
A |
0 \\ |
Y
¥, |
\
by
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F16. 3. The asymptotic solution y; [Eq. (31)] as a function of
sz (Bohr radii) for the case of #;2=0° and s;=0.5 Bohr radii.
Curves are drawn for helium and doubly ionized beryllium.

175 2. 25

Since the value 0.3125 for our shielding parameter X is
exactly the value found by performing a variational
calculation on a simple exponential product wave func-
tion, the leading term of ¥, is already well known. In
Fig. 1, C12(1,1) is plotted as a function of & (x=s5/51)
for 61,=0°. This is the case when the two electrons are
both on the same side of the nucleus and lie on a straight
line which passes through it. We observe that Ci, goes
to zero as the electrons go infinitely far apart. As the
electrons come near one another, Cy, becomes more and
more negative leading to a smaller value for ¥; and
therefore to a decreased probability of finding the elec-
trons close together. These are the correlation effects
one expects physically.

In point of fact, C1» diverges logarithmically at s;=s,.
For the case of 613=0° the divergence is stronger and
a first-order pole occurs. This type of singularity at a
point about which the asymptotic expansion changes
character is common to many asymptotic solutions. For
example, the WKB asymptotic solution of the simple
harmonic oscillator diverges in the neighborhood of the
classical turning point. The asymptotic solution also
changes character about this point. Often one can obtain
by a stretching technique an accurate nondivergent
asymptotic solution in the transition region where the
original asymptotic solutions diverged. For the harmonic
oscillator, such a stretched solution is the Airy function.
Simply stated, such singularity phenomena occur be-
cause the postulated form of the asymptotic expansion
is not adequate to represent the asymptotic expansion
of the true solution in this region due to problems of
nonuniform convergence. This will be discussed further
in Secs. 6 and 7 when we obtain the asymptotic expan-
sion in the neighborhood of singular points. In another
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sense, one may sometimes think of the occurrence of
such singularities as due to our conversion of a problem
involving a second-order partial differential equation to
one where a set of first-order equations are solved re-
cursively. Somewhere in the process a boundary con-
dition may be lost. In trying to recover the correct
boundary value, the asymptotic solution overshoots the
mark. Thus we do not expect our asymptotic expansion
to be valid in some neighborhood of the points s1=-ss.
However, from the plots of our correlation function as a
function of #, as shown in Fig, 2 for various angles, we
expect radial correlation to be a general property of the
helium ground-state system. That is, one should observe
a reduced probability of finding two electrons having the
same value of the radial coordinate. Strong radial
correlation effects in the helium wave function have
been discussed elsewhere.!! We also observe from Fig. 2
that the correlation effect for any value of x decreases
with decreasing Dj, and therefore with increasing sig
as expected.

In Fig. 3, we compare ¢ for helium and doubly
ionized beryllium for the case s;=0.5, 61,=0° It is
physically unreasonable that the true helium wave
function becomes negative in the neighborhood of s15=0.
We note from the figure that this phenomenon will
occur much farther from the point s;=s, in the case of
helium than for doubly ionized beryllium. Therefore it
is immediately obvious that our solutions become applic-
able closer to si=s, as Z becomes larger. As Z goes
toward infinity, our solution y; will become applicable
over almost all configuration space.

It should also be pointed out that 1S orbitals give
rise to a logarithmic singularity when either electron
goes into the nucleus. The region in the neighborhood of
the nucleus in which this effect is large is small, even for
Z=2. It is of the order of 0.3 Bohr radii for this case.
A nondivergent asymptotic solution which is correct in
the neighborhood of the origin can be found by a
stretching technique. As our electrons go an infinite
distance away from the nucleus, the usual noncon-
vergence problems arise in the wave function. Since this
domain will not be of interest in computing expectation
values, we do not trouble ourselves about it here. To
avoid this problem, one has to use a density matrix
formulation of the problem.

In Fig. 4, we plot 1 as a function of s, for the case
s1=2, 01=0° In the same figure, we plot the leading
term of ¥y, which is just a product of screened expo-
nentials. We refer to this term as ¢, Note thaty:
becomes less than ¢, in the neighborhood of s12=0 and
larger than ¢, as the distance between electrons in-
creases. Because of the compensating effects in the
different regions, when a correct asymptotic description
of the wave function in the immediate neighborhood of
s12=0 and the origin is used in conjunction with our
asymptotic solution which is valid everywhere else, we

1 C, Schwartz, Phys. Rev. 126, 1015 (1962).
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F16. 4. Spatial correlation in helium. ¢, and o (the leading
term of ;) as a function of s, for the case of 6;:=0° and s;=2.0.
Note the decrease in the wave function y; as electron 2 approaches
electron 1.

expect the correct normalization constant multiplying
Y1 will be only slightly changed from the normalization
constant for ¥o. Assuming ¢ to have the same normali-
zation factor as v, we have calculated a correlation

——— \\‘yi vs B

(]
——— Gilbert" lation F
Case of §,:10, 5,230 Glibert s Qorrelation Fa

ANGULAR CORR. FACTOR —

/In nbh of isolated singularity
v

o° 3 eo° 90 20° 150° 180°
64 2

Fi1c. 5. Angular correlation effects in helium.
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TasBLE I. Helium expectation values.

Expectation values

Operator Pekeris® Asymptotic Hylleraas
$(s2+sd) 1.193 1.186 1.077
3 (s1+s2) 0.9295 0.9453 0.8969
$(1/s14-1/s2) 1.68832 1.68750 1.689
s12 2.516 2.600 2.327
S12 1.422 1.547 1.372

& Pekeris’ data is originally given to 10 figures. All values given in
atomic units.

bL. Pauling and E. B. Wilson, Introduction to Quantum Mechanics
(McGraw-Hill Book Company, Inc.,, New York, 1935), p. 224.

correction factor which is just the ratio of the two wave
functions. In Fig. 5, we compare our results with those
of Gilbert!? who obtained this correction factor utilizing
a many-parameter variationally determined Hylleraas-
type wave function. In these plots, we are holding the
radial coordinates s; and s, fixed while changing the
distance between the electrons by varying the angle
subtended at the nucleus by the two electrons (for
012=0° s12=s51—>53; for O12=180° s13=s1+512). We ex-
pect physically the greatest correlation to occur for 62
smallest. This is borne out by the curves. In the case of
the s1=2, sy=3 example, we run into the s; approxi-
mately equal to s» distortion phenomena. Our correla-
tion factor is too low for small angles as expected. How-
ever, outside of this region our results agree quite well
with Gilbert’s, and if we used the correct normalization
constant for y¥1, we expect that the agreement would
be improved.

For large s1 and sy, it is known that the exact solution
for helium has an exponential behavior given by

Y~ g B2 (srtan) (32)
where E is the energy eigenvalue. Putting in the energy
expansion for E in terms of the C’s and expanding the
exponential to first order in powers of 1/Z, we obtain
for Z large:

Yo @D Grren[ 14 17-1(N2— Cy?) (s1F53) ]

Comparing our asymptotic expansion, Eq. (29), with
this, we observe that it gives the correct high-Z asymp-
totic expansion of the exponential part of the exact
wave function for the above case.

5. EXPECTATION VALUES FOR 2-ELECTRON
ATOMIC SYSTEMS

In the previous section, we investigated the properties
of the asymptotic helium wave function and found
certain unphysical logarithmic divergences which occur
at 5;=0, and s;=s;. However, these inaccuracies in our
wave function have little effect on the expectation values
of those operators which are relatively insensitive to the

2T, L. Gilbert, Rev. Mod. Phys. 35, 431 (1963).
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values of the wave function in the neighborhood of these
points. Such operators as s12?, s12, 5 (5124522, 2(s1F52),
and %(1/s1+1/s0) fall into the above class. Expectation
value computations to first order in 1/Z were performed
for these operators and our results, and a comparison
with the “exact” results of Pekeris* for helium and
singly ionized lithium are given in the Tables I and II.
For helium we have also included calculations based on
the two-parameter Hylleraas variational wave function
containing a correlation term linear in sy,.

Our asymptotic calculations necessitated one numeri-
cal double integration over a finite domain for each
expectation value. These integrations were performed
on the 7094 computer using a trapezoidal-rule numerical
integration scheme. Our numerical integration results
are generally good to four figures. For the calculation of
the nuclear magnetic shielding constant, 2(1/s1+1/s3),
the results were extrapolated to six significant figures.
The value of 1.68750 for this expectation value shows
that ¢4 satisfies the virial theorem to first order in 1/2.13
Our result for the diamagnetic susceptibility, % (si?+s2?),
of helium is within 4 percent of the exact one.

In performing our computations, we form the product
¥1*Oy1, where O is the operator under consideration and

calculate
(O)av= / aVy1*OyYr / / avin*a

to first order in 1/Z. When performing integrations not
involving terms dependent on sz or Dy, it is convenient

to choose
/dV=(41r)2/ / d81d52 812822.
0 0

For integrations involving correlation terms, we take!*

de: 21,-2/ ds/ du u/ di(s*—1?), (34)
0 0 0

where s=s17452, i=s1—52, and #=s1s For operators of
the form O;=1(s17+s27), the A(Ins;+Ins,) term is evalu-

(33)

Tasie II. Lithium™* expectation values.

Expectation values

Operator Pekeris? Asymptotic
F(s2+sh) 0.4463 0.4624
3(s1+s2) 0.5728 0.5868
$(1/s1+1/s2) 2.6879 2.6875

s19% 0.9271 0.9925
S12 0.8623 0.9307

s Pekiris' data is originally given to ten figures.

All values given in
atomic units.

(1136R). E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 431
963).
14 Reference 10, p. 147.
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ated utilizing

® ) J[¥(+1)—Ink]
/ dx e *ox? Inx=
0 Bt

»  (35)
where

® d
w(j+1)= / dy 2yl lny=—Inl'(g)
0 q

)
J+1

and has been evaluated elsewhere.!® Making a change of
variables in the integral containing the Cy, term,

u— a=u/s,
1= y= (1= =)/ (=226}, (36)

the s integration can be performed separately, and what
remains is a double integration over a finite domain of
the form

Cy=2 f daa(l—a?) f 8y f3(3,a) [l (3,0)—Iny], (37)

with
W=((1-1—y)al2—y*/[1+(1—y*)a]*/

Gt 1 >[
(22)iX2\j+3 3(j+5) z

<S 12j>av =
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and
fi3,0)=(0i/s)/{[1— (1—y*)a* ][ 2—y* ]/} .

The Iny term in Eq. (37) can be evaluated numerically
by rewriting it

/O 1 dy fi(y,a) Iny
——f00+ [ B0 500 Iy, (59)
We obtain finally
(0= (22;;] ))j!(1+iz[x{j+z[w<3+j)—\r(sn}
%;-L ——————C(f:j;); ,-]+0(1/z2)>. (39)

Similarly, expectation values of operators sio’ are
found to be of the form

1
1+—(x{j+4[\r<6+j)—\r<s>1—z1n4

Coygf

" 1/(3+5)—

where C,,,7 has the same form as C; except that 0;/s7 is
replaced by @’ in the integrand and we have taken

1 1
Ij=/ dB 52+f/ do(1—a?6?) In(1—a28?),
0 0

which can be evaluated analytically in terms of standard
quadratures.

6. TECHNIQUE OF “MATCHED ASYMPTOTIC
EXPANSIONS”

The asymptotic expansion for the ground state of
helium has been found to diverge at certain singular
points. We shall now discuss the technique of “matched
asymptotic expansions” (stretching)!6:17 for obtaining
an accurate nondivergent asymptotic solution in the
neighborhood of any one of the singular points.

Let us consider the exact solution ¥/(Z; %1,22,%3) of our
many-body problem with Hamiltonian H and a two-
term formal asymptotic expansion y; obtained by the
methods of Sec. 3. Suppose we want to determine the

B H. T. Davis, Tables of Higher Mathematical Functions
(Principia Press, Bloomington, Indiana, 1933).

16 K. O. Friedrichs, Bull. Am. Math. Soc. 61, 485 (1955).

17 R. N. Buchal and J. B. Keller, Comm. Pure Appl. Math. 13,
85 (1960).

51 )
F——Co— , (40
1/3(5+j)} 2X25 1/(3+j)—1/3(5+j))] (

asymptotic expansion of ¢ in the neighborhood of the
point x;=0 where ¢; blows up unphysically. Now
although it has not been generally proven, we take

Vo(Z large) — 1,

where the subscript e indicates “the expansion of”’ and
the arguments inside the parenthesis indicate the limit-
ing procedures for obtaining the expansion. If more than
one limiting process is involved, the limiting process
farthest to the right is the first to be performed. Now
when we evaluate ¢ as x1— 0, we are performing the
limit process

Yo(x1— 0, Z large) — Y1(x1 — 0) — divergence.

However, near the point x;=0 for Z large but finite, we
really want to evaluate

Vo(Z large, x1— 0),
where

Y(Z large, x1 — 0)7=y,(x1 — 0), Z large) =¢1(x1 — 0).

Let us consider a transformation of variables where
we rewrite our operator H in terms of a new stretched
variable &. That is,

x1— E1=2%,
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where >0 (7 as yet otherwise unspecified),
H(Z; x11x2yx3) - E(Z; El)x%xiﬁ)'

Such a change of variables guarantees that when con-
sidering the Z dependence of terms in H:

(A) Terms in H which go as x:*(k>0) will be small
when expressed in H. On the other hand % <0 terms will
be large. [Note that for x; small we expect terms
~x1%(k>0) in H to be small.] (B) Terms dy/dx; in H
will be of magnitude Z7(dy,/d&1) in H. This implies that
if we look for a solution of the form ¢~ ¢ exp f(Z, £1,20,%3),
the leading term of d¢/dx1 in the neighborhood of x1~0
will be of magnitude Z7 greater than the leading terms
of d¢/dxs or d¢/dx; in this region when each is re-
expressed as a function of &1, xs, and wx3. [Note again
that for x; small we expect our boundary-layer solution
to vary more rapidly with x; (have a larger partial
derivative) than in the case of the asymptotic solution
away from the singular point. The proper stretching
accomplishes this.]

Thus we see that stretching is a way of ordering the
terms in H in the neighborhood of x;~0. When con-
sidering H, this ordering is expressed simply by the
dependence of the various terms on a single parameter
Z. We can again look for solutions of the standard
asymptotic form (15). The resulting system of partial
differential equations (P.D.E.) to be solved is naturally
simpler than the original problem. However, because of
our ordering the equations are only applicable near
x1=0. Let us call the formal two-term asymptotic solu-
tion to the stretched problem —W(Z; £1,%9,%35). We
expect that if 7 has been chosen correctly that ¥ is an
asymptotic expansion of ¥ which is valid for Z large,
s1 small. Since &= Z%; the solution

W(£, large)

corresponds to ¥ (x1 small, Z large), and therefore we
expect
V(£ large) — ¢a(wy small).

This s called the “matching condition.”” Only the correct
value of j will allow this condition to be satisfied even
though certain constants and/or functions in ¥ are
determined from it. Once it is satisfied, the solution ¥ for
£1 small obviously corresponds to ¢, (Z large, x1 small)
and is therefore the desired asymptotic expansion in the
neighborhood of x;~0. Another important consideration
in determining the requisite value of 7 is that we expect
at least some of the operators present in the P.D.E. for
r1 of the original asymptotic expansion will also be
present in the P.D.E. for ms, the coefficient of the
first-order term in ¥. In addition, we also expect some
second-order partial derivative terms to appear in the
equation for m;. For the case of ¥1 becoming divergent
at 1=0, x,=0, it may be necessary to perform different
stretchings on variables x; and x,, but essentially the
same considerations go through for understanding the
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“matching principle.” From physical considerations,
one can usually ascertain whether ¢ varies more rapidly
(its partial derivative is greater) with respect to one
variable than the other in the neighborhood of the
singular point. It is then the former variable which
receives the greater stretching.

In the foregoing we have introduced the idea of
stretching and have indicated how the matching principle
is fulfilled. We now state more explicitly the form of the
matching principle!® utilized in this paper:

“The two-term expansion of ¥; (when it is expressed
in terms of stretched variables) in powers of 1/Z is equal
to the two-term expansion of ¥ (when it is expressed
in terms of ordinary variables) in powers of 1/Z.”

For the case that ¢ is singular at x;=0, defining

Vi(Z; E1,00,08) =Y1(Z; §1/Z7,200,%5)

Y1s=y1 (expanded for Z large, keeping 2 largest
orders),

\i,(Z; x11x27x3) = \I,(Z; ij17x2)x3) )
and

Vy=U(expanded for Z large, keeping 2 highest
orders),

where a tilde over a symbol indicates it has been re-
expressed in terms of unnatural variables, the “match-
ing principle” asserts

‘iE’=¢1E .

7. SOLUTIONS IN THE NEIGHBORHOOD
OF SINGULAR POINTS

Before we begin our investigation, we would like to
summarize the notation used in this section.?
¢1: The helium ground-state asymptotic wave function
obtained in Sec. 4 is written in terms of ordinary
variables as

Yi=e 2 1+(1/2)r].

¥1: When ¢; above is rewritten in terms of the stretched
variables associated with the singular point under
investigation, it is denoted by

d1=[14(1/2)7] exp(—2F),

where 7 is written in terms of ds.

Y15t Y1z is the expansion of {1 in powers of 1/Z, keeping
only the two leading terms.

71g: 71z is the expansion of 7; in powers of 1/Z, keeping
only the leading term.

18 Van Dyke, Perturbation Methods in Fluid Mechanics (Aca-
demic Press Inc., New York, 1964), p. 90.

» Infregion Ib, these definitions are modified slightly by in-
cluding an m,/, term in .
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¥: The asymptotic solution of the stretched problem
in terms of stretched variables is denoted by

V=[14mi/Z] exp(—ZHK')
where %#'=1h for regions I and they are not equivalent
in regions IT.
¥: When ¥ is written in terms of unstretched variables,
we denote it by

V=[1411/2Z] exp(—ZH').
¥y ¥y is the expansion of ¥ in powers of 1/Z, keeping
only the two leading terms.

#ig: Wi 1s the expansion of #%; in powers of 1/Z,
keeping only the leading term.

Our helium ground-state asymptotic solution ¥y
diverges in the following regions:
Ia  (1=0, u0),
Ib  (u=0, s50),
ITa (51=0, 527#0),
IIb (51=0, 5,=0).
To find the correct asymptotic solutions for regions I we

rewrite the 2-electron Schrédinger equation in coordi-
nates s, ¢, # as

Y 9 I 92
%(52—t2)(———l———+——)+ZS(u2—t2)
ds? du® 9 dsdu
% ay Y oy
+2t(s2—u?) +4su—-+2(s2— 12)——4ui—
dudt ds ou at

+4Zsup— (s*— )Y+ Eu(s?—12)y=0, (41)
with E given as before by (16). Regions Ia and Ib are
considered removed from the origin. Thus we do not
have to consider any stretching in s and expect that the
exponential dependence on s (shielding effect) will be
the same for the Ia and Ib solutions as for the original
asymptotic solution. Therefore we look in regions Ia
and Ib for stretched solutions of the form?

V=¢GN A+my/Z+mo/ 224+ -+]. (42)
In the Appendix, we have substituted the above into
Eq. (41) and have kept terms through order 1/Z con-
sidering ¢ =y(s,t,%). Certain terms automatically cancel
one another in Eq. (Al). These terms are enclosed in
curly brackets and need not be considered further.
Now consider the general double stretching

£=7%, y=Zn.

20 ¥ here is taken as the general expansion, but only terms
through m; will be of importance in satisfying the ‘“matching
theorem.”
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Under each term of Eq. (A1), we express the order of
that term in Z when considered as a function of £, v,
and Z in terms of the j, &£ of the transformation. For
the case 7=0, k=0 (no stretching), the largest terms
are of order Z° and, equating them equal to zero, we
obtain

us?(N2—2(dmy/ ds |—ut?[(N2—2(dm1/ ds) ]
—2s[u?— 2 ]0my/ du~-Ahsu— s+
—Clus?—ut*]=0. (43)
It is a simple matter to show that this equation is satis-
fied by the 71 [Eq. (29)] of our original asymptotic ex-
pansion. We will indicate this as expansion A. The terms
in Eq. (A1) entering the leading equation for expansion A
[Eq. (43)] are indicated by writing an A under the term.
The A follows the 7, k order of the term and is set off
from it by a semicolon. Since there is one term, —s2in
(A1), which is independent of 7 and £, it is necessary
that other terms in (A1) which depend on 7 and % are
also of order Z°, if we are to be able to equate the
coefficient of this power of Z equal to 0. For the region
Ia, no stretching is required on the s1 variable and
j=0, k=% are the proper values of j and k. For the
case j=1, k=%, we obtain the expansion in region Ib.
For both cases, the P.D.E. to be satisfied by m; is
found by setting the coefficient of the Z° terms equal to
zero. The terms entering the equation for m; in region Ia
have a Ia written under them in Eq. (Al). Similarly,
those entering in region Ib have a Ib written under
them. When a term enters the equation for m, in a few
regions, these regions are written below the term and are
set off from one another by commas. Note that of the
four differential operator terms present in A, two are
present in Ia and one is present in Ib. If, for example,
we had chosen j=1, k=1 as the proper stretching in Ib,
none of the differential operator terms present in A
would have entered the equation for m;. Needless to
say, pursuance of the j=1, k=1 solution for 71 would
have indicated that no match with the asymptotic
expansion A was possible.
We now write down the P.D.E. for #; in region Ia as

3m1 u am1 1
— 22 —=————(\2—C3?),
aE? ds s0u u s

621%1

(44)

where £=Z1%, Now we have 7, of expansion A which
can be written

2 2

ri(s,tu) =\ ln< )-{—%D\?—— Co?s

1 : I: u+-ds 15)
Toad (1+d)|z]]’ (

where d=[(u2—2)/(s?—(?) ]/ This is immediately seen
by referring to Eq. (29) and rewriting it in terms of the
variables s, ¢, and #. Following our prescription at the




124

end of Sec. 6,

2

¢
Fi=\ lniﬁ(l ——-—)+%()\2-—C22)s
Zs?

1 ) l: siptdis :I
——In| ————|,
2d, L(1+dy)| &/ 712

£ ) u(l—"g’2/Zu2 12
—, 5 u)={—) .
AL s 1—52/232)

Expanding for large Z,
1 1y/s 1 1 1 1
Sl D)
2d; 2\u 27 \u* s? VA
£ 1 1
e S 2)
2Z\s? u? Z2

we obtain

with
Jl(Zr E,s,u) = d<Z;

s? | £]
Fig~A\ ln—+ A—C {ls—l——{ln—

7112

— [ln2u—1n(1+u/s)]} +0((n2)/Z). (46)

In order to satisfy the matching principle, 771z obtained
from m; of Eq. (44) must be equal to 71z given by Eq.
(46). Choosing

m1=)\ lnsH—%D@—sz]s
—(s/2u)[In2u—In(14u/s)+M], (47)

and substituting into Eq. (46), we find M satisfies the
heat-flow equation

02M+/082=2(3M1/ds). (48)
To complete the match we expect for large &
=—Iné+> ai(s)¢7 with a_;=0. (49)
Substituting (49) into (48) we obtain
1 ) , ) da;
—+2 (=2 (G—Dajt7 =3 2—¢7=0. (50)
£ A2 i ds

Thus ap= constant. Since ¥ must be even in ¢ and there-
fore in £ we next set the coefficients of £2 in (50) equal
to O obtaining

—2(8a2/9s)+1=0, (51)
which has the solution
as=3%s. (52)
For higher values of j, we find recursively
(G=20G-1
a,-z—z—— /ds @j—s. (53)

LAWRENCE B.
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Defining w=s/£?, we observe that for £ large, w small,
we can write

M= —Iné+actFwtdwi- - 4.

Therefore we look for a general solution of (48) of the
form

(54)

Mi=—Int+apto(w), (55)
with
$l) ~hwtJurt -+ (550)
for w large. Substituting, we obtain
d% 13 d¢ 1
5 CRRS L W
dw?* 2lw w?ldw 4w?
which has the general solution
¢=C1/dw w3/2¢71/2w
1 w el/2w’
J— /dw w—3/28—112'w/ dw/ .
4 0/ (57)
Substituting V'=1/2w, we obtain
V due®
Y O
V1/2 V1/2 PRI

Now the homogeneous term would admit odd powers of
¢ which is unphysical. Therefore we set C1=0. Now we
write our solution

av
=—= ?/1—12 V), (59a)
with
v du
(59b)

3/2

The lower limit on integral (59b) has been chosen so
that no contributions from partial integrations will
result from it. For V large, w small, we partially inte-
grate to higher negative powers of V, giving

” 1 |3 1 3X5 1
g(V)~e <Vm PrTrLssra——"_—— +) » (60)

which results in

IX3X5X - X(2n—1) 1
(211—1)” Vr

#(N~1 T

which gives as its leading terms

1t 3
o(V)~—+
4V 1612

w 3
+"'+=E‘+;w2+"'+7 (62)

which is the previously obtained expansion (55a). We
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can now write

mi=\ Ins24+1(\2—Cy2)s
—(s/2u)[In2u—In(1+u/s)—Ing+ao+¢(w)]. (63)

We rewrite w=s/£?=s/Zt Thus for Z large, w is small,
and ¢(w) is given by (62). Therefore

wir=\ Ins? 1 (A2—Cq?)s

—2i[ln2u— In(1+#/s)—In&+ao ]
%"

1 s 1
—————I—O(—). (64)
Z du? YA

Truncating (64) according to the prescription at the end

of Sec. 6 to obtain 77,5, we note that for #;r to match
71 we must choose

a=%1InZ. (65)

Now that we have determined M; completely, to

obtain the expansion near £=0 we partially integrate
(59Db) to increasing powers of ¥V, obtaining

22
——
3X5

2
g(V)=eV['—m+4V1/2(1—%V'—

(66)
which leads to
21y
o(V)=imV—-V+> . (67)
’ = [1X3X - - - X (2j—1)1())
In terms of our variables £ and s,
£ 18 g
o~1In——- ——I—O(——) )
2s 25 s?
(68)
1
¢=~Inf—% In2s———.
2s
Substituting into (55) for £2/s small, we obtain
Mi~—%In25s+1 InZ—1(8%/s), (69)

and our solution m; no longer shows the singularity for
¢t small which appeared in the original asymptotic ex-
pansion 7;. Thus the correct solution to be used in
region Ia is

S
mi=N\ In}s? 4+ (\2— ng)s-l-—z—[-—% InZ—1In2u
"

u 1282 Zi2\2
—Hn(l—l——) %anS—I—E ——+O(—) :I . (70)
s s

s
Now let us consider region Ib. We choose the
stretching

E=2V%, y=Zu.
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Therefore

1 52 £
@:wz—m[ 1+—(>\ 1n[—(1——>:|
VA 4 Zs?

+%w—c22>s+éu)} . (1)

with -
~ 1 T/Z+d1$
Cm:*‘..—lnli‘—;‘——“—]
2d, L(1+dy)| &/ 212
and 2/22 EQ/Z 1/2
- Y -
d1=[—————] . (71a)
s2—§2/7
For large Z,
. i 178 +°
i)
VALY 2Z\s? g
leading to
_ ZWx s 1/su
G »—+—(—+1) .
4 g 2\g

Truncating (keeping three terms this time), we find

1 7 s
Yre= e_(z‘“‘[ 11— —~—+Z‘1l:)\ Infs?3(AN2—Cy?)s
712 4 lgl

1/sy 1
N A
2\ g2 7312
Now from the Appendix we see that the equation for
my in region Ib takes the form

£ 9%my £ 1N\om 1
+2- +2(—+—>————=0.
v y 9yt \ys v/ Iy v

Using a power series construct as in case Ia, we are led
to an m; of the form

327111

(74)

m1=ao(s)+yx(w), (75)

where w= £2/s as before. Substituting (75) into (74), we
find that x(w) satisfies

4w (dx/dw)+2[w+1]x—1=0, (76)

which has the solution
1 1

x=C—evI+
wll? 4ot

v 1
e‘“’“/ —ev2dw. (77)
L wl2

In order that our solution be even in ¢, we choose C=0.
For w large, we integrate by parts to obtain

=g ro()]

For Z large, w large, comparison with (73) indicates

(78)
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that one should take

ao=\ In}s*+3(\2—Co?)s+3 (79)
in order to match everything except the 1/Z'/? term.

Now for ¢ small, w small, one can integrate (77) to
higher powers of w to obtain

x@)=3 2 (=1~

w*,  (80)
w0 3X5X -+ X (2n+1)

We now note that if we had included an my/5/Z'/? term
in expansion (42), my2 would have satisfied the homo-
geneous part of Eq. (74), and any function m1s(s,£) is
an acceptable solution. We shall now show that i/
cannot enter our asymptotic solution in the neighbor-
hood of £~0. Let us first write down our asymptotic
solution in region Ib as

1722 ZiN\ 2
o]
3\'s s

mllz(S,E)

Zl/Z

+Z71[A ln;}sH—%(V—sz)s—l—%]} . (81)

From Part B of Sec. 6, we expect that in region Ib

W oy
_(Ea')'ss) zO(lez)——(E)'Y’S) . (82)
du at
One observes that
61,0 1 1 a’l’ﬂ]_/g
%] Ly L
ot 12s VAL )
1 19
=e—(Z—)\)3|:__$1 _ m1/2:| (83a)
12s Z112 - Z1z ¢
and
W/ Ou=te % Ms, (83b)

Now assume m1,2(s,£) is expressible as a power series
about £=0. For jth order term in series (#,59),

Omyye?) Qe ZiI24i—1 = EIZLIZ, (84)

This would contribute a term of order Z° in d¢/d¢, in
addition to the term already present of order Z=1/2, and
condition (82) would not then be fulfilled. Thus in the
vicinity of £=0, w1/ must vanish identically and there-
fore will not contribute to (81). Thus, finally, for the
solution in region Ib, we write

17242 213\ 2
i)
3\ s s

DN ln%s2+%<v—czz)s+%]} . (81a)
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Now according to a theorem proved by Kato,?! the
exact wave function satisfies the cusp condition at #=0

of the form
10y

1
=-—. (85)
Y ou 2

u=0,{=0

Performing these operations on our solution (81a), we
find that

N/ ou
12

Therefore, in the limit that Z — oo, this cusp condition
is identically satisfied.

In order to obtain our expansion for one or both of
the electrons near the origin, it is convenient to rewrite
the Schriodinger 2-electron equation in terms of variables
S1, S, U.

% 29y W 29y O 4y
F——t—t——2—f——
0512 51051 9592 S90Sy
1(312_‘922—,—%2) 62¢ (522_312_*_“2) a2¢

I

1 ]
05101 090U

=3[1—Z"1(\ Inks®+Bs+3%)].

u=0,{=0

(86)

T
ou? udu

S1% Solt

Z Z 1

2Bt —4=—Yy=0. )
S1 So U

For the case that electron 1 is near the nucleus, let us

assume an integral stretching of the form &=/Zs; is

correct. Noting that in terms of #, s1, and ss, d in 71 is

expressed as

d={[u?— (sg—s1)*]/4s152} 112, (88)
we can write
Jr1=e" @ Nagtight1/Z { 1+Z—1[>\(ln§—l—lnsg)
, +%<v—czz><a/z+s2>+az]} , (89)
with N
~ 1 I: u+di(E1/Z+ s2)
C12= — ln ——_——:I
2dy L(+dy)(sa—£/2)
and
. [uP—(s2—E/2)2712
di= |:————-:| . (89a)
4(&/2)s,
For large Z,
Mg 522
dlz—[ } , (89h)
2 €152

which leads to an expansion for Z large of the form

~ r & 1
ot })
Z M—I—Sz VAL

(90)

2T, Kato, New York University Research Report CX-25,

1956 (unpublished).
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Therefore, truncating to two orders,
- 1
Yr1p=e"(ZNsg 41 1+E[—)\ InZ+Ne+M Ing A lnsg—i-%()\z—sz)sz]} . 91)
This suggests that we look for a solution of the stretched equation of the form
V= EVarg=81(14+ Z 1 my V(&) +m1®@ (s2) ]+ Z 2o+ - - +). (92)
Making this ansatz and substituting into the stretched P.D.E.,
2, 2 2 2 2 2, 2.
Zz[azp% 2_ai:|+a¢: 29y Zatp}z;alpl hooy st oY lzﬁ %
082 E1 0861 059 52 0sp  O0u? uwdu u 910w £ 0E10u £1 010U
so 1 &% uo% 2 Z 1
+|:——— —-i——] +2[—22(C02—Z“1C12—I~Z“2C22+ . '+)+—+——~]¢=0 , (93)
u  Z2usy S 10s20u £1 s2 u
we obtain, from setting the coefficient of ZV terms equal to zero,
9%m, D 2 Im D
+[———-2 =—C. (94)
3% & 04
A solution of this equation is
1 131 dslezfl
m1(1)=)\|:.§1+1n.§1—~———/ 'I‘C] ’ (95)
28 2w £
where C is a constant to be determined.
From setting the coefficient of the Z©® terms equal to zero, we obtain
mi® A %mq 1 Ims
—2|: ——-l—%(Cf—-V)il—l— +2[—— 1]—-—
dsy Sy 9%’ & 9%
1 8m2 82m2 2
GO H— =] 4= |-==0. (96)
b du  Judbil u
Choosing to set the first parenthesis itself equal to zero, Thus the matched stretched solution is
we obtain
(2) =) 1M—C,2s,.
my A lnS2+2D\ Cz ]-92 (97) V= e—-(Z—-)\)aze—Ex{ 1+Z_1|:)\ 1n32+_%()\2_czz)82
For Z large, we can rewrite
1 { 1 1 pédge
ﬂ”’i1<1>z)\[ZS1+ansl— —_ -I—/\<.§1—Hn.§1 2% 5[ £ hlZ):H - (99)
2Zsy 2Z e
Zo1 To obtain the expansion for s; small, we integrate by
X f dsy (e2241/ S12)+C:| , (95a) Darts to higher powers of £ to obtain
- V=¢~ 7 Ns2g~t{14 77—\ InZ+\ Ins,
and performing the usual truncation procedure, FLIN2—Co®)s2:—ANEE2AHO(E) 1},
and therefore
'}'ﬁug(l)%)\[ZS1+anS1+O(1/Z)+C] . (95b)

Considering (97) and (95b) in (92), we observe that the
matching condition with (91) is made if we choose

C=—InZ. (98)

=g (ZMNs2g~Za(1 —\NZ-3(Zs1)240(Zs1)%]

+ 7=\ InZ+\ Inso+3(\2— Ca?)s5 ]}, (100)

for the case of s; small (in region IIa). Thus the correct
asymptotic expansion has no divergences at s;=0. The
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solution shows the expected physical characteristic that
for one electron very near to the origin the shielding
effect of the outer electron upon it goes to zero.

The cusp condition at s;=0 satisfied exactly by the
correct wave function is

1 9y
- =-=Z. (101)
Kb as1 81=<0
Now for our asymptotic solution (100),
1
:9—= —ZYte T N8z 27051 4-0(s5,2)], (102)
S1
which in the limit s;=0 becomes
W
—|  =—ZY(s:1=0). (103)
951l 510
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Our asymptotic solution identically satisfies this cusp
condition.

In region IIb, we perform additional integral stretch-
ing on s, and #. We define £1=2Zsy, 2=Zs,, and y=Zu.
One can readily show that for this case

Jrp=e= @14 Z-1[— 2\ InZ-HN(E+£)

A (Inéi+Ings)+Cra(fr,&,7)]), (104)
with
1 v+d(E1+-&)
C12(£1;£2:‘Y) =- ln(—)
24 \(1+d)|&—&|
and
(e
481§, .

Transforming Eq. (87) to new coordinates, we obtain
the usual “perturbation theory” equation in the form

M 2 O 2 W 4y (-tihyd) oW (i) oy

1 1 T 1 T 1
0t £ 06 08 £ 0L 9v* vy Oy 344

T
&9y

£2y 9£20v

1 1 12
+2[(‘Co2+Z_IC12“‘Z_2C22+' : -+)+—+—}¢~—2 —=0. (105)
Y

We look for a solution of (105) of the form

W= G127 Ly (8) s () + Ml o) T4 Z - o)+ ).

1 2

(106)

Substituting (106) into (105), one finds that #:V and m;‘® satisfy equations of the form (94) in their respective
variables. Therefore, from the analysis for region IIa, it follows that 7:® and m:® will be matched with the first
three terms of the coefficient of 1/Z in Eq. (104). We find the remaining equation satisfied by M to be

M,

1 oM,
-f—Z[—— 1]———+ 1
ot Le Jor oz L Jon oy

o

Since we have already taken proper care of the func-
tions depending only on either variable £ or & near the
origin with our choice of 7@ and m1®, we expect that
near the origin

M1=Cy+0()),

where C is a constant to be determined and / represents
one of the fundamental smallness distances v, £, or &,.
Substitution of (108) into (107) gives C=4%. Although
we have not shown the matching condition fulfilled for
M, with Cys, we have determined the leading term of
M near the origin. Thus for region IIb, keeping only
the leading terms of m1® and 7,®, we have

Y=e 22 [1—I\(InZ/Z)+3u
—3INZ(s1*+5:2)+0(vl/Z)],

assuming no other constants are brought in by matching
M. Note that (109) identically satisfies the cusp con-

(108)

(109)

62M1 1 ‘|6M1 62M1 4 0M,
{——1 22—

T
v 9y

[w—w+w,w—w+¢wM1

Ey 2% -J dy
&2— 522+72'| 9*M, .' [522* 512+72"' 02M _ _E (107)
fry  Jomoy by Jotdy v

dition (101) for s1 or s, equal to zero. The cusp condition
at #=0 is exactly satisfied in the limit that Z—wo,
Thus, in the neighborhood of the origin,

Y~1—Z(s1+s52)+u/2—2\InZ)/Z+0() ,  (109a)

in the limit of infinite Z, our ¥ gives correct?? behavior.
This is to be compared with perburbation theory where
the coefficient of the # term near the origin does not go
over to its exact theoretical value in the infinite Z case.?
Since ordinary perturbation theory assumes at the out-
set no InZ terms are present in the wave-function ex-
pansion, whereas we have shown that in certain spatial
regions they must be included, it is not surprising that
the perturbation theory wave functions and expectation
values calculated from them will show certain failings.

2V, Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).
2 Reference 13, p. 435.
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APPENDIX: ORDERING OF TERMS FOR j, k COORDINATE STRETCHING

The values of 7, & for the regions A (no stretching), Ia, and Ib are, respectively, (=0, £=0), (=0, k=1), and
(j=1, k=1%). Equation (A1) is as follows:

(9ml
us2[{Z2}+{Z(m1——2>\)}+ N — {2y {me}— 2—
(—i; A Ta) as
(—Ji A Ta)
1 6m2 6m1 62m1 62m1 62m1
+——(2)\m2 - 22— 42—+ + + )]
Z ds as Os? a2 ou?

(=i-1) (=i-1) (=j-1) (—ji-1) (@2k—j-1;1a) (i—1;Ib)

om

_ut2|:{Z2}+{Z(m1~2)\)}+ N = {2 - {me} — 2—
(—2k—j; A) ds

(—2k—j; A)

1 Oms Im1 9%my 9%my 0%my
+E< 2)\’}%2 - 22— + 22— + + + ):I

s ds ds? at? ou?
(=2k—j—1) (=2k—j—1) (—=2k—j—-1) (—2k—j—1) (—j—-1) (G—-2k-1)

6m1 1 62m1 am2 6m1 a’}'}h 1 62m1 8m2 6m1
R SR R Gl o)

ou Z\0dsdu ou on ou Z\ ds0u ou ou
(—J; A, Ia) (=ji—-1) (—=i-1) (—=ji-1) (—2k; A, Ib) (G—2k—1) (G—-2k—-1) (§—2k-1)
1 62m1 1 62m1 1 8m1
+2¢s2(— ) —2tu2<— )—I—4su|:—{Z}+)\— {m) +——(—— — my + )jl
Z 0udt Z 0udt Z\ 0s
(7—1;1b) (=j-1) (=7 A, Ta) (=ji—=1) (=j-1) (=j-1)

1 6’”Z1 mi my mi1 1 6m1

+ 22 — ) -———I—4Zsu({1}+{——})— s2(1 +—~)+ ¢2<1 + —)—4ut————

G-1;Ib) (G—2k-1)7 Ou Z Z Z Z ot
(05A,Ia,1b)  (—1) (—2k;A) (—2k—1) (—j—1)

Fus’[—{Z2}+ Z(— {mi} +{C12})+{Ci*mi} — {ma} — ( Cs?]

—Jji A Ia)

—W[—{ZZ}-I-Z(—{ml}+{C12})+{012M1}—{Mz}—(sz]k)=0- (A1)

—j—2



