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Use of Angular-Momentum Tensors*
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The properties of tensor representations are developed for application to angular-momentum problems in
elementary-particle reactions.

I. INTRODUCTION

HIGH-ENERGY resonance X appears, typically,
in production-decay reactions such as

3+I3~X+C+
X~~+b+~+

The experiment yields distributions of energies and
momenta in an ensemble of these events. If some par-
ticles undergo further interactions, e.g. ,

g~g+$+e ~ ~

their spin orientations can be identified. One may then
ask how to analyze the data, systematically and ex-
haustively, to learn the spin and parity of X and fix
other quantities of interest. This is a prototype of the
problems we wish to study.

Angular-momentum considerations are primary in
these problems. One must study pheswsenological de-
scriptions of reactions, that is, descriptions which ex-
press angular-momentum properties (and other sym-
metry properties, according to the situation) explicitly,
but cover our ignorance of dynamical details with un-
determined constants and energy-dependent functions.
I et it be understood that our descriptions of reactions
are always intended to be phenomenological, in this
sense.

The tensor calculus discussed in this paper provides
an alternative to the conventional specification of
angular-momentum states by magnetic quantum num-
bers and the associated apparatus of Clebsch-Gordan
codFicients. ' We believe the tensor approach is especially
suited to problems like the one characterized above. The
formalism bears a more intimate relation to the experi-
mental information than in the conventional approach
and the mathematics necessary to connect a physical
hypothesis with an observed distribution ar- in our
opinion —more easily learned and more rapidly executed.
But this assertion must not be taken as a promise that
all calculations become trivial.

A few spin-parity problems have already been ex-
amined in this spirit. ' The present paper gives a general
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Scienti6c Research, Grant No. AF-AFOSR-232-65.' The 6rst application of tensors to elementary-particle physics
of which we are aware was by W. Rarita and J. Schwinger, Phys.
Rev. 60, 61 (1941). Other applications have been given by C.
Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958) and A. Goldhaber,
thesis, Princeton University, 1964 (unpublished).'C. Zemach, Phys. Rev. 133, B1201 (1964).„wuovo Cimento
32, 1605 {1964).

II. ANGULAR-MOMENTUM STATES AND
REACTION AMPLITUDES

1. Spin Wave Functions for a Particle at Rest

Consider first a particle X of integral spin j at rest.
Its spin state is traditionally described by a wave func-
tion P' where the magnetic quantum number m takes
on 2j+1 integrally spaced values. Ke prefer to repre-
sent the spin state by a tensor of rank j in three-space:

T m1mg" te& )

The ng; are (Cartesian) vector indices. The tensor
must be symmetrical,

T.~ ~ tm ~ ~ am ~ oo T & ~ om ~ ~ ~ m1 ~ ~ ) (2.1)

and traceless,
Tpc ~ ~ sm ~ ~ trna ~ ~ (2.2)

in each pair or indices.
The space of all jth-rank tensors is a j-fold product of

spaces of spin one; hence it is reducible into a sum of
spaces with angular-momentum values ranging from
zero to j. The constraints (2.1) and (2.2) assure that
the spin-j wave functions cannot be so reduced. One
may verify by a simple combinatorial calculation that a
symmetric jth-rank tensor has s(j'+3j+2) inde-
pendent components and that tracelessness imposes
—,(j'—j) constraints leaving 2j+1 independent com-
ponents, as is suitable for spin j.

Now let X have half-integral spin j+-,'—so that j
still represents an integer. We then use a mixed"
tensor

m1mg ~ m~a ) Sls 1) 2) 3) Qf 1) 2 )

with j vector indices and one spinor index n. T~'I must
still be traceless and symmetric with respect to any pair
of vector indices. It must obey the additional constraint

Z(~-)-8"""-- "-,s=o
m, P

or, more compactly written,

(2.3)

account of tensor properties needed in such problems,
plus some extras. The following paper applies the
methods to various resonance reactions.
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Note that a symmetric tensor obeying (2.3) is auto-
matically traceless. A simple combinatorial calculation
shows that when (2.1) and (2.3), and hence (2.2) are
satis6ed, the tensor has 2(j+q)+1 components.

Under a rotation, spinors and vectors transform
according to well-established laws having the form

T(12 & (2.4a)

T' '=E „T'„. (2.4b)

In the rest frame, tensor components with any time-
like indices are identically zero, by (2.9).The remaining

components, bearing only spacelike indices constitute
the three-space tensor already used for the rest-frame
description. One verihes that this tensor has 2j+1 inde-

pendent components in an arbitrary frame either by a
combinatorial calculation or by noting the one-to-one
correspondence to the rest frame where the calculation
has already been done.

To treat spin —, relativistically, we may adopt either
the four-component (Dirac) scheme or the two-

component scheme. In the Dirac approach, the four-
component spinor f and its adjoint f can be decom-

posed into two-component spinors I and e,

The laws implied for tensor transformations are

T /
~ ~ 4 2~,m, ."~; — ~,~,~~,~, ~~;n, & .,n, .-.;) (2.5a)

T'+'l2, ... , '=R, ., R, ,D pT~'", ... ,p. (2.5b. )

Then the spin operator (angular-momentum operator)
for spin j is 8&:

0=( I, @=I,), (2.10a)

(2.10b)

j
SJ= Q S(o)

e~l
(2.6)

related by
s= [e lrj(ko+m)]N.

where S( ' is the spin operator for spin one, operating on
the uth vector index. The matrix elements of the com-
ponents of S&~& are (with k=1)

The signi6cance of e is that, apart from normalization,
it is precisely the spin-~ wave function for the particle
in its rest frame, called T'I2 in part 1.The familiar re-
duction of a covariant spin matrix element to a matrix
element between "upper components" via (2.10b) can
be regarded as the re-expression of the covariant form
into a form which refers to the rest-frame spin com-
ponents of the particles.

In the two-component scheme for spin ~~, the wave
function for a particle in any frame is, of course, a two-
component quantity q . Its relation to the rest-frame
spinor u is

(5'( )„) — f~kmn (2.7)

as is well known. The spin operator for j+~ is

g j+I/2 —S/+1~ (2.8)

(2.11)y=(k„o„/m) '"I,
where 0„=—(1,e) is the familiar set of 2X2 matrices. If
matrix elements are formed with y on the right and y*
on the left, one Lorentz covariant can be made from
matrices in the spin space, namely the four-vector

Now for spin j+-,': If we follow the two-scheme, we
use the tensor

The reason for imbedding a (2j+1)-or [2(j+~~)+1]-
component quantity in a space of higher dimension is
that its transformation character becomes manifest.
The intuition physicists feel in treating vectors and
spinors becomes applicable to systems of higher spin.
Then, if one needs to combine a multitude of momentum
vectors to form states of de6nite orbital angular mo-
mentum, the procedure is more or less obvious by in-
spection once a few basic rules are established. There is
no need to prepare tables of Clebsch-Gordan coeScients.

These basic rules would be even simp1er if we used
tensors built from spinors rather than from vectors.
But then we wouM lose the simple relation to experi-
mental data which is, after all, expressed in terms of
momentum vectors.

k„l"„...=0 (2 9)

2. Covartant Spin Wave Functions

The description of massless particles is taken up in
the next section. For the present, we assume the par-
ticle has a nonzero mass m and hence a rest frame.
Let its four-momentum be k„ in a general frame and
(m, 0,0,0) in the rest frame.

A relativistically covariant description of an integral
spin j is given by a symmetric tensor of rank j in
four-space,

T fifa" f

which is traceless in the Lorentz metric, and transverse
to the particle's four-momentum:

The vector indices are subject to the constraints al-
ready enumerated. In addition, we have the covariant
version of (2.3),

~ T~»2 ...=p. (2.12)

~ T'~1/2 0 (2.13)

We also need the Dirac equation

(yk —m) T~'I'= 0 (2.14)

to distinguish positive energy states in the four-scheme.

If we follow the four-scheme, the tensor is written the
same way, but e ranges from 1 to 4. This method was
used by Rarita and Schwinger. ' The generalization of
(2.3) is
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k„T„=O. (2.15)

The space of the T„'s satisfying (2.15) is three dimen-
sional, as it is for a massive vector particle. But this
space is not irreducible under Lorentz transformations.
In a given Lorentz frame, let 8 be the two-dimensional
part of three-space consisting of the plane perpendicular
to k. T„ is expressible in components as T„=(TO, Ta,e),
where T3 is the component in the direction k and e is in
8. In this representation, k„=(ko,k8,0,0) and ko=k3.
Equation (2.15) implies To= T8. Hence

T fz= —O'C. (2.16)

Thus e c is itself an invariant under a Lorentz trans-
formation, regardless of what happens to Tp T3. The
true spin states of a free photon are vectors in 8. Under
a Lorentz transformation, two things happen: The spin
state is rotated in 8 by some angle o. and the relation of
8 to actual physical space, which depends on k, also
changes. The reason for imbedding 8 in the higher di-
mensional space of the T„'s is as before: The trans-
formation properties are made manifest and the com-
bination of photon spin with momentum vectors to
make invariants is simpli6ed.

As is well known, 8 is also reducible. If e~, c2 are a
basis in 8 (states of linear polarization) then the helicity
states e+———(e~ +ie )/2&2, e =(ei ie~)/v—2 (states of
circular polarization) transform according to

c+—+e+' e+, e —+e ' c— (2.17)

under a Lorentz transformation.
In building invariants to describe a reaction, one

must take care to combine T„with momenta in such a
way that the irrelevant components To T3 do not
enter. This means one must use, not T„directly, ' but
rather the electromagnetic held tensor

(2.18)

In a three-space description, F„„breaks down into 2
three-vectors:

E—= (For,F02,Fpa) =kpe, E k=0; (2.19a)

H—= (F2,,F,&,Fr2) =k & e, H k=0. (2.19b)

The most general way photon spin mixes with photon
momentum in a three-space description is then expres-
sible as a sum over two kinds of multipole terms, the
electricmultipoleskoT'(kk. . ke) and the magnetic mul-

3 One can also use as an invariant j„T„,where j„is a conserved
current, i.e., j+„=0.In a phenomenologi*cal description, such a
j„can be written j„=)k„+C„„k„,where C„, is antisymmetric,
whencej fsTfs~ )gfspPpp.

3. Spin Wave Functions for Particles of Zero Mass

For orientation purposes, let us review the situation
for vector particles of zero mass, i.e., photons. We be-
gin to describe the spin by a four-vector T„,orthogonal
to the momentum

tipoles T'(k kk xe), with parities (—1)'and (—1)~',
respectively. (For notation, see Sec. III.)

There is nothing particularly novel in our conclusions
on how to describe photon interactions. However, we
do not know of any comparable discussion in the
elementary-particle literature which makes these points
without going into the complexities of 6eld theory, or
other dynamical questions.

The generalization for massless particles of arbitrary
spin, should the need for it arise, is now simple. One
uses, as in the massive case, a tensor T'». ..„,. (or
T~'"»...„, ) with the aforementioned constraints. But
only the components with all p; referring to one of the
directions in the space 8 are relevant to the spin repre-
sentation. With this added constraint, there are only
two independent tensor components for any spin. In
fact, if spacelike indices are expressed in spherical
coordinates +, —,0 instead of 1, 2, 3 (see Sec. VI for
details), it is easily seen that only the positive and nega-
tive helicity components T'++...+ and T&' ... (or
T~'"++...+,~r~m and T~'~' ... ~&2) are nonzero. Under
a Lorentz transformation, these are multiplied by
e+" (or e+'&~"'&~)

To build a covariant description of a reaction in
which the massless particle participates, one uses the
generalization of (2.18), introducing a new set of
indices v~ v;. In a three-space description, there are
various types of multipoles. For spin 2, the covariant
tensor would be written T»». There is a corresponding
symmetric traceless three-space dyadic T=—T, , with
constraints k T=T.R=O. There are three species of
multipole, built out of k02T, ko(kXT), and kXTXk.

4. Relativity Is Not an Essential Complication

We stress a point already made for spin-2 but valid
for any spin (for massive particles): There is a simple
linear relation expressing a covariant tensor in an
arbitrary frame in terms of the corresponding rest-
frame tensor. To construct the relation, one needs to
know only the Lorentz transformation law for vectors
and, for half-integral spins, either (2.10) or (2.11).

Let us imagine a reaction amplitude M expressed,
6rst of all, in covariant form; it will be a Lorentz-
invariant function of the four-momenta of the reaction
and the covariant spin tensors. We are then at liberty to
refer the momenta to the CMF (center-of-mass frame)
of the reaction and to refer the tensor specifying the
spin of each particle to that particle's RF (rest frame).
The spin tensors for massless particles can be broken up
into multipole contributions referred to the CMF.
Ke shall say the amplitude is being described in terms
of "proper" variables. Alternatively, in a phenome-
nological description, one may as well start out with a
representation of the amplitude in terms of center-of-
mass momenta and rest-frame spin tensors. One of the
advantages (to be spelled out later) is that the phase
space for a cascade of reactions becomes the product of
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the phase spaces for the component reactions, each re-
ferred to its own center of mass.

The description of a reaction is then in terms of vec-
tors and tensors in three-space and has a nonrelativistic
appearance, although remaining relativistically correct.
No information regarding parity or angular momentum
is lost. On the other hand, nonrelativistic analyses al-
ready in the literatur- the nucleon-nucleon polariza-
tion studies, for exampl-- do not become incorrect at
high energies, but merely need a proper interpretation.
If the mention of spins and momenta is interpreted
according to the above rule, the work will generally
be valid relativistically without alteration. In this
sense we may say that relativity is not an essential
complication.

One pitfall in the application of this procedure ex-
perimentally is worth emphasizing. The relationship be-
tween the coordinate axes in the CMF and the axes in
the RF of the particle whose spin is of interest —call it
I'—should be that of the pure Lorentz transformation
(velocity transformation) defined by the Y velocity in
the CMF. All momentum vectors will be measured 6rst
in a laboratory frame. They should then be transformed
to the CMF and from there to the YRF. If one short-
cuts this process by transforming directly from lab to
YRF, the rest frame achieved diGers from the desired
one by a rotation. This rotation depends on the relation
of the lab frame to the other frames and is not relevant
to the physics of the problem.

The advantages of using what we call proper variables
were 6rst recognized by Stapp. ' They have also been
exploited by R. Gatto and others.

IIL BASIC TENSOR PROPERTIES

1. Conventions

From now on, "tensor" will mean three-space tensor
rather than covariant tensor. For neatness, we may write
T&~23... rather than T&, , ,.... Alternatively, a single
symbol m can represent a set of indices (mim2 . m;).
The spinor index will ordinarily be suppressed. The
indices j and m will often be suppressed if no ambiguity
results. A vector T' can also be indicated by bold
face: T.

These conventions —or, rather, habits —concerning
indices and their suppression will be freely applied to
operators 0' ~ on the tensors.

The tensor product of two tensors of equal rank is ex-
pressed by a colon:

T':A —=T'jga. ..,A 'ggs. ..,.
T',„,...„,A'„, ,.. , (3—.1). . . .

A tensor that does not satisfy one or more of the re-
quired constraints will be called "raw. " In contrast, a

4H. P. Stapp, Lawrence Radiation Laboratory Report No.
UCRL 8096, i95'7 (~pubhshed).

2. Projection Operators

To make a raw tensor T' symmetric, we apply the
projection operator (P,~:

(f". T'u ,= (j!)".' Zp T'u. -, (3.3)

The factorial ensures that (P, has the normalization of a
projection; (P,'= (P,. Moreover (P,T&= T& if T& is already
symmetric.

Let (P&~ be the operator that makes a raw tensor
traceless. For small j, the efFect of (P& on tensors which
are already symmetric is quite simple:

+tT12 T12 3~12T ~ y

(PtT123 T1'28 (612T"8+~13T"2+b23T ~ 1)

(3.4)

(3.5)

(ItT12$4 T1234 (1/7)PP 612Ttttt$4

+ (1/35)(612634+813(124+(114528)Tanktt ~ (3.6)

The general formula (for symmetric T') is

(PttT 12...,——T'12. ..;—(2j—1)—' pP buT..8...;
+(2j—1) '(2j—3) 'PpBuh34T„„»3. ..;—etC. (3.7)

as is verified by taking a trace of (3.7) and counting care-
fully. These equations are, of course, consistent with

Let (P,' be the projection that secures (2.3). If Tt'+'('
is already traceless and symmetric, it represents at most
an angular-momentum mixture of j+-,' and j—2. Then
we have the familiar expression

j+1+e S&

g g'i+~/2— Ti+& /~

2j+1
In view of (2.7), this can be written out

(3.8)

j+1
p Ti+~/2— Ti+j /2

2j+1-
z

+ (48(11)(Tt'+1/2+43(2) +Tt'+1(2+. . .) (3 9)j+1

T~'that does satisfy them is "pure. "A tensor is presumed
to be pure if no adjective is supplied.

If a 3X3 matrix 0 q operates on the nth index of
T&, we can write, without subscripts, 0&"~T&. Similarly
a&"& T& denotes the contraction of a vector a with the
nth index of T'. Of course, the superscript "(33)" is
unnecessary here if T& is symmetric.

The sign pP preceding an indexed quantity signifies
a summation over all essentially diferent permutations.
Thus

QP A 12T 34 A 12T 84+A 18T 24+A 14T 28

+A'23T'14+A'24T'13+A'34T'12. (3.2)

A contraction of, say, the erst two indices of a raw
tensor T$234 could be expressed as T„34or as T..34.
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For the simplest case of spin ~3, we have, if the often un-

necessary normalization factor is dropped,
over X-spin states is proportional to

O',T= I+pie x T

which clearly obeys a" (6',T) =0.
If the operator p '

(3.10) X spin

(=A*:A if A is pure).

4. Tensors from Vectors

(3.18)

Ai-&/2 —g .Ti+&/2 (3.12)

is pure j—2 as it obeys all constraints without the
application of (P,.

These projections commute with one another. Put-
ting them together, we get total projections

(P'=(P '(Pg' and (P~'"=6' '6' '(P ' (3 13)

which reduce arbitrary raw tensors to pure tensors. Re-
call that the trace of a projection equals the dimension of
the subspace onto which it projects:

(3.11)

is applied to this T'+'/', the result has j vector indices
but represents pure spin j——,'.

There is yet another useful way to generate a pure
half-integral spin. Notice that with T~'/' traceless and
symmetric, but not transverse to e, the tensor

Given a family of vectors a, b, c, , one can con-
struct a raw tensor E.' of integral spin by stringing the
vectors along with repetitions

%234...,(abbe .d) = a~b2b3c4 (3.19)

and then a pure tensor by applying the projection

T&(abb'c d) =6"R'(abbe d) .

For example,

(3.20)

T $2(ab) = —', (a&b2+ amb&) —-', b&pa b . (3.21)

The total number of difFerent tensors of rank j ob-
tainable from a set of vectors in this way is easily
counted. If the vectors represent momenta of particles,
the tensors represent difFerent orbital-angular-mo-
mentum configurations. To obtain all possible orbital
configurations, one must add to the list of momenta the
various cross products among them.

Tra»=g(6»} „=2q+1 (3.14a) S. Tensors from One Vector

»6"+'"=P (6") ..= 2(j+-,')+1. (3.14b)
tn, a

Finally, consider the product of pure tensors A', B~
derived from raw tensors A&, B&

A*:8=A~:(P,(P,B (or A*:(P,(P((P,B)
=A*:B=A*:B. (3.15)

%e see that a constraint need not be imposed on both
tensors as a projection need only be used once. If 8 is
pure, only the raw version of A is required. Qr, if A is
symmetric and 8 is traceless, one need not enforce sym-
metry on 8 or tracelessness on A, and so on. This princi-
ple allows useful simplifications in calculations.

3. Sums over Spin

Let T' be the wave function for a spin state of particle
X. One naturally chooses for it a normalization of unity

(3.16)

The corresponding formula for the outerproduct summed
over all spin states, 2j+1 in number, is

2' spin

Ti Ti,+= (gv') (3.17)

Note that (3.17) is consistent with (3.16) and (3.14).
If M =T*:A is the amplitude for a reaction in which
X appears as a product, then the counting rate, summed

T~(n): T'(p) =R'(n): (PjZ'(p) = cJP,(x),
S~ I1~ P (3.22)

with the constant c; 6xed by the condition P,(1)= 1. If
we admit that we have seen the Legendre polynomials
before, the simplest way of obtaining c; is to compare
the leading term in x on the left of (3.22), namely x',
with the known leading term of P,(x); this yields

c = 2'(i')'/(2i) '=i'/(2i —1)" (3 23)

Alternatively, c; can be derived directly (see Sec. VI.4)
and all the terms of P,(x) can be inferred from the
properties of 6'~' whose explicit form is already known.

As analogs of (3.16), (3.17), we have

T'(P):T'(P) =c (3.24)

1 Cg

T'-(P)T'- (P)de.= . (6"}-' (3 25)
4n. 2j+1

The coeflicient in (3.25) is chosen so that if we set m= ra'
and sum over m, we have consistency with (3.24) and
(3.14a). If (3.25) is multiplied by T' (m)T' (n) and
summed over m, m' the orthonormality formula for
Legendre polynomials is obtained,

If the tensors are built from a single vector p, we write
E'(p) and T'(p) rather than E'(pp p), T'(pp p).

Now let p, n be unit vectors and dQ„= sin8d8dq be the
element of solid angle for p. The Legendre polynomial
can be defined by
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These formulas are sometimes useful:

T'(p): T"(p)= (c~/c s)™(p)(for j~k), (3.26)

T'(»" -pn "n).T'(p) =c &i(~)
(l is the number of n's), (3.2/)

(2j+1)(p n)T'(p) = jT'(pp .pn)

+(2j+1) T"'(p). (3»)
The last of these can be proved by (a) setting p=n to
get one relation on the coefficients and (b) multiplying
by T'(p) to get another. The Legendre recursion relation
follows if (3.28) is multiplied by T'(n).

To express the combination of orbital angular mo-
mentum with a two-component spinor u, we write

V'ls(abc. . . I)
and, simply, T~'Is(a, N) if a=b=c= . Then

T~'"(p I)=O'.T'(p)N
= (2j+1) '((j+1)T'(p)

+jiT&(p. ~ p e xp))N. (3.29)

6. Cou»Hng of Angular Momenta

If the components of two tensors T&, U~ of integral
spin are multiplied together, we have a raw tensor of
rank j+k

7' TTIc
m&mq "haft, n1nq "nk.

Suppose we contract over zero, one, two, .pairs of
indices, one of T&, the other of U~ so that a total of /

indices remain, and then apply the projection (P'

to these. This produces a state of spin l from T& and
U~, where / has one of the values j+k, j+k—2,
j+k—4,

~ J—k~. Alternatively, we can apply the
antisymmetric symbol e '"', then contract over some
number of the remaining indices and apply the projec-
tion; this produces states of /= j+k—1, j+k—3, etc.
These rules can be expressed in terms of appropriate
symbols for the projection operators, and these symbols
would then be the couphng coeKcients (Clebsch-Gordan
coefficients) for integral angular momentum in the
tensor notation. Our rules do not give the over-all
normalization of the coefFicients. The calculation of the
normalizations is complicated and we avoid it here.

If we combine two half-integral spins

V'i+&/2 y p~i/2
srtl ssslls ~ sstsf cg ~ 'sg ~ ~ ~ 1tgP )

we can contract over e, P and treat the vector indices
as before; this gives all compound states except those of
the highest spin j+k+1. To obtain this highest state,
we combine n, P into a vector by applying (Ce„) s
where

=( ', .')
and then apply the projection without any contractions.

Finally, there is the mixed case

Pj+&/2 77/cU

By treating the vector indices as before and applying
the suitable projection, including (P., we get all com-

pound spin states if j k. But if j&k, we miss the lowest

one, of spin k —j—~. The latter is obtained by making j
contractions and then taking the scalar product of e
with one of the remaining indices.

These rules are generally quite simple to apply
in dealing with systems of low spin and often serve
as a painless substitute for tables of Clebsch-Gordan
coeKclents.

Tr(T'(S) T"'(S))=0. (4.2)

The corresponding operator trace for k=k' dehnes a
normalization constant,

Tr(T" (S)T' (S))=6'"' des. (4.3)

Now dgI, is a polynomial of degree k in 8', and vanishes
for spin quantum numbers J'& ~k. In the classical limit
(Ss ~DO or k~0), Eq (43) m. ust be consistent with
T"(p):T'(p) =cs Hence.

2J+1
des= S'(S'—-'X-')

2k+1
k —1 k+1

X(S'—1X2) . S'—( )( ) c„

cs (2J+k+1)!
2—2k

2k+1 (2J—k)!
(4.4)

One may verify that the family of operators T'(S),
k=0, 1, 2, , 2J have, in toto, (2J+1)' independent
components and are therefore suitable as a basis for
matrices operating on a spin-J system. They are, of
course, the analogs of the well-known "irreducible
tensorial operators. "

The application we have in mind is the following. Let
N be the amplitude for a reaction in which particle

IV. TENSOR OPERATORS

1. De&~tion of a Tensor Oyeratox

Let S be the spin operator for a system of spin J
(integral or half-integral) so that S'=J(J+1). Let
T" (S) be the traceless symmetric tensor operator
built from S, that is,

T', ... ,(S)=6s(S,S, . 5„„). (4.1)

A matrix element (T" (S)) ~ ~ of a component of
Ts(S) connects the three spin states (J,m'), (J,sos"),
and (k,sa) and so is merely a special notation for a
coupling coefficient. This shows that Ts(S) is identically
zero for k&2J.

Moreover, for k/k', we have
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Iof spin Jparticipates. Then the density matrix of X is

2J
= P dpi 'A':(T'(S)) (4.6)

Let the density matrix be expanded in tensor operators

are substantially the same as ordinary Legendre func-

tions, the precise relation being P (x+Si)=(QS'")
XP (x). P (x) vanishes for n) 2J when x takes on one
of the eigenvalues J, J—1, —J.

The standard Legendre recursion relation is

(2n+1)xP„(x)= (n+1)P„+i(x)+nP~ i(x). (4.11)

Then, by (4.3)
A"=Tr{&iT"(S)}

=M~*:T"(S)M~. (4.7)

The h.~ are the "tensor moments" of the density
matrix X.

Each T" (S) is Hermitian as an operator. The lowest
order tensors are

2"'(S)= 1 T'(S)=S

T'u(S) = s (&i&i+5's5'i) —sbuS',

1
T'u»(S) =—g p S&Ski

3f

(4.8a)

(4.8b)

5(S s)(81258+bu52+ 4351) 1 (4 8c)

2. Operator Legendre Functions

The previous section contains all that is needed of the
theory of tensor operators for our contemplated analyses
of reactions. But having dined them, we should ex-
plain how they can be constructed.

Tensor operator formulas can often be deduced by
making appropriate comparisons with ordinary tensor
formulas. For example S T"(S) must be proportional
to T" '(S). The exact formula is

S T"(S)=(n/(2n —1))(S'——,'(n' —1))T" '(S) (4.9)

T u»4(S) =—Zp +a52564 (1/7)(S' —&i)Pz 812~354
4f

+(1/35)S (S —2)(bubi4+bub24+bi482i) . (4.8d)

Notice that because of the noncommutivity of diGerent
components of S, Ti(S) is not the same function of S
that T'(y) is of y.

The explicit forms of T"(S) will not ordinarily be
needed. It will be sufhcient to consider matrix elements
of (ni S)(ni. S)(ni S) between M~~ and M~ and
then perform the projections on the resulting functions
of ng, n2, n3

2&.
'& "&u. ..„——(n!)-' Qp 5&Si ~ S .

To construct T&"&(S) explicitly, we must set

(4.13)

T'"&in. ..a(S) =2&.""&u...n —oi gp bu&'" "84" a

+am P~ hub, &&"—'&&6...„—etc. (4.14)

and then determine the coe%cients u, as functions of
S'. The scalar product oi' (4.14) with (p) i(p) i(p)i . .(p)„
1s

c„P„(x)=x" ,'n(n —1)—ai(x"—'/1!)
+-', n(n 1)-,'(n—2)(n —3)ai(—x" 4/2!) —etc —(4.1.5)

For a given n, the series expansion of P„can be deduced
from the recursion relation (4.12). The coefficients a;
necessary for (4.14) are then obtained by comparison
with (4.15). We obtained (4.8) in this way.

3. An Expansion for the Rotation Operator

The operator which rotates a system of spin J about
an axis y through an angle 8 is exp(i8y S). For J=-,',
this simpli6es to

e"&&'s& = cos-', &+i(e y) sin-,'8. (4.16)

More generally, there will be a finite expansion of the
form

2Jc'"'= E (f)"(2n+ 1)i.(8)P-(y S) (417)

with the functions J (8) to be determined. We have

Then, by the same logic that led to (4.9), the operator
version is

(2n+1)xP„(x)= (n+1)P.+i(x)
+n(S' ——,'(n' —1))P i(x) . (4.12)

The P 's agree with the I' 's for e= 0, 1, 2, but the non-

commutivity of components of S makes a difference for
e~ 3.

Let E(") represent the symmetrized product of I
components of S, i.e.,

because (4.9) must be consistent with (3.28) when
h —+ 0, and because T"(S) vanishes for n= 2J+1 I and
hence for J(J+1)=-'(n' —1)j while T" '(S) does not.

Operator Legendre functions P„(x)may be defined by

T-(y): T"(S)=c~.(x), (4.10)

1 1 +&j (8)— Tr{ci&&y s} Q cimt

2J+1 2J+1 e —z

1 sin(J+ is)8

2J+1 sin
(4.18)

where y is a unit vector and @=y S. For A ~ 0, they Diff'erentiating (4.17) with respect to 8 and using (4.12),



CHARLES ZEMACH

Tmxz I.Reduction of tensor products to Legendre functions
and ordinary scalar products for tensors of integral spin.

f. T~(y):T&{q}=cpZg(s); s=y q, c;=jI/(2j —f)!t

2 T'(y):T'(q "qa}=ej 'f(p a)E.'(~) —(q a)E-I'(~))
3 T'(y):T'(q

"qab}=conj

'(j—1) '{(y a)(p b)Ej"
—L(p a) (q b)+(p b) (q a) jE&-I"
+(q a) (q b}E, g"—{a b)E, I')

4. T'(p pb):T'(q". qa) =c&j~(t:(y a)(q.b)+(p b)(q'a) jEj"
—r (q.a)(q b}+(y a)(p b}jE-I"+(a b)E'
—(2j+1)(q a}(p b}E&-I )

5. T&(y):T&(p}=c,
6. T (p).-T (y-"pa) =;(a.y)

&. T'(y" pb}:T'(y" pa)
=c, (2j) '{{j+f)(a.b)+(j—1)(p b)(p a})

T'(p' 'yb):T'(y' 'pala~}=4j(2j) 'f(j—2)(y aI)(p'a)(p'b)
+(j+f)I (p am)(b al)+{y aI)(b a~)j—j{y b)(al. a~) )

j,= js(k)=k ' sink (4.21)

which is the zeroth-order spherical Bessel function.
Also, (4.20) becomes

(2n+1)j '(k)=nj (k)—(n+1)j+t(k) (4.22)

which is the Bessel recursion formula. Kquation (4.1/)
becomes the familiar relation

we get

2(').(2 +1)(d/d8)j-(8)P-= y S" '
2J

= Q s"+'j.(8)[(n+1)P„+t
n=o

+(n —1)[S'——,'(n' —1)]P„ t} (4.19)
whence

(2n+1)(d/d8)j (8)=nj. t(8)
—(n —l)(S'—-'(n' —1))j„+t(8). (4.20)

This allows the j 's to be calculated from jo.
Finally, set (y S) —+ Js, 8 —+ k/J, j (8) ~J "j„(k)

and let J~ through integral values. Then

More systematic methods are appropriate for certain
classes of matrix elements that occur frequently. We
have already noted the relation

T'(y): T'(«) =c»(*)I pI'I el' (5.1)

xP =P, t'+jP, =P;~t' (j+1)P—;
are often useful in such calculations. We get

(5.3)

jT'(y):T'(« "«a)=c [(a y)P '+(«a)(JP —xP')j
=c [(a y)»' —(a «)P,-t'j (54)

Other relations follow by repeated application of this
differential method. See, for example, Kqs. (3) and (4),
of Table l.

Formulas like these, but with y=q are worth con-
sidering separately. Note that

T'(y) T'(y "yatas" a )
= T"(y):T"(at» a-)(c,/c-)(p')

' " (5 5)

The constant in (5.5) is determined by the condition
that the equation be valid for a~——a2 ——. =a~=p.
Setting y —+ p+b and proceeding as before, we 6nd

jT'(y" yb):T'(y" y«" a.)
+(j—n)T'(y): T'(y ybat a-)
= (c,/c. )(nT"(y .b):T"( ata„)

+2(j—n)y. bT"(y): T"( ata„)}. (5.6)

written here without the assumption that p,q are unit
vectors. Other formulas follow from this one by a
differential technique. Set «~ «+a in (5.1) and ex-

pand in powers of a. Then

T'(y): LT'(«)+ jT'(« "«a)+ "j
=c;(P;+[a p x(a p—)jP,'+ -}

&&{1+j(4a)/9+" }pe (5.2)

Now equate coeKcients of a and let y,q again be unit
vectors. The formulas

"*=Z()"(2 +1)j (k)P-().
ss~o

Equations (5) through (8) of Table I are special cases
(4 23) of these formulas.

It is amusing that (4.16) and (4.23) are both special Tsnxz II. Reduction of tensor products to Legendre functions

cases of a single operator equation. and ordinary scalar products for tensors of half-integral spin.

V. CALCULATION OF TENSOR PRODUCTS

l. Integral Spin. (Table I)

When angular-momentum con6gurations are ex-
pressed in terms of tensors, amplitudes and probabilities
will be given by scalar products of tensors. For spins
which are not too large, the tensors can be written out
explicitly and the products directly calculated. This
procedure represents a simple extension of the ordinary
methods of vector analysis.

f. T&(y):{n S)T&(q)=c, (—in pxq}E (x)
2. T8(p}:(n S}T'(y}=0
3. T&(p): (n S}T&(y.~ .pa) =c;($i)(j+1)n a)(p
4. T ( ~ - ~ b)( ~ S)T'( ~ y )= (2') '('+1)

X((j—f)L(n pxb)(p a) —(p b)(n pxa)j —n. bxa}
Tp+I/O (p)+ ~ T&+1/s (q)

=c;(2j+1) I (j+f}P;(x)—i(e.y Xq)E (x)j
6. T'+'~(p)*:T'+'~(p) =c (2j+1) '(j+1)
/. TI+»(p)~:T&+'&(p ~ .pa}=c"{2j+1)'(j+1)(y a+go a xp}
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2. Half-Integral Spin. (Table II)

The interpretation of the angular-momentum opera-
tor S as a generator of rotations means that

T'(y):SU'= —i(y x Vs){T(y): U )

for any O'. In particular

T'(p) (n S)T'(q) = i—(n p x q)»'(x) c (5 8)

Alternatively, it follows from (2.6) that

(n S)T&(q)= jT&(q qinxq). (5.9)

This leads again to (5.8) via (5.4).
Formulas (3) and (4) of Table II are obtained by

setting

(n S)T (p ya)

=(j—1)T'(p in xy a)+T'(y pin xa) (5.10)

and applying Table I.
We have already used the notation

T~'& (ab c; u) = (P,T&'(ab c)
~
u) (5.11)

to indicate the combination of an integral spin j with a
spinor of spin ~ to form j+—,'.The complex-conjugate re-
lation (with a different spinor) is

(s
~

T'(ab c)(P = T~'"(ab c; s&)k (5.12)

since E' is Hermitian. In what follows, we write
T'+'~'(ab. c),T&'+'"(p), etc. , without explicitly men-
tioning the spinor. Then T&+'&'(ab )*: T&'+(&sa'b' )
is a 2X2 matrix in spin space. For example,

T~'"(y)*:T '"(q) = T'(y):6' T'(q)

j+1 ia p xq».(x) — »'(x) c, . (5.13)
2j+1 2j+1

The remainder of Table II follows directly.

3. Matrix Elements of Tensor Operators. (Table III)

We first obtain an expression for T'(y): T"(S)T'(q).
%'e begin by considering the quantity

Z=T (p):(ns ~ S)(ns S) "(n'S)T (q) (5.14)

and then make Z traceless and symmetric with respect
to the n's. Note that

Z = (nk ( iy x v„—)nk s ( ip x v,—)
Xns (—iy x V~))c;»(x). (5.15)

Now ns (—iy x V„) applied to any f(x) yields Xsj'(x)
where Xs= —in& (pxq). Also, ns ( iy x V„)—applied
to Xs causes p in Xs to be replaced by —i(p x ns) and
yields X»,

»——(—i)'(y xns) (nsxq)
=(—i)'$(p. ns)(q ns) —(ns ns)p. q]. (5.16)

The n~ n2 part can be dropped because we intend to
make the result traceless in the n's. Similarly, the re-

where
T'(p): T'"(S)T'(p) =s -T'"(p), (5.22)

o, = (—1)"c,P,&»(1)(2n—1)!!. (5.23)

By applying the differential technique to (5.22) or, if
necessary, to (5.19), (5.20), one obtains formulas (2)
through (6) of Table III.

So far in this section, we have written S for the spin
operator on systems of spin j; that is S—=S~. Noting
again that S~'&s=S'+-sssr, we have

k
Tk(Sj+&/s) —Tk(SP+ so) Tk(Ss)+ Tk(Sj. . .Sjo) (5 24)

2

since any tensors with two or more e's must vanish.
Moreover,

where
T '"(y)=—6'.T'(y)—=T'(p" pp'), (5.25)

y'= L(j+1)p+ji«p](2j+1) ' (5 26)

With these representations and (2), (5) of Table III,
one can derive the remaining formulas of this table.

The results in Table III will be used in the moment
analyses of reactions in which a resonance decays into

suit of ns ( —ip x V~) on X» can be dropped entirely.
One obtains, in a more or less obvious notation,

c, 'Z—=XsXs Xk»&k&(x)+Q X»Xs
X&' "(x)+Q X»XssXsXs' '.Xkl'. &k '&+

+Q X»XssXss P" (or P. 1&" +'
&) (5 17)

Here, P,&"& means the nth derivative of P;. Counting
carefully, we find that (we put p x q= r)

T (p): T"(S)T (q) = (—s)kc;

X (T"(r)»&"&(x)+T'(rr .rpq)(-'k(k —1))P &~'&(x)

+T'(r" ryqyq)(lk(k —1))(s(k—2)(k—3))
X(2!) 'P &k '&(x)+ . ) (5.18)

with —,'k terms in the sum if k is even and s(k+1) terms
if k is odd. %e can also write the series starting from
the other end;

T'(p) T'"(S)T'(q)
= (—1)"c (2n —1)"LT'"(pqpq" yq)f' ("&(x)

+nT'"(yqI&q "yqy xqy xq)~'"+"(x)+" ] (5»)
and

T'(p): T'" '(S)T'(q)
= (—1)"c (2 —1)"LT'" '(pqyq "yqp xq)»'"'(*)
+snTs" '(yq" yqpxqyxqyxq)»'"+s&(x)+" ].

(5.20)

The value of the nth derivative of the Legendre
function at x=1 is

(j+n)! 1
»'"&(I)= . (5.21)

(j n)! 2—"n!

Thus, putting y= q in (5.19) yields
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Tmr, E III. Matrix elements of tensor operators.

1. T&'(p):7o"(S)V'(p)=a;„P™(y); (g„given in Eq. (5.23)j
2. »'(y):T'"(S)»(y" ya) =+»{(~/j)T'"(y" m)

+((j—~)/j) (y.~)T'"(y) )
3. T'(y yb): T'"(S)T'(y ya) =t2' ((+/j(+1))

XI (j+&}T'"(y."~b)—(j—~}(y b) T'"(y "y)
—(j-~)(p }&" (y".yb) j+((j—+) (2++&)/2j'(&+1))
XT'"(y}C,(j+~+1)a b+(j——1)(y') (y b)j)

4 T'(p):T'" '(S)T'(p) =0
5. Tg{p) +»-1($}T&(y« ~ pg) = egg +os 1{y ~ yp Xg)

6. T'( -.yb):T'"-'(S)T'(y .ya) =~ ((( —1)/j)
Xp'"-'(p" y&pxn) —&" '(p" ypx aH
q((1—»)ij)L(y'b)&"- (p "pp xe)

Tea—1(y, , p y Xb) (yea)]+ j-1TIlos-1{p.~ 'p ~ X) j
7. Tg+'w(y)': T'"(S)T'+»(y) =+8 ((j+&+1)/(2j+1)}T'"(y)
8 Ti+1~(y)+:Dos 1(S)Ty'+1~(y) =gja((2g —1)(j+n)/2S(2j+1)}

XI (j+1}+™(y~ y')+(e —j—1)(y'e)T (p)j

two particles with spins of zero and one-half or spins of
zero and one. The derivations given are of a less ele-

mentary nature than those of the preceding tables, but
they express the data of the moment analysis in almost
final form. Simpler derivations, which do not give the
over-all normalizations, may suggest themselves to the
reader. Formulas (5) and (7) are obvious by inspection,
for example, apart from normalization. In fact, we shall
not Inake use of the norlnalizations, but Inerely wished
to show how they might be obtained.

n+= —(v2) '(n'+in')

n'= n'

n-= (V2) '(n' —in') .

(6.1a)

(6.1b)

(6.1c)

The sPherical comPonents of y are Pjr=(n~)o y,
M=+ 0 —'

p+= (n+)'y= (v2)-'(p—g ipo) = ——(v2)-' sm8e "
(6.2a)

p, = (n') *.y =po ——cos8 (6.2b)

p = (n )* y= (v2)-'—(pg+ipo) = (~2-' sin8 e+'&. (6.2c)

Scalar products behave as follows:

Vt. CONNECTION BETWEEN TENSORS AND
THE FUNCTIONS OP THE ROTATION

GROUP

1. Spherical Coor&mates

Let n', n', and n' be mutually orthonormal basis vec-
tors. The Cartesian components of a unit vector p in this
basis are just p„=n y with p~ ——sin8 cosy, etc.

The following set of basis vectors is often called
"spherical:"

For half-integral spins, of course, %=M+—M ~~ de-
pending on the spinor index.

Any two tensor's components, like T~ and T«, which
have the same M must then be proportional. In fact, by
symmetry and tracelessness (g~~'TMor ——0) we
infer T~...=T~...= g T()()... . (6 5)

For half-integral spins, e T~'~'=0 gives the additional
proportion

0 ~ ~,+1/2 ~2T +",T I/2 ~ (6.6)

2. Spherical Harmonics

Let y be a unit vector, with components p~ = (n~) o y
and angular coordinates 8, y, as above. The spherical
harmonic I';~(8, e) is defined as the wave function of
state

~
jM) in the 8,o representation, i.e.,

F;~(8,e)=(8,e ~
jM). (6.7)

Our T'(y) has been defined the other way around; thus

T'~o jr+ or (y) (jM~8, e), M=M+ M. (6.8)—
One last elaboration of the tensor notation is going to

be useful here: Let T' ~(n) denote T'(n' non+ n+)
if M~O and T'(no non- n-) if Mg0 where the
number of n"s is J—~M~ and the number of n+'s (or
n 's) is

~
M~. It is understood that in this context "n"

represents a basis n, n+, n- rather than a single vector.
We define a function F,jr(8, oo) for M~O

I~jje(8~o') =LT'oo" o++ ~ +(y)3*=T'(y): T™(n)~ (6 9)

where there are Mo zeros and M plus signs in the sub-
script labeling the element of T&. Since it is always easy
to go from the M&0 case to 3fQO, we shall consider
only the first case explicitly. For M=0, (6.9) gives

F;o(8 rp) = T'(y): T'(no) =e;P,(x) x= cos8. (6.10)

This F,3r is the required spherical harmonic, yet
unnormalized.

In (6.10) we set

with

g"=+1, g~=g~= —1, other g~~'=0. (6.4)

All the vector indices of tensors may be expressed in
spherical components. The formulas already derived
remain valid if scalar products are taken as described
and Kronecker deltas are replaced by g~~'. In this
scheme, the important thing about a tensor component
is the number of +, 0, and —subscripts. Let these
numbers be M+, 3fo, M . The tensor component can be
written

Toys ~ T MpM+M ~

Such a component has a definite magnetic quantum
number M,

y.»= poco+(p+)*&++(p )*a-
=

Popo P g+ P+g =g P—or8o-r-(6 3)

n' —+ n'+m+, x —+ x+m+ p
=x—(1/v2) sin8e' o, (6o.11)
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where ~ is an arbitrary number. This is permissible since which connects up the spherical harmonic with the

( 0+ +) ( p+ +) tt tt 1 (6 12)
associated Legendre function

Hence

j a
t

Tj,M(n)
(j M)!M—!

(j —M)! —Sin8c*r) M d
7; =c,

l

— P,(x)j! N ) dx

(j—M)! 1 y
M

p M(X)&jMr (6.13)

After the substitution n' —+n'+en+ in T'(n'), the
coefficient of e~ is seen to be

3. Rotation Functions

Let R be a rotation which carries the basis I', n', I'
into the basis N'y N N'. This de6nes a rotation matrix

g, —nm. (gnm') —nm. Nm' (6.14)

The rotation can be accomplished by a sequence of
three (positive) rotations: by a about the three-axis,
by P about the (new) two-axis, by y about the (new)
three-axis. This specifies the Euler angles n, p, and y in
agreement with Wigner, Rose, and Jacob and Wick,
but not with all other authors. The R matrix is

(6.16)

—sin/2 sing+ cosn cosy cosp —sinn cosy —cosa sing cosp CORI sinp
costr sill'y+slila cos"r cosp cosct cosr slna slI1 r cosp slna slnp (6.15)—cosy sinp sing sinp cosP

Thus, in the n', n', n' frame, N' has polar and azimuthal angles P,o. whereas in the N', N', N' frame, n' has angles
p, lr —y. In the spherical coordinate notation, the matrix elements of R are

g (nM) 4.g(nM') —(nM) 4.NM'
2 (1+COSp)e" " ——,'V2 Sinpe ' -'(1—COSp)e'& a+»

=MM' matrix element of —2'K2 sinpe '& cosp ——2'v2 sinpe'&

2(1—cosP)e"' » 22v2 sinPe' -,'(1+cosP)e'™»

with the rows and columns listed in the order +, 0, —.
We now define r'MM = r'MM (a,P,y) —as the matrix

element of the rotation operator between states of
spin j:

It is necessary that the spinor basis be aligned with the
space basis; that is, v+ are eigenstates of (n'e) with
eigenvalues ~1.Then

rj, Tj,M(n)4. IfTj,M'(n)

=(—1)MT™(n)T'M'(N)

As special cases, we have

lr Sj=tri(n'Sj)+o2(n'Sj)+as(n'Sj). (6.21)
(6.17)

In evaluating the spinor matrix elements of (6.2Q), it is
helpful to note that

rj2M T'(n'): T™(N)——
'(p Ir &)= ( 1) ~~ '(p») (6.1ga) aild

T/ M(n)*(no. S)=MT'M(n)* (6.22)

rjMO Tj M(n)*: Tj(N') = F——M(p n) m . (6.18b)

These functions are proportional to the O'MM (/I, p,y) of
Wigner, but not yet normalized. They are complex
conjugates of the wave functions of a spherical top.

For half-integral spin, we need a spinor basis v+, v

and the rotatedbasis V+, V =E(v+,v ).Then (vMl VM')

is the MM'th element of

T' ( )*( .S)=-LT' ( )( 'S)j*
=—(j M)T™—1(n) m (6.23)

(
cos&Peks( —~—v)

sin-,'Pe&'&»

—sin~Pe&'& +~

cos-', pel'& +»

The rotation function is (case M~0, M'~O)

1/2 Tj+I/2M(n v+)4 .Tj+,l/2M(N V+),
j+1 cr S&

=&"IT' (n)* +
2j+1 2j+1

XT™(N)l V+). (6.2O)

because n'(n+ S)=n+ n+(n+ S)=O. Then

(2j+1)r '"M+I/2, M+I/2 (j'+M+1) cos2pr'MM

Xe &'&&+ &+(j M)42 sipnr—2jM, +IeM&'&~ I. (6.24)

This result holds regardless of the signs of M, 3f'.
By (6.13), we have

(j M) t c—iMa

T'M(n) ~:T'(N') =c, P,M(cosP). (6.25)

Set N' —+ N'+2N+ in (6.25) and equate coeKcients of
e~'. Under this substitution, n ~ n and

cosp=n'N'~ n'(N'+2N+)
~ cosp+ ~ sinpe '&/v2. (6.26)
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Hence, reasoning as in the case of (6.13), we have

(I It)'—(I It')—
't

~ ' )"'
r'uw =c, —

M'

P,~ cosP . 6.27

Particular rotation functions are usually obtained by
recursion relations, differential formulas such as (6.27),
or by signer's explicit series formula. It appears to us
that very often the quickest way is by direct calcula-
tion of (6.17). For normalization, see below.

4. Normalizations

In spherical coordinates, the projection matrix ele-

ment (P~'~~. will vanish unless the magnetic quantum
number is "conserved. "The simplest case is

(6.28)

[ ]=coeflicien of X~ in 2)~'(1+x2X+-'X ')'
=coefficient of X~+I in 2) ) '(1+X)"

'(2j)!/(j M—) '4+M) '

Hence
I ))rl (j M) !(j+M) I/(2 j) !

(6.35)

(6.36)

For M =0, c,~ reduces to c;.
We can now write, on the basis of rotation invariance,

Y,))r(8, q)Y, ,)r '(8,VI)dQ

(—1) T'o".++...(p)&'0. .. ...(y)dn

To evaluate the bracket, we 6rst count up all the se-
quences {Mq,MI, ,M;} of type (M,O). Then take
those of type (M+1, 1) and weight them with a factor
of q in virtue of (6.5). And so on. The bracket can be ex-
pressed as follows:

Note too that

T'. . . -.+(1)= (—Lsm« *'j/~2)'. (6.29)

= (—1)~(P'(MO/OM') d;

cj ~dj 8~~ (6.37)

Hence, applying (3.25) with m=++ . , e'= ——.
we get

c,= (2j+1)&& ~~ 2 '(sin8) 'd cos8

= j!/(2j—1)!! (6 3o)

where d; is a constant independent of 3f.
Specializing to &=M'=0, we have

! 4)r
c,2 P,(cos8)P, (cos8)dQ= CI2i —=c;d, , (6.38)

in agreement with the calculation of Sec. III.5.
Let us adopt a more explicit notation for the projec-

tion matrix elements:

whence

d, =4trc;/(2 j+1).

The normalized spherical harmonic is

(6.39)

We put
Pt'Ivy'~ ~ (PI'(M+M /M~ M') .

'

(Pt'(MO/OM') = 8))r~ (—1)™c,))f (6.32)

and seek to determine c,,&. The projection operator
obeys

Q (P'(MO/M +"M ")( 1)~'P'(M "M—+"/OM)
= (P'(MO/OM) . (6.33)

The sum is over all index sets {MI,Mq, ,M, }with total
magnetic quantum number M'. The (—1)~ comes from
the way a sum over spherical indices is taken; see (6.3).

Using (6.32), we get

c,~'Lail terms, properly weighted j(—1)~
= c, If(—1)-~. (6.34)

Y )r(8 V') = ((2j+1)/4 )'"tr(c,c,M) "'Y,M(8, y) . (6.40)

The same method, applied to the rotation functions,
yields

r jrM'(r Df))P) Atd cosptEQ= cII)rct'))r . (6.41)
22+1' '

Finally, by following this development for

3f+1/2, M'+1/2 )
i+&/2

one finds that (6.41) is valid regardless of whether
j, M, and M' are interpreted as integral or half-integral.
The connection with the usual rotation function is then

D'3r~. (u,P,y) =c; jr "'c,~ ')'r'~~. (cI,P,y) . (6-.42)


