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The distribution of population in the ground-state sublevels of an optically pumped alkali-metal vapor
has been found to be strongly dependent on the mechanisms assumed responsible for relaxation. Two modes
of optical pumping zero mixing and complete mixing in the excited state, and three modes of alkali relaxa-
tion, uniform, Zeeman, and electron randomization, are considered. Calculations of the sublevel relative
populations are made in terms of experimentally measurable parameters for all six combinations of pumping
and relaxation modes. Optical-pumping transient signals are then used to demonstrate that alkali relaxation
due to wall collisions is of the low-frequency ‘“Zeeman” variety, while relaxation due to alkali-rare-gas
collisions takes place through randomization of the spin of the alkali valence electron. Equations for the
rate of change of the electronic spin polarization are derived for all cases, and are found to be nonexponential,
in contrast with the case of an alkali of zero nuclear spin.

I. INTRODUCTION

HE use of optical pumping to create a large mag-
netization in a vapor of alkali-metal atoms is now
a fairly well-known technique. Through the selective
absorption and re-emission of circularly polarized
resonance radiation, large differences in population
among the various Zeeman magnetic sublevels of the
alkali atomic ground state can be obtained. Since each
Zeeman sublevel is characterized by a particular orien-
tation of the atomic magnetic moment with respect to
the direction of an external magnetic field, differences
in sublevel populations can imply the existence of a
net magnetization of the vapor.

A magnetization, once produced by optical pumping,
should persist for quite a long time, since the lifetime
against spontaneous transition between ground-state
sublevels is of the order of thousands of years. In
practice the atoms of an optically pumped vapor collide
with impurities, or with the walls of the containing
vessel, losing polarization in such encounters. Two
methods that have been commonly used to preserve
alkali polarization are to retard the diffusion of the
alkali to the cell walls through the use of nonmagnetic
buffer gases, or to make the walls nonrelaxing through
the use of paraffin or silicone coatings. Even the totally
nonmagnetic rare gases, however, have proved to be
imperfect buffers. The first experiment on the relaxation
of an optically pumped alkali-metal vapor in a buffer
gas was performed in 1957 by Dehmelt,! who measured
the cross section for sodium relaxation in argon.
Dehmelt also made initial studies of alkali relaxation
in evacuated coated cells, and extended his relaxation
studies to other alkali metals.? In 1959, Franzen? made
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a systematic study of the efficiency of various rare gases
as buffers for optically pumped rubidium, measuring
disorientation cross sections in Ne, Ar, Kr, and Xe.
Since that time there have been many further contribu-
tions to the study of spin relaxation of optically pumped
vapors.t16

Although much experimental data is now available,
theoretical calculations of the various disorientation
cross sections have only recently been performed. In
1962 Bernheim* made the first attempt to explain the
variation of the rubidium-rare-gas disorientation cross
sections with rare-gas atomic number. Bernheim pro-
posed that during an alkali-rare-gas collision the alkali
valence electron experiences a spin-orbit coupling in
the rare-gas nuclear electric field that induces precession
of electronic magnetic moment, with resultant relaxa-
tion. Herman'” has recently modified and extended
Bernheim’s work, and has arrived at numerical esti-
mates of the rubidium-rare-gas disorientation cross
sections. Although Herman’s theory appears to predict
rather well the dependence of the cross sections on rare-
gas atomic number, quantitative agreement with ex-
periment is poor,* probably because of the many
approximations and high order of perturbation theory
required to arrive at final numerical values.

In 1957, Franzen and Emslie!® calculated both the
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rate of change of the ground-state sublevel populations
of an alkali vapor subjected to optical pumping, and
the values of these populations in an optically pumped
equilibrium. For convenience of calculation, they
assumed that relaxation between ground-state sublevels
is uniform, that is, that when an atom in the ith sub-
level relaxes, it can reach any other sublevel j with
equal probability. Uniform relaxation is a rather
unphysical mechanism, however, especially for the
consideration of alkali relaxation induced by collisional
interactions with buffer-gas molecules. Calculations of
the state populations based on the more reasonable
relaxation model of Bernheim and Herman are quite
uninviting because of the complexities involved in
arriving at meaningful numerical results.

In the present paper we have used a simplified, semi-
empirical approach in order to calculate the ground-
state sublevel equilibrium populations. We assume that
during alkali-rare-gas collisions deformations and over-
lap occur that allow the alkali valence electron to briefly
experience sharp spikes of electric field. As the alkali
moves through the interaction region it will see a spec-
trum of randomly oriented oscillating magnetic fields.
If appropriate frequency components are present, re-
orientation of either the total magnetic moment of the
atom, up, or of the magnetic moment of the valence
electron, ug, can take place. We consider the effect of
these two types of magnetic dipole relaxation on the
distribution of population in the ground-state Zeeman
sublevels. In order to calculate relative transition prob-
abilities between states we assume the simplest possible
model of an alkali atom subjected to an oscillating mag-
netic field H, (w) with equal components H ,, H,, and H .
Then using the calculated relative transition prob-
abilities, we compute the steady-state occupation prob-
abilities of the various ground-state magnetic sublevels
in terms of macroscopic parameters, the relaxation rate,
and the pumping rate. It will be shown that the distri-
bution of population in the ground-state sublevels varies
greatly depending on the relaxation mechanism as-
sumed. These differences will then be utilized to demon-
strate which modes of alkali relaxation actually occur
in an optical-pumping experiment.

II. OPTICAL PUMPING OF A NUCLEAR
SPIN-ZERO ALKALI ATOM

Cptical-pumping rate equations have sometimes been
derived for a hypothetical alkali atom of zero-nuclear
spin.'®* A calculation based on such a model assumes a
particularly simple form that in some cases provides an
adequate approximation to the behavior of real alkali
atoms. This model will thus be a starting point for the
calculations of the optical pumping of alkali atoms of
nuclear spin /=% that will be presented in a later
section.

182 S, M. Jarrett, Phys. Rev. 133, A111 (1964).
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The ground state of a zero-nuclear-spin alkali atom
has two sublevels, mp=mgs==3, that are split in a
weak magnetic field. The occupation probabilities 7,
and #n, of states (1) (mg=—3%), and (2) (mg=-+%),
are normalized (n34#n.=1). In thermal equilibrium,
n1 and 7, are essentially equal (n1=n,=3%).

The probability per atom for absorption of light by
a vapor in any state of polarization is Y4 K., where
4 is a constant proportional to both the incident light
intensity and the absorption cross section aq. K is the
relative absorption probability of the zth sublevel, and
is determined by the state of polarization of the incident
light. For alkali atoms it is found that for the absorption
of light in which Amp=+1, K; is always proportional
to (3—S.)i, (S.); being the expectation value of the
electronic spin in the ith sublevel of the ground state.
All of our calculations will be based on the assumption
that the vapor is pumped by D;(3Py1/2%S1/2) left
circularly polarized light, for which Amp=-41 in ab-
sorption. Thus, for the zero-nuclear-spin model, K;=1,
and K,=0. The probability per unit time for excitation
out of state (1) will then be 4n;; for state (2) it is zero.
We further assume that there is complete mixing be-
tween levels in the excited state, that is, that once an
atom has been excited, it may decay with equal prob-
ability to either sublevel of the ground state. For the
moment we neglect relaxation effects between sublevels
(1) and (2). The rate equations governing behavior of
the state populations #; and #. are then

d%l/dt= —Aﬂ1+%A1’L1= —%Anl ,
dnz/dlf—‘: %A n1.

In most experiments, the state of polarization of the
optically pumped vapor is monitored by measuring the
intensity of light transmitted through the vapor cell, a
technique devised by Dehmelt.! It is thus convenient
to define the net expectation value of electronic spin
(S:) for the entire vapor, (S.)=2i(S;)m;, since, under
the experimental conditions assumed, the absorption
of light by the vapor is a linear function of this param-
eter. Then, for the nuclear-spin-zero atom:

<SZ>=%7L _%nli
and
Sy dt=3An1=24 (3—(S.))=24—34(S,). (1)

Since mpi=mg;={(S.);, the polarization of the vapor,
P=3mrni follows the same equation,

dP/dt=34A—3AP. 2

The effects of relaxation between ground-state sub-
levels may now be considered. Such relaxation might
be caused by collision with buffer-gas atoms, impurity
atoms, or the walls of the optical-pumping cell. Let
us assume that the rate of such relaxation out of a
state is given by some rate constant R multiplied by
the occupation probability of the state. For the nuclear-
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spin-zero model, this assumption encompasses all
modes of relaxation, uniform or not. Then the time
variations of the state populations due to relaxation
are given by

dny/dt=— Rn1+Runa,

dny/dt=— Rns+Rn;.
It follows that
d(Sz)/dt=(d/dt) Gna—3m) = —2R(S:).  (3)
The polarization P again follows the same equation:
dP/di=—2RP. 4)

If the optical-pumping process is now combined with
relaxation in the ground state, we obtain the master
equations that govern the behavior of the system at

any time:
d(Ss)/di=3A—354(S:)—2R(S:), (5
and
dP/dt=%A—3AP—2RP. (6)
The solution to Eq. (5) is
(S2)=(Sa)o[1—exp(—i/7)], (7
where
(Sa)o=14/(2R+34) 8)
and

1/7=2R+14. )

Thermal equilibrium (71=%,) at £=0 has been as-
sumed. An identical equation for the polarization P
also obtains. Both (S.) and P thus have a simple ex-
ponential time dependence in the optical pumping of
the zero-nuclear-spin alkali atom. Equation (9) has
sometimes been used to obtain an estimate of the
relaxation time of an optically pumped vapor of real
alkali atoms. If the time constant of the pumping curve
(7) is measured as a function of light intensity, extrapo-
lation to zero light intensity yields the relaxation rate
2R. Knowing the relaxation rate, one may determine
the pumping rate, 4, for any given light intensity. The
steady-state spin polarization, {S.), is then given by
Eq. (8). The beauty of this method is that by using
relative pumping and relaxation rates one can deduce
a wealth of information about the vapor without refer-
ence to such quantities as the absolute absorption cross
section per atom. Unfortunately, when we consider the
pumping of real alkali atoms with nonzero nuclear spin,
the simple time dependence of (S,) predicted by Eq.
(6) is no longer exactly exponential. Under many con-
ditions, however, the simple technique for measuring
pumping and relaxation rates that was described in the
paragraph above may provide at least approximate
values for these parameters. In the following section
we consider the optical pumping of an alkali atom of
nuclear spin 2, and attempt to cast the pumping and
relaxation equations into forms similar to those ob-
tained for the nuclear-spin-zero model. Calculations of
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the ground-state sublevel populations are then made
for various modes of pumping and relaxation in terms
of the macroscopically measurable pumping and relaxa-
tion rates.

III. OPTICAL PUMPING FOR NUCLEAR-
SPIN-3 ALKALIES

A. Absorption Probabilities and
Excited-State Mixing

The rate equations that were derived for light absorp-
tion by the zero-nuclear-spin alkali atom were simpli-
fied by the assumption of complete mixing in the excited
state. As we now proceed to the consideration of real
alkali atoms, it is well to reconsider the meaning of
excited-state mixing, and to try to get some idea of the
degree of mixing that might occur in an actual
experiment.

Many years ago, Wood and co-workers'® showed that
if the isolated sodium Dj line (2Py;55251,2) were passed
through a cell containing sodium vapor in the presence
of more than a few Torr of argon or some other rare
gas, the resonance fluorescence contained both the D,
and Dy (2P3/52Sy5) resonance lines. At low gas pres-
sures the D, line disappeared. The conclusion drawn
was that at higher rare-gas pressures there was an
appreciable probability for a sodium atom, while in the
excited state, to collide with a rare-gas atom, with an
attendant probability of the sodium atom being thrown
into the %P3, state from the 2Py, state. The cross
section for such a process is of the order of 104 cm?
for sodium?; thus, when the buffer/gas pressure is
more than a few Torr, considerable mixing in the excited
state may be expected to occur. When such mixing is
present during the optical-pumping process, all co-
herence between the ground state and excited states is
lost. The optical pumping still proceeds due to the con-
tinual depletion of low mr levels, but its efficiency is
greatly impaired compared to the case of no mixing.

Very little information exists on the degree of
excited-state mixing for alkalies other than sodium.
The amount of mixing that may occur within a partic-
ular hyperfine level of the excited state is likewise
unknown. Recent work has indicated that the cross
section for mixing in rubidium is many times smaller
than that for sodium.!® Even greater differences might
be expected for cesium. In the absence of more detailed
information, only two cases can be easily calculated:
those of no mixing and of complete mixing in the ex-
cited state.

For I=4% there are eight Zeeman sublevels in the
ground state, corresponding to (F=2, mp=2,1,0,
—1,—2; F=1, mp=1,0,—1). For a moment we neglect
relaxation between these levels. The optical-pumping
transition probabilities between states |F,mp) and

(1199158336, e.g., R. W. Wood and F. L. Mahler, Phys. Rev. 11, 70
® W. Lochte-Holtgreven, Z. Physik 47, 362 (1928).
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|F'ym§') are particularly easy to calculate under the
assumption of complete excited-state mixing. As men-
tioned in a previous section, Kj;, the probability for
absorption of left circularly polarized light, is propor-
tional to (3—S.);. The total rate of excitation of the
vapor is thus equal to 2 ;4'Km;=A" (n21+2n20+3ns_1
+4ny_9+3n11+ 2110+ 11-1), where the subscripts of the
n; are the (F,mp) quantum numbers of the sublevels
and A’ is proportional to incident light intensity and
includes normalization parameters. If complete mix-
ing is assumed, the repopulation rate of each ground-
state sublevel is equal to §2_;4’K#n;. We can then
immediately write down the set of eight linear dif-
ferential equations, dns/dt=>_,Cin;, i=1,2,--8, that
govern the time dependence of the state populations,
ns. The matrix of coefficients for this set of equations
has been published previously by Franzen and Emslie.!8

With appropriate normalization, the equation de-
scribing the rate of change of the electronic spin polari-
zation for optical pumping with complete excited-state
mixing becomes

d(S.)/di=3A—34(S.)
—3A[3na+3ne0—ne—st+3n10+3n1-1].

The case for no mixing differs only slightly from that
above. The absorption probabilities for the various
ground-state sublevels of course remain the same as for
complete mixing, but now a kind of coherence between
ground and excited states is preserved. For example,
whereas an atom in the |2,—2) state that absorbed a
photon could return to any of the eight ground-state
sublevels in the case of complete mixing, for zero
mixing, it can only return to |2,—2), |2,—1), |2,0),
|1,—1), or |1,0). This happens because the excited atom
decays before suffering any collisional perturbation. The
matrix of coefficients for optical pumping with no ex-
cited-state mixing has also been published by Franzen
and Emslie. The equation for {S.), again with appro-
priate normalization, becomes:

d(S.)/dt=24—3A4(S.)—3A[—na1— (1/24)nz
Fiane—o— (7/28)n10—3m1]. (11)

Were it not for the terms in the brackets on the
right-hand side of Egs. (10) and (11), the rate of change
of (S,) for an alkali vapor with nuclear spin £ would be
identical to that found for the simple nuclear-spin-zero
model, Eq. (5). The effect of the extra terms in Egs.
(10) and (11) is not small. In general, the sum of these
terms changes by an amount comparable to the net
change in (S.), even at low incident-light intensities
and high relaxation rates. Still, the method of meas-
uring the pumping rate by varying the light intensity
[see discussion following Eq. (9)] provides at least
approximate values that may be of use in some experi-
ments. We have, in fact, used this technique to estimate
relaxation times and pumping rates in the analysis of
experimental results to be described in a later section.

(10)

F. A. FRANZ

141

B. Relaxation Processes

The relaxation of optically pumped alkali-metal
vapors has been widely studied since the first measure-
ments were made on sodium by Dehmelt in 1957,
and on rubidium by Franzen in 1959.% Since 1959, most
relaxation measurements have been based on Franzen’s
technique, which permits the measurement of the
relaxation of an optically pumped vapor in the absence
of the pumping light. Franzen’s technique is to polarize
the alkali vapor, then to interrupt the light beam, and
to allow the vapor to relax in the dark. After some dark
time 7/ the shutter is reopened, and the initial intensity
of the transmitted light recorded. The process is then
repeated for a range of values of dark time. Since the
absorption of the vapor in any state of polarization is a
linear function of the spin polarization (S.), the plot of
initial absorption versus dark time yields a curve
representative of the relaxation of (S,) for the vapor.
Franzen’s technique has generally been applied to the
measurement of alkali relaxation in buffer gases, where,
by measuring the relaxation time as a function of
buffer-gas pressure, both the diffusion coefficient D and
the disorientation cross section ¢ of the alkali in the
buffer gas can be measured.

The analysis of relaxation data has usually been made
with the simplifying assumption that the relaxation is
uniform, that is, that relaxation from any ground-state
sublevel ¢ can reach with equal probability all other
sublevels j. Using a notation similar to that adopted by
Franzen, let the probability per unit time for a relaxa-
tion-induced transition from state 7 to state j be wy;.
Then w;;=1/8T, where T is the relaxation time of the
vapor. The rate equations for the state populations,
75, are

dnifdi=—3fwipit 3 fwsn;, i=1,2, -8,

where the first term on the right represents relaxation
out of state 4, while the second term represents relaxa-
tion nfo state 4. The primes indicate that terms (i= j)
are to be excluded from the sums. Letting (1/71) equal
2R for ease of comparison with the nuclear-spin-zero
model, we find

dni/dt=—2Rn+2R/8, i=1,2, ---8.

Then
d(S.)/dt=—2R(S,), 13)
and the relaxation is exponential. Likewise,
dP/dt=—2RP, (14)

where P=3_mm;.

Although uniform relaxation may have physical
meaning in a few special cases, its use as the mode of
alkali relaxation in buffer gases is extremely difficult
to justify. A more plausible approach is to recognize
that when an alkali atom collides with a buffer-gas-
molecule or cell wall, deformations and overlap occur
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that allow the alkali to briefly experience a rapidly vary-
ing electric field. As the alkali atom moves through the
interaction region it is thus subjected to a Fourier
spectrum of randomly oriented oscillating magnetic
fields that range in frequency up to the order of the
inverse of the correlation or collision time. If appro-
priate frequency components are present, reorientation
of either the atomic or the electronic magnetic moment
may take place, either process resulting in relaxation.
We do not inquire how much relaxation occurs in such
a collision, since our measured relaxation rate gives us
that information. All we need from our simple model is
the relative probability that an atom subjected to the
perturbation will undergo transition from |F,mr) to
| F/ymz"). To obtain these probabilities we assume the
simple model of an atom subjected to an oscillating
field H;(w) of equal components H.,H,H.. We con-
sider only values of w near w=pupHo/#F andw=puHo/ %S,
for which energy conserving transitions are possible.

1. Zeeman relaxation. In this case we assume that
only low-frequency components are present in the
frequency spectrum of Hi(w). This is expected to be
the case, for example, when the duration of an alkali-
something-else collision is long compared with the
hyperfine period, such as when an atom collides with
the wall of the cell.® Only H, and H, components will
be effective in causing relaxation. ' and mp remain good
quantum numbers ; hence the matrix elements for transi-
tion from the state |F,mr) to the state |F’,mz') may
be written

(F'ymy' |wp-Hy|Fymp)=vup(F';mg’ | F-Hi| Fymp)

=/~‘FH1<FI)mF,l (%F-l—_l_%F—) IF,’WlF), (15)

where F, and F_ are the total-angular-momentum
raising and lowering operators, and for simplicity the
field H; has been assumed to be acting in the x direction.
The various transition probabilities are readily calcu-
lable. The time variations of {S,) and P for an alkali
vapor undergoing Zeeman relaxation are then found to
beidentical to Egs. (13) and (14). The interesting aspect
of this mode of relaxation is that relaxation occurs
only between adjacent states; that is, for example, the
state |2,1) is coupled only to the states |2,2) and |2,0).
It thus appears that under the application of optical
pumping the lower sublevels of (F=1) will be depleted,
since there is no connection between (F=2) and (F=1)
sublevels through relaxation. This conjecture has been
confirmed in experimental investigations to be described
in a later section.

2. Electron randomization relaxation. Here we assume
that Hi(w) also has frequency components equal to
those characterized by the spin flip of a free electron
in the static magnetic field Ho. The interaction begins
with the system in a well-defined state | F,mp). We wish
to find what states |F’,mz’) may be reached by the
application of the perturbation. In other words, we wish
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to calculate matrix elements of the form
(F,’mF,lSGHI:IF:mF>

=(F'ymp¢’| 3S4+3S) | Fymp)y, (16)

and
(F’,mF’[Sz z[F,mF).

To accomplish this, we express |F,mr) in terms of a
linear combination of the states |m,ms) that are good
quantum states in the presence of the perturbation,

|Fymp)=3"(mims|Fymp)| mrms).

The coupling coefficients are readily calculated from
formulas found in the literature. The matrix elements
(16) may then be calculated. The rate of change of
(S:) for a vapor undergoing relaxation by electron
randomization is

d(Sz)/dt=—2R(S:)+ 4R (nu—n11).
Likewise,

In this case neither (S.) nor P is a simple exponential
function of time. However, it is possible that under
some circumstances the magnitude of the terms in the
parentheses may be small, producing approximate
exponential behavior of (S,) and P. Even so, we note
the fact that whereas for Zeeman and uniform relaxation
the rate of change of both P and (S.) was described by
the same time constant, for electron randomization the
time constants differ.

Relaxation by electron randomization produces other
effects quite different from those resulting from Zeeman
relaxation. For example, whereas the (F=1) sublevels
were found to be depleted in the case of Zeeman
relaxation, for electron randomization they maintain
relatively high populations, with large population dif-
ferences between the states, largely because of the
extremely strong relaxation coupling between states
12,2) and |1,1). One prediction from this simple model
is that when Zeeman relaxation is dominant, one should
not see any sizable resonances in the (F=1) hyperfine
level, whereas for electron randomization very strong
resonances in this level are predicted. This difference
in the distribution of state populations offers a tool that
can be used to determine which mode of relaxation
actually occurs in a given optical-pumping experiment.

an

C. The Rate Equations for Optical Pumping

The sets of transition probabilities for various modes
of pumping and relaxation provide all the information
that is needed for a calculation of the equilibrium state
populations in optical pumping. All that remains for us
to do is to combine relaxation and pumping effects, set
dn;/dt equal to zero for all 7, and solve the resulting
sets of eight linear equations for the eight sublevel
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TasLE 1. Equilibrium occupation probabilities for an optically pumped alkali atom of nuclear
spin £, assuming a variety of pumping and relaxation modes.
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e, 2 72,1 72,0 N2, —1 Nay—2 71,1 71,0 M1,—-1
Electron randomization, 0.156  0.139 0.124  0.110  0.097 0.145 0.124  0.105
no mixing
Zeeman, no mixing 0.135 0.131 0.126  0.122 0.118 0.124  0.123 0.122
Uniform, no mixing 0.134 0.129 0.125 0.121 0.117 0.126 0.125 0.124
Electron randomization, 0.141 0.132 0.124  0.117 0.110  0.132 0.125 0.118
complete mixing
Zeeman, complete 0.133 0.130  0.126  0.122 0.119  0.119  0.123 0.127
mixin,
Uniformg, complete 0.133 0.129 0.125 0.121 0.118  0.121 0.125 0.128
mixing

populations #;. We have performed the calculations for
the following six cases:

(1) Uniform relaxation: optical pumping with com-
plete mixing ;

(2) Uniform relaxation: optical pumping with no
mixing;

(3) Zeeman relaxation: optical pumping with com-
plete mixing;

(4) Zeeman relaxation: optical pumping with no
mixing;

(5) Electron randomization relaxation : optical pump-
ing with complete mixing;

(6) Electronrandomization relaxation : optical pump-
ing with no mixing.

All of our calculations have been performed under the
assumption that the time between alkali-alkali spin-
exchange collisions, T, is long compared to the charac-
teristic relaxation time 7' of the vapor. This means that
the distribution of population among the |F,mr) states
is dominated by the particular mode of relaxation
assumed, with only second-order effects being con-
tributed by spin exchange between similar atoms. The
condition that 7' be less than 7% is not at all difficult to
realize experimentally. Optical-pumping resonances
can be seen, for example, for alkali densities at least as
small as 5X 10° atoms/cm?. If we take the spin-exchange
cross section to be about 2X107* cm?® then at the
lowest vapor pressures the time between spin-exchange
collisions is several hundred milliseconds. There will
be, therefore, a considerable range of experimental
situations in which our results may prove useful. The
equilibrium sublevel populations obtained for the
various modes of pumping and relaxation discussed
above, assuming a pumping rate 4 of 40 sec™ and a
relaxation rate R of 640 sec™!, are listed in Table 1.2

The results reported in this paper are not, of course,
the first calculations of the equilibrium distribution of
population in an optically pumped alkali-metal vapor.

2% More complete tables that consider a wide range of pumping
and relaxation rates have been published in Coordinated Science
Laboratory Report R-265, available upon request from the
Coordinated Science Laboratory, University of Illinois, Urbana,
Illinois 61803.

Dehmelt, for example, in the original experiment on
alkali relaxation, made a calculation of the state popu-
lations for a vapor illuminated by a combination of
circularly polarized D; and D, light. Bloom? has
previously derived equations for optical-pumping signals
under various conditions. Franzen and Emslie!® have
made calculations for uniform relaxation that are similar
to those presented in this report; however, their results
are applicable only in the limit of very long relaxation
times and very fast pumping times. Finally, Anderson?
has considered the interesting case where spin exchange
rather than relaxation determines the equilibrium
population distribution, finding that the #; are propor-
tional to exp(—.8), where § is a parameter determined
by the polarization of the sample. In this case a “spin-
temperature equilibrium” is established in the vapor
that makes the relaxation of (S.) and P particularly
simple, regardless of the relaxation mechanism assumed.

IV. EXPERIMENTAL RESULTS

The experimental results described in this section
were observed in a wide variety of optical-pumping
cells containing either Rb¥ (I=3) or Cs'# (I=1).
The Breit-Rabi formula predicts that in a magnetic
field of 1 G the Zeeman energy levels of the ground state
of an alkali atom are split in such a way that radio
frequency resonances in the upper hyperfine level are
at a lower frequency than those in the lower hyperfine
level. For Rb® these resonances occur at approximately
698.8 and 701.6 kc/sec, while for Cs'* they occur at
349.3 and 350.6 kc/sec. Although the resonances in the
upper and lower hyperfine levels are split, within each
level the resonances overlap. Under these conditions it
is difficult to make an accurate definition of the signal
obtained when the static magnetic field is swept through
resonance. An approximate idea of the expected sizes
of the signals can be obtained by assuming that as the
field is swept through a particular resonance the popu-
lations in that hyperfine level are equalized, without
affecting the other level. The relative sizes of the
resonance signals can then be related to the initial spin

2 A. L. Bloom, Phys. Rev. 118, 664 (1960).
% L. W. Anderson, Nuovo Cimento 31, 986 (1964).
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Tasre II. Characteristics of unresolved Zeeman resonance
signals within the £=1 hyperfine level for various combinations
of pumping and relaxation.

Relaxation-pumping mode (F=1) signal

Small, inverted
Small, normal
Large, inverted

Zeeman—no mixing

Zeeman—complete mixing

Electron randomization—
no mixing

Electron randomization—
complete mixing

Moderately large,
inverted

polarizations existing within each hyperfine level, and
hence to the population differences existing between
states.

The calculated populations of the sublevels of the
F=1 hyperfine level are quite sensitive to the pump-
ing and relaxation mechanisms assumed, as a glance at
Table I will indicate. For the experiments reported in
this paper, the light-absorption probabilities for the
eight ground-state sublevelsare 0:1:2:3-4:3:2:1. One’s
first impression might be that under optical pumping
the less absorbing levels would become more highly
populated at the expense of the more strongly absorbing
levels, as is the case, for example, for uniform relaxation
with complete mixing. In fact, however, for several
combinations of pumping and relaxation modes the
reverse is true, that is, in the F'=1level the more strongly
absorbing m=1 level is more highly populated than the
less absorbing m=0 and m= —1 levels. For convenience
in the following discussion, we will refer to this latter
case as an “inverted” population in the lower hyperfine
level.

The various combinations of electron randomization
relaxation and Zeeman relaxation, with zero mixing and
complete mixing, together with the characteristic signals
they produce in the F=1 hyperfine level, are sum-
marized in Table II. We have not included uniform
relaxation in this table since in all cases the signals
obtained are virtually identical to those for Zeeman
relaxation.

We have calculated similar results for the F=3 level
of cesium, with the exception that the Zeeman-no-
mixing signal is small and normal. For cesium, then, the
analysis of the experimental signals is particularly
simple: an inversion in the F=3 level always implies
relaxation through electron randomization.

The presence of population differences within the
hyperfine levels can be detected by sweeping the static
magnetic field slowly through the resonances. If
resonances in the lower level are detected, there are
several ways of telling whether or not the population
distribution is inverted. (i) The radio frequency field
can be set at resonance for the F=1 level and pulsed
on. For a strong enough H;, the magnetization in the
F=1 level rotates coherently about the effective field
in the rotating reference frame,? causing a modulation

% C. P. Slichter, Principles of Magnetic Resonance (Harper and
Row, Publishers, Inc., New York, 1963).
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of the light beam. If the initial oscillations are above
the equilibrium light-intensity level, the population is
inverted [Fig. 1(a)]. (i) The frequency of the rf field
can be swept rapidly through the resonance. If the
population is inverted, a “spike”” will be seen [ Fig. 1(c)].
(iii) The static magnetic field can be modulated, sweep-
ing through the resonances in times fast compared to
the spin-exchange time. If the F=1 level is normal, a
decrease in light intensity will be seen at the position
of the F=1 resonance. If it is inverted, an increase,
or “bump,” will be observed.

All of the cells used in this experiment were prepared
using the ultrahigh-vacuum technique described else-
where.? The optical-pumping apparatus used was of the
standard variety,® with all experiments being performed
at room temperature in a static magnetic field of 1 G.
At 299°K the vapor pressure of rubidium is 1.5X 107
Torr. Assuming a Rb-Rb spin-exchange cross section of
2X10™ cm?®® and a relative velocity of 3.1X10¢
cm/sec, the mean time between spin-exchange colli-
sions, T, was approximately 330 msec. All cells were
designed so that the thermal relaxation time T of the
alkali vapor was short, usually 10 msec or less. The
condition that 7% be much less than Ty was thus satis-
fied, therefore spin exchange played no role in deter-
mining the distribution of polarization in the vapor.

Fic. 1. Typical optical-
pumping transient signals
for an alkali-metal vapor
(Cs). Relaxation and pump-
ing rates were about 80
and 20 sec™!in all cases, but
relaxation mechanisms dif-
fered due to different buffer-
gas-pressures. (a) The {a)
signal obtained when the
resonant frequency for the
lower level is pulsed on.
The initial oscillations
above_the equilibrium level
indicate an inverted popu-
lation. This’signallis typical
when relaxation by’electron
randomization is dominant. (b)
(b) A similar signal ob-
tained when the population
distribution in the lower
hyperfine level is “normal,”
as is the case for uniform or
Zeeman relaxation. (c) The
signal obtained when the
frequency of the radio-
frequency field is quickly
swept through resonance. e}
Frequency decreases left to
right. The upward spike
indicates that the popu-
lation is inverted in the
lower level, electron ran-
domization relaxation being
dominant in this case. (d)

A similar signal for no (d)
inversion in the lower level.
Zeeman relaxation was
dominant.

25 H. W. Moos and R. H. Sands Phys. Rev. 135, A591 (1964).
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We also performed many measurements using a variety
of cells containing cesium. At 299°K the vapor pressure
of cesium is 1.5X107¢ Torr, indicating that the time
between spin-exchange collision was about 35 msec.
The condition that 7'<< T was not satisfied as well for
these cells as for the rubidium cells. We were able to
artificially reduce the cesium vapor pressure by a factor
of two or three by introducing a small amount of
rubidium or potassium into the cell, an effect also ob-
served by Rozwadowski and Lipworth.2® The time be-
tween spin-exchange collisions was thus lengthened to
70 or 100 msec, better satisfying the 71<<7’ condition.
No significant change in the shape of optical-pumping
signals was found for the cells that contained a mixture
of alkalies.

It is easy 1o construct optical-pumping cells in which
either Zeeman or electron randomization relaxation
should be dominant. To demonstrate Zeeman relaxa-
tion, we constructed series of rubidium and cesium cells,
both coated and uncoated, with pressures of buffer gas
ranging from vacuum to a few Torr. Zeeman relaxation
with no mixing was expected for all of these cells, and
was in fact, detected. For the rubidium cells a very small
inverted resonance in the F=1 level was observed,
whereas for cesium a very small normal resonance in the
F=3 level was found. Both results agree with the
predictions of our calculations. For very fast relaxation
times the resonance in the F=1 or F=3 levels virtually
disappeared. If the bulbs were heated, thus increasing
the alkali vapor pressure and making the spin-tempera-
ture description the appropriate regime, strong reso-
nances appeared in the F'=1and F = 3levels, asexpected.
The results are unambiguous, indicating that Zeeman
relaxation is the dominant wall relaxation mechanism
for both coated and uncoated cells.

Electron-randomization relaxation was observed in

26 M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347
(1965).
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cesium and rubidium cells that had been coated and
filled to high pressures with neon, nitrogen, argon, or
krypton. Inversion of the lower hyperfine level was
detected in all cases. The buffer-gas pressure was high
enough (greater than 300 Torr) in some bulbs to insure
complete excited state mixing; hence for rubidium the
inverted signal could only be due to electron-randomiza-
tion relaxation. For cesium, the inversion of the F=3
level clearly indicated dominance of electron randomiza-
tion, regardless of the degree of excited-state mixing.

The conjectures that alkali wall relaxation takes
place through Zeeman relaxation, and that alkali-rare-
gas relaxation occurs through electron randomization
have thus been verified experimentally. The relaxation
probabilities calculated from the highly simplified
collisional models assumed in this paper yield equations
that provide a fairly accurate description of the behavior
of an optically pumped alkali metal vapor. All of the
qualitative features of the optical-pumping transient
signals predicted by our calculations have been ob-
served experimentally. It may therefore be possible, by
creating situations in which the relaxation rate, relaxa-
tion mechanism, and pumping rate are known, to study
the interesting problem of excited-state mixing, through
use of optical-pumping transients similar 1o those dis-
cussed in this paper.

Note added in proof. An important new contribution
to the literature, the thesis of Madame M. A. Bouchiat,
containing a complete and elegant treatment of many
aspects of alkali spin relaxation with particular em-
phasis on wall relaxation, has recently been published.?”
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