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Magnetic Moments of the Baryons*
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The anomalous magnetic moments of the baryon octet are calculated in broken SU(3) symmetry using
low-energy pole dominance as a dynamical model and keeping only the lowest lying intermediate states,
the psuedoscalar-meson —baryon states. By using dispersion theory, the anomalous moments are related
to an energy integral over the S&t 2 and P&&2 photomeson production amplitudes, which at low energy and
for vanishing meson mass are exactly given by the pole terms. From this exact information we calculate the
low-energy contribution to the anomalous moments, keeping all orders in baryon and meson mass splittings
and using the SU(3)-symmetric strong-coupling constants. We are able to account for the dominant con-
tribution to the proton and neutron magnetic moment and Gnd in addition, for an F/D ratio~0. 6, that
X(tr)~0 41t(.n), in agreement with the observed value. The SU(3) predictions for the other moments and
the Z' ~ A.+p transition moment are found to be more badly violated.

E~—E„which followed from the pure isovector
character of the electromagnetic coupling to the nucleon
current in the limit of low-momentum transfer.

To estimate the magnitude of the low-energy con-
tribution to the anomalous moments we use sidewise
dispersion relations first used by Bincer in an examina-
tion of the electromagnetic properties of the nucleons. '
Bincer was able to relate, as we shall spell out in more
detail below, the anomalous static moment of a fermion
to an energy integral over the S&~& and I'&~2 photomeson
production amplitudes. The pole terms of the photo-
meson production amplitude for vanishing meson mass
correspond at threshold to the exact amplitude. By
including only the pole terms in the photomeson pro-
duction amplitud. e and extending the energy integral
only over the low-energy region this exact threshold
behavior is incorporated into the calculation of the
static moments. In agreement with the hypothesis of
threshold dominance it is found in the case of the
nucleons that the major contribution to E~ and E„
can be accounted for from the low-energy region 3f&E
&1.7M of the photopion-production amplitude, w'ith

the result E(p)=1.5, E(rt)= —1.6, whereas E'"o'(p)
=1.79, E'"&'(tt) = —1.91. It is purely on the basis of
this successful estimation of the nucleon moments,
assuming threshold dominance, that w'e now attack the
problem of computing the moments of the remaining
members of the baryon octet.

I. INTRODUCTION

II. CALCULATION OF THE ABSORPTIVE
AMPLITUDE

Here we shall show how the static moment is related
to the photomeson-production amplitude. Consider the
transition amplitude for a virtual fermion of momentum
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FIG. 1. Fermion-photon
vertex.
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UR purpose here is to present a dynamical calcula-
tion of the magnetic moments of the baryon octet

in broken SU(3) symmetry by applying the method of
low-energy pole dominance. ' It has been shown' ' that
to all orders in the SU(3)-symmetric strong couplings
and to first order in the electromagnetic coupling that
all the static magnetic moments of the baryons, in-
cluding the Z'~A. '+y transition moment, can be
expressed in terms of the proton and neutron magnetic
moments. The question to which we now address our-
selves is how are these predictions in the limit of exact
SU(3) symmetry altered by taking into account the
observed splitting of the baryon and meson massesP To
answer this we must appeal to a specific dynamical
model which we shall now describe.

Ke assume that the charged baryons have an in-
trinsic Dirac moment tsii=e/2311II while for the un-

charged baryons pD=O. The anomalous part K& of the
total moment ti& given by E&~ e~ /2M&=ts&'ts& is to be-
accounted for in terms of strong-interaction corrections
to the baryon electromagnetic current. Ke estimate
these corrections by applying the method of low-energy
pole dominance already successfully applied to the
calculation of the electron anomalous moment g' —2
and the anomalous moments of the nucleons, E„and
E .' The fundamental assumption of this method is that
the static electromagnetic properties of a particle
emerge predominantly as a consequence of the physics
of the low'-energy region. For the baryons this implies
it is the lighter charged mesons in the cloud surrounding
the baryon whose coupling with the electromagnetic
field transforms like Q= e(Iis+Fs/V3) that are respon-
sible for contributing the major part of the anomalous
moment. In Ref. 1 the hypothesis of low-energy domi-
nance was applied to nucleon moments with the result
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FIG. 2. Pseudoscalar-meson —baryon intermediate-state
contribution to the absorptive part.

1
" ImE(W")dW"

E(W )=-
H/"' —8' (2)

where Wz' ——(Mi+p)', the threshold for photomeson
production, corresponds to the lightest intermediate
state contributing to the absorptive amplitude ImE(W').
Here, M2 and p are the masses of the intermediate
baryon and meson. The low-energy contribution to the
static moment may be gotten from (2) by extending the
range of the energy integration only over the threshold
region and evaluating Eq. (2) at W'=M/,

E(MP) =
'™~»' ImE(W')

d8" (3)8 —Mg'M2+y) '

where A) 1 is the cuto8.
Physics enters our calculation via the absorptive

amplitudes ImK(W') in the threshold region. In the
case of the baryons the only intermediate states con-
tributing to ImE(W') in this region are pseudoscalar-
meson —baryon (PS-8) states (Fig. 2). The thresholds
for the vector-meson —baryon states lie higher in the
mass spectrum and are a correction to the contributions
from the lower lying states. Including only the con-
tribution from the PS-8 intermediate state we have as
an exac] expression for the absorptive part in the region

p+l and invariant mass W, Wi= (p+l)', to produce a
real fermion of momentum p, p'= M/ and a real photon
of momentum l, P=O (Fig. 1). Bincer' has shown that
the most general form for this vertex consistent with
Lorentz invari ance, parity invari ance, time reversal,
and the generalized Kard identity is

eN(p)I„= el(p))y„+ ( K(W—')io„„l„/2Mi+Fi+(W')l„)
&& ((Mr+P+ l)/2M')
+(—K—(W')io.„„l„/2Mi+Fg—(W')l„)

X ((Mg P /)/2—Mi)—j, (1)

where the invariant functions E($") E (W') Fi+(Wi)
are analytic functions in the cut 8" plane with the
branch cut extend. ing from the threshold of the lightest
intermediate state with the quantum numbers of the
fermion to +~. We recognize from Eq. (1) in the limit
W —+M', E(Mi') as the anomalous moment of the
fermion. From the analytic properties of E(W') and
the assumption E(W') ~0 as

~

W'~ ~~ we may write
an unsubtracted dispersion relation for E(W')

near threshold,

I
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FIG. 3. Pole terms for photomeson production.

ImK(W') = Q dx p(W')u(p, s)J„N(k,s')
splIL

states &&I(k,s')I'(W') v„' (4)

corresponding to the graph of Fig. 2. The factor p(W')
arises from purely kinematical considerations and is
proportional to the available phase space for the inter-
mediate state

p2(Wi) L(W2+M22 ~2)2 4WiM22$1/2/W2 (5)

The projection operator s „' serves to project out the
anomalous moment E(W') from the vertex (Eq. (1)j
and is explicitly given in Ref. 1.The factor N(k, s')r (W ),
corresponding to the vertex for a virtual baryon to
create a real baryon and pseudoscalar meson, we ap-
proximate with its threshold value g8(k, s')iyi where g
is the coupling constant. The photomeson-production
amplitude, N(p, s)J„u(k,s') for a baryon and meson of
momentum k and q (k'=Mii, q'=p, ') to produce a
baryon and photon of momentum p and l (p'=M/,
P=O) is approximated by the pole terms (Fig. 3),

N(p, s)J„l(k,s')
=gN(p, s)[r„~(i/(p+ l M,)—)i r,+iy, (i/(k 1 M—,)—)r„'

+ (e — )( (2~.-i )/(~-l)'-~')iv j (k,"), (6)
r„~=e,p„+(K;/2M;)o „,1„, j=1., 2

where e~~ is the sign of the charge on the 6nal and
intermediate baryon and E&,& are the anomalous mo-
ments of the Anal and intermediate baryons. In making
this approximation we are assured that for vanishing
meson mass Eq. (6) reproduces the exact amplitudes at
threshold and thus provides a low-energy "anchor" for
our calculation. The angular integration in Eq. (4)
extends over the range of scattering angles x= I I/
( 'I

~ (
I

(
in the center-of-mass system for the scattering

process for which W=po+l~=ko+gp q= —h p= —I,
and the sum is understood to include all contributing
3-PS states.

Inserting Eq. (6) into Eq. (4) we obtain for the
contribution of a single 3-PS intermediate state to the
absorptive part

ImEis(W') = (g'/4m) pi(W')Fig(W'),
Fii(W~) =e,E (iW)+e~p(W')

+EiEi(W')+EAg(W')
where E~,2 and E~,~ arising from charge and anomalous
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magnetic moment interaction in the photomeson-
production amplitude are given in Appendix I. Equa-
tion (7) for the absorptive amplitude along with the
SU(3) predictions of the 3-PS coupling constants in
terms of the F/D ratio form the basis of our calculation
in the next section.

The SU(3) symmetry is broken through the intro-
duction of nondegenerate baryon and meson masses in
Eq. (7). For simplicity let us examine the symmetric
case and set all the meson masses equal to zero and
assume the baryon masses degenerate M&=N&=M.
Moreover, we shall evaluate the dynamical factor
Fts(W') at threshold W'=M'(p=0) where Frs(M')
=e&—e2=charge on intermediate meson, simply a re-
Qection of the Kroll-Ruderman theorem which implies
that at threshold only the charged mesons contribute
to photoproduction. ' With these approximations Eq.
(7) becomes

ImKts(W') = (er—es) (g'/4a)((W' —M')/4M') (8)

and from the dispersion relation

1 ~~' ImEts(W )dW'
&u=—

W' M'—

which for f=F/D=-', yields E(p)/E(n) = —2.2. This
disagreement with the observed K(p)/K(e) = —0.94 is
here attributed to the assumed mass degeneracy. If we
assume a nondegenerate spectrum the xÃ state has a
much lower threshold than AE or ZE and in the
threshold approximation it is the only contributing
state, so E(p)/E(e) = —1.0, independent of F/D.

1 s« ImE;(W')dW'E—
s „W'—M,s

(12)

where i ranges from 1 to 9 corresponding to the 8
baryon moments and the Z' —+ A. transition moment and
s; is the lowest threshold of the photomeson-production
amplitude contributing to the ith moment. For a given
intermediate state

III. CALCULATION OF THE MAGNETIC
MOMENTS

Next we take in account the nondegeneracy of the
mass spectrum of the baryons and mesons neglecting
the electromagnetic splittings. From the dispersion in-
tegral we compute the moments

one Ands
Ers= (er—es) (g'/47r) (lnA/4s) (9) II11E12(W ) (g /4s)ps(W )F12(W WT ) )

for the threshold contribution of one intermediate state
to the baryon moment. Summing over all possible inter-
mediate 3-PS states and taking into account the correct
isotopic-spin factors we obtain for the anomalous mo-
ments of the baryons and the Z'-+As+& transition
moment:

K(p) =c(2,g sr+ggz'+gzz'),
E(rs) = c ( 2g.g+2gzzs), —
K(A) =c( gaz'+haz'), —

E(~)=c(—gz-'-2gzz'- gs-'),
E(~')= (-g. '+h. ),
E(~') =c(gz-'+ga-'),
E(" ) =c(—hzz' —haz' —2gz '),
E(')=c(—2hzzs+2gg '),

E(&')A) =c ( gzzgaz+hzzha—z),

(10)

where c= inA/4s. . From the expressions for the coupling
constants in terms of the F/D ratio' follow the predic-
tions of SU(3) symmetry

E (Z+) =E(p), K(A) =-',E (~),
K(=-') =K( ), K(=--)=K(~-)=-LE(P)+E( )j,
E(Zs) = ——,'E(N), E(Z',A) = —-',v3E(e), (11)

and as a consequence of our model

E(p) = (lnh. /12a ) (10—8 f+16 f ') (gs/47r)

K(e)= (InA/s )2f(f—1)(g'/kr), g'/4s. -15,
~

¹ M. Kroll and M. A. Ruderman, Phys. Rev. 93, 1, 233
(1954).

s A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963),
Appendix I.

and we evaluate the contribution from the pole terms
Frs(W') at threshold W'= Wr' so as not to emphasize
the high-energy region. This term depends on the masses
M~, M2, and p, the charges e~ and e2 and the anomalous
moments E~ and E2 of the contributing states. If we
include the energy dependence given by the pole terms,
we obtain results for the nucleon moments which are in
disagreement with experiments. This is to be expected
since away from threshold the pole terms need not
approximate the exact amplitude. The major contribu-
tion to symmetry breaking arises as a consequence of
the nondegeneracy of the thresholds of the competing
processes. Since F» is a constant we may perform the
integral over the phase-space factor prs(W') and obtain
from Kq. (12) the equation for the moments in broken
SU(3)

9

E;=F+Q AgEy, (13)

where P; arises from the electric interactions and A;;
from the anomalous moment interactions in the photo-
meson-production amplitude. For the 8-PS coupling
constants we assume the SU(3) symmetric values which
give all the coupling constants in terms of (g ~/4s-)

15.0 and f. There are two adjustable input param-
eters: h., the cutoff, chosen so as to approximately
reproduce the observed, nucleon moments, and f. In
the degenerate case with all baryon masses equal and
all meson masses equal the solutions E; of Eq. (13)
recover the complete symmetry )Eq. (10)j. With the
baryon and meson masses set to their experimental
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preserved while the Okubo relation' p(Z'A) = —sC3
X[p(Z )+3p(A) —2p( ') —2p(e)$ obtained by includ-
ing octet transformation properties to the current
operator St'+Sts" is not preserved in our calculation
since we have included all orders in the baryon and
meson mass splittings.

In conclusion, we remark that this calculation repre-
sents a erst approximation to a more realistic calcula-
tion that includes the effects of symmetry breakings on
the 8-PS coupling constants presumably determined
through a bootstrap mechanism. "An improved calcu-
lation would include the energy dependence of the full
photorneson production amplitudes and higher-mass
baryon-meson states. The primary success of the present
calculation rests on the correct estimation of the nucleon
moments on a dynamical basis and agreement with the
measured A moment.
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A =Z.8

FIG. 4. Anomalous magnetic moments as a function of t/D.

values' we obtain the solutions shown in I'"ig. 4 given
as a function of f.

We see that the nucleon moments E(p) —E(e)
1.6 are reproduced within 15%of the observed values

largely independent of f since it is the s S state which
dominates. If we use f=0.6 and A=2.8 then E(A)

0.4E(e) in agreement with the experimental value,
E(A)= —0.5&0.3.s Our calculation of the other mo-
ments indicates a larger violation of the SU(3) sym-
metric predictions: E(p) = 1.5, E(ts) = —1.6, E(A)
= —0.66, E(Z ) = —0.7, E(Z') =0.2, E(Z+) = 1.2, E( )
= —0.1, E( ') = —0.8, E(ZA)=0.75.

The magnitude of the moments depends approxi-
mately logarithmically on h., the cutoff. The sensitivity
of these results on f is indicated in Fig. 4. One can see
that the SU(3) predictions [Eq. (11)j are not well
obeyed. with the exception of those for E(A) and E(Z+)
with f 0.6. The relation E(Z') = s[E(Z+)+E(Z )]
which follows from SU(2) synunetry, ' is, of course,

' We set the mass of any member of an isomultiplet equal to
the average mass and in any diagram involving the Z ~ h. transi-
tion moment we set 3Iy, =My.

W. M. Gibson et al. , in Proceedings of the 12th Annual Inter-
national Conference on High Energy Physics, DNbna, 1964 (Atomiz-
dat, Moscow, 1965).

'R. Marshak, S. Okubo, and G. Sudarshan, Phys. Rev. 106,
599 (1957}.

APPENDIX

The contributions from the pole terms are given by

Et(W') = (2Mt/A t
—') [p,'Mt —AB

—(Mt/2W') (p'At+ —2W'A' —At As )j,
Es(W') = (—M,/2W'A, —')[2A,—As Mt

+(2At /(As+ —ps))(Mtys(3Ws —M s)

—4W'6+MtAs '+4W'MsQt(s))],
Et(Ws) = —(]/2W At—)[A t

—As—+2Wsgs —psAt+)

s(W') = —(Mt/2W'Ms( s+—p'))
X [p'(4W'M tMs Mt'A s+)+—Mt'A s

—4W'Msd, B+4W'Ms'Qt(s)]
where

6=%1—M2,

~l 2 ~ ~~1,2

8= t/t/' —3f1352)

z= (M 2 ps+W2)((M 2 ps+ W2)2 4W2M 2) 1/2

Qt(s) =-,'s ln[(s+1)/(s —1)]—1.
I'or the case p,2=0, 351=%2=M, 8"=M the above ex-
pressions imply

+1 +2 ~) +1 +2

"R. Dashen and S. Frautschi, Phys. Rev. Letters 13, 497
(1964}.


