
P H YSI CAL REVIEW VOLUM E 140, NUMBER 4B 22 NOVEM 8 ER 1965

Minimal Electromagnetic Interaction and C, T Noninvariance*

T. D. LEE
Depurtrlezzt of Physics, Cotztvzbzo Uzziverszty, Eezo York, 1Vezo York

(Received 18 June 1965)

It is well known that the principle of minimal electromagnetic interaction determines a unique electro-
magnetic-interaction form for a spin-0 or spin--, charged particle. In this paper, it is shown that the same
principle, when applied to a spin-1 charged particle, leads to a minimal electromagnetic interaction that
depends on two arbitrary real parameters: the charge and the magnetic moment. It is further shown that the
minimal electromagnetic interaction of a system of Ã spin-1 particles of the same charge depends on the
charge e and an (37&(E) Hermitian matrix, called the magnetic-moment matric 3f. Such a minimal electro-
magnetic interaction can be noninvariant under C and T. The general condition of C, T invariance, or non-
invariance is analyzed. These considerations are extended to a system of 37 neutral spin-1 particles, assuming
that the minimal electromagnetic interaction of such a system is not zero. Application to the observed
@0, po, and fd particles gives a C, T noninvariant minimal electromagnetic interaction, which, however, is
invariant under I' and CT. By making a further assumption concerning its transformation property under
SU'I, this C, T noninvariant interaction assumes a simple and unique form. Some of its experimental con-
sequences are discussed.

&tr~ ~ &tr~+&„, (2)

where e is the charge of the particle and A„ is the
electromagnetic 6eld. The Z~, thus generated, is called
the minimal electromagnetic interaction of the particle. '

Transformation (1), when applied to a spin-0 or
spin-~ particle, leads to a unique form of minimal
electromagnetic interaction. ' The remarkable success
of quantum electrodynamics for the charged leptons
gives strong support to the principle of minimal electro-
magnetic interaction, which requires all electromagnetic
interactions that exist in nature to be of the minimal
form. The validity of this principle will be assumed in
this paper.

I. INTRODUCTION
' 'T is well known that from the Lagrangian density
~ ~ Zg„, for a free particle, one may obtain a gauge-
invariant electromagnetic interaction Z~ by replacing
ln gfree

ct/Bxy, ~ it/r)So zeA44 )

which changes

Ke note that the principle of minimal electromag-
netic interaction, when applied to a spin-1 particle,
leads to an interaction form depending on two inde-
pendent parameters': the charge & and the magnetic
moment p. Thus, e.g., in the absence of the strong
interaction, the quadrupole moment of a spin-1 particle
becomes completely determined by e and p, , in analogy
to the minimal electromagnetic interaction of a spin-~
particle which requires its magnetic moment to be
determined by its charge.

To show this, let us first denote the usual free
Lagrangian density of a spin-1 particle by

+free' (*)= —
SGX v'Rv —ZZZVv'tv 4

where
8 8

Sv

8 8
Q.:= 4.'— 4~*,

8~ 8$v

*This research was supported in part by the U. S. Atomic
Energy Commission.

'Transformation (1) has been used since the beginning of
quantum mechanics. The possibility of a nonminimal type of
electromagnetic interaction has been discussed by W. Pauli, Rev.
Mod. Phys. 13, 203 (1941). See also M. Gell-Mann, Nuovo
Cimento 4, Suppl. 2, 848 (1956).' It should be emphasized that in order to obtain the minimal
electromagnetic interaction it is not allowed to add to the usual
free Lagrangian density any additional, but 6ctitious, term which
contains more derivatives than that in Zf„,. For example, if we
add to the free Lagrangian of a spin--,' particle,

~tree =
Z B' V4'A (BIBX4)4' (4' /BXX)Y474'3

an additional term

zK(Bipt/Bxq) y4oK„(BQ/Bx„),

where oq„=(2i) '(pity„—y„y&), then, while the free equation of
motion remains unchanged, transformation (1) would lead to a
particle with an anomalous magnetic moment ~~. Throughout this
paper, we make the explicit restriction that the free Lagrangian
of a spin-e particle has only linear dependence on B/Bxv, and the
free Lagrangian of a spin-1, or spin-0, particle has only quadratical
dependence on B/Bx„.

8

lb„and ztt are, respectively, the 6eld operator and the
mass of the particle, and f„*is related to the Hermitian-
conjugate field operator P„t by

lb„*=+/„t for v/4,

f4*= —4t.

Throughout this paper, the fourth component of x„ is
pure imaginary (i.e., oc4 it), and all r——epeated indices
are to be summed over. The application of transforma-
tion (1) to Zt, ' leads to a particle of charge e and
magnetic moment tt = (e/2rrt) Xspin.

The free Lagrangian density Zf, can also be ex-

~ I have learned in a private conversation with Dr. G. Feinberg
that this result was also known to him. See also H. C. Corben and
J. Schwinger, Phys. Rev. 58, 953 (1940).
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pressed in other alternative forms, such as

+free = (r)4'~ /»x) (r)f~/»x)
+ (r)g'/»g) (8$„/»,) m'—P„*f„. (4)

It is easy to see that the action integral J'Zd4x is the
same for both free Lagrangian densities; therefore, the
free equation of motion is also the same. The application
of transformation (1) to Zf, ' leads to a particle of
charge &, but with sero magnetic moment.

By partial integrations, 4 it can be readily verified that
the free Lagrangian density of a spin-1 particle can be
expressed in the following general form:

&f. = (W—.*/»~) (W./»~)+g(W~*/». ) (W./». )
+ (1 g)—(~A'/»~)(~4. /». ) m—V.V, (5)

where g is an arbitrary real parameter. We note that
and Zf„,' correspond, respectively, to the special

case g= 1 and 0. The application of transformation (1)
to this general form of free Lagrangian density leads to
a minimal electromagnetic interaction Z~ which corre-
sponds to a spin-1 particle of charge e and gyromagnetic
ratio g. The magnetic moment is given by

p = spin)& (eg/2m) .

The quadrupole moment Q of this particle is uniquely
determined by e and g (in the absence of strong inter-
actions and radiative corrections):

Q= (3s'—r')pd'r = e(1—g)/m'

where p is the static charge density for the state
(spin), =+1.

The quantization of the theory Z&„„orZ&, +2~, can
be carried out either by using the Lagrangian form of
quantum mechanics developed by Feynman, ' or by
following the canonical formalism. The simplest way
to apply the canonical formalism is to use the $-limiting

process, ' in which one introduces an additional term
g(r)fq'/»—q) (c)P„/»„) to the free Lagrangian, Eq. (5),

and then takes the limit )=0+. Both methods, of
course, lead to the same physical results. [Details of
the canonical formalism are given in Appendix A.j

Upon examining the structure of Feynman graphs,
it emerges that the principle of minimal electromagnetic
interaction can also be expressed as the mathematical
requirement that the three-point vertex function for
the electromagnetic interaction (to first order in e, and
in the absence of the strong interaction) should have
a minima/ power dependence on its external momenta.

Thus, e.g., for a spin-2 particle, the minimal interaction
gives a vertex function that does not contain any
explicit momentum dependence. The Pauli-type extra-
magnetic-moment term gives a linear momentum
dependence. Such a term is nonminimal for the spin- —',

particle, and is, therefore, eliminated by the principle
of minimal electromagnetic interaction. For a spin-1
particle, the same principle requires the vertex function
to be a linear function of its external momenta; con-
sequently, both the magnetic moment p and the charge
c are independent parameters, but the quadrupole
moment becomes completely determined by e and p.

Recently, it has been suggested, 7 "in connection with
the observed decay'

Es ~s +7l (8)

that, perhaps, the electromagnetic interaction Z„of the
strongly interacting particles is not invariant under
either the particle-antiparticle conjugation C or the
time reversal 2', and reaction (8) is simply the radia, tive
correction effects of Z~ on the usual CI'-conserving
weal~ interaction.

Part of the purpose of this paper is to analyze the
possibility of a minimal, but C, T noninvariant, electro-
magnetic interaction. In Sec. 2, a system of E spin-1
particles of the same charge & is considered. The minimal

electromagnetic interaction Z~ of such a system depends
on e and a lVXX Hermitian "magnetic-moment"
matrix 3f. It is shown that, depending on the structure
of M and the number E, the resulting minimal inter-
action Z~ may be noninvariant under C and T; all such
minimal electromagnetic interactions are, however,
invariant under I' and CT. The general conditions
for C, T invariance or noninvariance of Z~, in the
absence of any strong interaction, are given in Sec. 3.

In Sec. 4, the same considerations are extended to a
system of X neutral spin-1 particles. Assuming that
such a system does have an electromagnetic interaction,
its minimal electromagnetic interaction must depend
only on a cV)&X antisymmetric Hermitian magnetic-
moment matrix M.

Application to the observed g', p', and cu' particles
leads naturally to a C, T noninvariant minimal electro-
magnetic interaction. We make the ad hoc assumption
that under the SV3 group of transformations, this C, T
noninvariant minimal electromagnetic current, called
E„, transforms in the same way as the minimal electro-
magnetic current J„of the known baryon octet (which,
because of its spin being —',, must conserve C and T).
The current E„, then, assumes a simple and unique
form, given in Sec. 5. Several definite predictions can

4 For a spin-0 or a spin- —,'particle, the same method does not
lead to any different form of Zf„,, therefore, transformation (1)
does give a unique form of electromagnetic interaction (cf.
footnote 2).' R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).' T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).

~ J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1965).

r' Cf. also S. Barshay, Phys. Letters 17, 78 (1965).
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,

Phys. Rev. Letters 13, 138 (1964). See also A. Abashian et al. ,
ibid 13, 243 (1964). .
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be derived in the limit of SU3 symmetry. For example,
both the C-noninvariant

~
A I

~

=0 decay
in which f„' is related to the Hermitian conjugate P, ,„
of the field operator P, , „(a=1,2, ~, E) by

yo ~~0+~ 4'~ =~ Q't, ~ 6 o.~ &' ' A' N, ~ ) & (12)

and the C-noninvariant
~
AI

~

= 1 decay

4o ~ n'+V

should occur, and the ratio of these two decay rates is
given by

where the + sign is for v&4 and the —sign is for v=4,
g is an arbitrary (1V&&cV) Hermitian matrix, and mo is
a diagonal (EXP) real matrix,

mQ

ns '(mo'+m„') (mo' —m ')'
=0.79,

m„'(mo'+mp') (mo' m—p')'
(9)

m2= (13)

where m» m~, and m„are the masses of po, y', and coo.

This specific SU3 transformation property of E„also
requires the absence of any T-noninvariant term in the
decay'

Zo ~A.o+e++e,

The diagonal elements of m2 are the squares of the
masses of these particles. The Hermiticity of g is
required by the Hermiticity of Z&,~.

The free equation of motion is independent of the
matrix g, and is given by

and that the decay

vp ~ m'+e++e—

B t'B
g ~

—m'iP„=O.
Bx,Bx

"
Bx„&B~ ) (14)

is forbidden" in the single-photon-exchange approxi-
mation, provided SU3 synunetry holds.

It should be emphasized that these consequences
depend only on the assumed transformation property
of the C, T noninvariant current E„under SU3. From
a phenomenological point of view, the SU3 transforma-
tion property of E„could be arbitrary. Thus, the decays

o~ooo+& go~ po+& Zo~ho+e+ye-, and go~~o
+e++e can be used, experimentally, to determine the
transformation property of E„under SU3.

II. MINIMAL ELECTROMAGNETIC INTERAC-
TION OF A SYSTEM OF N CHARGED

SPIN-I PARTICLES

Let us consider a system of E spin-1 particles of the
same charge o. The 6eld operatorsf~, „fo,„~~, P~, , of
these 1V particles can be represented by a (X&&1)
column matrix

Dg= B/B~ zoAx—~

D),
'

B/Bx),+ioA——).,
(16)

and Z~ describes the minimal electromagnetic inter-
action of this system.

Sy using the commutation rule

where
$D„,D),]=—ooF„g,

Fpy= BAy/Bxg BA p/Bxg )

the equation of motion in the presence of electromag-
netic 6eld is found to be

DgDgf„i3fF„gag D„(D—gag) m'f—„=0, (1—8)

Under the transformation (1), this free Lagrangian
is changed to (Zf, +2~):

~, +&,= (D *f.*)—(D4.)+(D *A*)g(D &)
+(D.V")(1-g)(D,~,)-~: V. , (»)

where

2oP (10) where
M= eg=M~.

Similarly to Eq. (5), the general form of the free
Lagrangian density Zf, for such a system is given by

Zg, = —(Bp,'/Bx~) (Bg,/B~)+ (Bf~'/Bx.)g (Bf„/Bxq)
+(B~'/B )( -1g()W, /*B,)-~," V, (»)

' The same conclusions with respect to z0 —+ A'+y and
g ~ ~ +y, where y can be either real or virtual, have also been
independently observed by N. Cabibbo. See N. Cabibbo, Phys.
Rev. Letters 14, 965 (1965). In Cabibbo's paper, the hypothesis
that the C, T noninvariant electromagnetic current transforms
like a member of an octet under SUB is implicitly assumed.

'0 Iwish to thank Dr. G. Feinberg for pointing out this particular
consequence to me.

The matrices M and m' will be called the magnetic-
moment matrix and the mass matrix, respectively.

Ke note that for this system there are two separate
current-conservation laws. Let us de6ne

8 '=—o E(D 4")4" 4' (D4")
(D.9:)6+k:(D—4")j (20)

and
i (B/Bx„)g „'MP„—P„*M/„g, —(21)

where g„' is a current which depends only on the charge
o, and g„~ is the current associated with the magnetic-
moment matrix M. The current g„~ clearly satisfies the
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conservation law
(22)

and
(33)

r)gs /r)xs= 0. (23)

The total current rt„ is, by definition, the source of
the electromagnetic field A„. From Eq. (15), we obtain

g —
y e+. rI sr (24)

By using the equation of motion [Eq. (18)), it can be
verified that rt„' also satisfies the conservation law

where the + and —signs are for tr&4 and p, =4, re-
spectively, the phase factors p&T and pp can be any two
unimodular complex numbers. Throughout the paper,
we use to denote the transpose.

The problem of C, or T, invariance is connected with
the question whether there exists a (1V&(1V) unitary
matrix U such that

(34)
In terms of g„, the minimal electromagnetic interaction
Z~ becomes

and
Utm'U= m', (35)

~»= AsAu+e'AsA. I os.Q'i%~) 4'sV.j—

where 5„,= 1 if y= v, and 0 if p,/ v.
To quantize this theory it is simplest to use the

]-limiting method' and to follow the canonical formal-
ism. The details are given in Appendix A.

III. CONDITIONS FOR C, T NONINVARIANCE

In this section, we discuss the symmetry properties
of the Lagrangian density

under C, T, and I', in the absence of any strong inter-
action. The free Lagrangian gt„,(x) and the minimal
electromagnetic interaction Z„(x) are given by Eqs. (11)
and (25) respectively. For definiteness, we assume the
transformation property of the electromagnetic field
A„has already been determined by its interactions with
other particles, such as the charged leptons:

CA„(r,t)C '= —A (r t)— (27)

TA (r t)T-'= —A„(r, t), —(2g)

PA„(r,t)P'= wA„( r,-t), — (29)

where M and m' are given by Eqs. (19) and (13),
respectively. If such a U exists, then

pl ovlded
CZ(x)C—'=z(x),

Cg„(x)C '= UP„'(x).

(36)

(37)

In this case, the Lagrangian density (2&, +2~) is
invariant under C. From (CT) invariance, it follows
that the theory is also invariant under T. Conversely,
if Eqs. (34) and (35) have no solution, then the corre-
sponding minimal electromagnetic interaction is not
invariant under C and. T.

The following theorem gives a few sufhcient condi-
tions for C, T invariance:

Theorem 1. The Lagrangian density 2t, +Zv is
invariant under C, if (i) the magnetic-moment matrix
M is real, or if (ii) the matrices M and m coriunute, or
if (iii) the number of spin-1 particles 1V is ~2.

Proof. We may choose U to be the unit inatrix in
case (i), and U= VUin case (ii) where V is the (1V&&1V)

unitary matrix that satisfies Vtm'V=m' and VtMV
=diagonal matrix.

In case (iii), U= 1 if 1V = 1. For 1V= 2, we may choose
U to be the diagonal matrix

where the —sign is for ti/4 and the + sign is for tr =4.
By using Eqs. (11) and (25), it can be readily verified
that 2(x) satisfies the requirements of CPT, P, and CT
invariance; i.e.,

(exp(it)is)

0

0

exp (—i8rs)1

where oj2 is the phase of the matrix element M~2,

(3g)

and

provided"

CTz(r, t)T 'C '=Z(r, —t)-—
PZ(r, t)P '=2(—r, t),

CTy„(r, t)T'C '= ~„P„*(r, -t)—
(30)

(31)

(32)

"Equations (32) and (33) are only special solutions. To obtain
the general solution, we note that the Lagrangian density
2= (2&, +2~) is also invariant under some other unitary trans-
formations P„(x) —+ SP„(x) which are unrelated to space-time
transformations, nor to the particle-antiparticle conjugation
Pe.g. , 5 exp(ig), whe=re 8 is a constantj. Let G be the group of all
such transformations S.The replacement of P by Ps= (SP) makes
Eq. (31) unchanged, provided P satisfies Eq. (33) and S is any
member of G. The set of all such operators P, is the general solution
of the space inversion operator Pat least, so far as (2q, +2„) is
concerned j. Identical considerations can be applied to the
operator CT. If 2 satisfies the invariance requirements of particle-

M„= lMisl exp(it), s),

if M~2&0. If M~~ ——0, this case reduces to the previous
case (ii). Theorem 1 is, then, proved.

In the general case g ~3, it is convenient to consider
a lattice of Ã points, labeled 1, 2, ~,X. For each
nonvanishing off-diagonal matrix element M, ~ we draw
a line between the points u and b on the lattice. A set
of e points (Li,Ls, ,L„) is defined to form a cycle if
the corresponding e matrix elements MI.IL,

ML,„,l,„and M~„l., are all di6erent from zero, so that
between these points there are e lines which form a
closed polygon. For each cycle (Li,Ls, ,L„), we

antiparticle conjugation and time reversal, then the same con-
sideration also leads to the general solutions for the operators C
and T.
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M.g——(M.i,
~

exp(ie. g). (4o)

Theorem Z. If the mass matrix m' is nondegenera, te,
then the necessary and sufficient condition for Zi...+27
to be invariant under C is

Q~(Li, ,L„)=xXinteger, (41)

for all possible cycles (Li, ,L.) that can be con-
structed from the magnetic-Inoment matrix M.

Because of CT invariance, the same condition also

applies to T invariance.
Proof. Equation (35) and the nondegenerate condi-

tion of m' require U to be a diagonal matrix. From
Eq. (34) we have

MabUbb Uaa~ba (42)

for all a and b. Equation (43) has a solution. only if

Eq. (41) is satisfied for all cycles. This proves theorem 2.
By using theorem 2, one can easily construct a

minimal electromagnetic interaction that is non-

invariant under C and T. As an example, we may take
N=3 and consider a magnetic-Inoment matrix 3f for
which the set (1,2,3) forms a cycle; i.e., Mi2, M23, and

M3~ are all different from zero. The minimal electro-
magnetic interaction becomes C, T noninvariant if

012+~23+031/ 'ir Xiilte ger (43)

provided the masses m~, m2, and m3 are all different.

de6ne an angle

&(L rL~, ,L~)=O—r,,r,,+Or, ,r, ,+ . .
+Or.„r.„+Or.„r.„(39)

where e,b is the corresponding phase angle of the non-

vanishing matrix element M, b.

the electromagnetic field [Eq. (18)) must also be non-

invariant under C and T. Thus, there is no inconsistency
if the minimal electromagnetic interaction of a system
of spin-1 particles violates C, T invariance.

The minimal electromagnetic interaction of a system
of spin- —„or spin-o, particles is (by itself) always
invariant under C, I', and T.

Throughout this section, the operator C denotes the
charge conjugation operator C~. It should be emphasized
that the charge conjugation operator C~ may, or may
not, be the same operator as the particle antiparticle
conjugation operator C,&, which is determined by the
strong interaction. If C~&C,&, then even though the
electromagnetic interaction Z~ may be invariant under

C~, it can still violate the C,t, symmetry.

IV. MINIMAL ELECTROMAGNETIC INTERAC-
TION OF A SYSTEM OF NEUTRAL

SPIN-I PARTICLES

In this section, our discussions will be extended to a
system of N neutral spin-1 particles by assuming that
the minimal electromagnetic interaction Z~ of such a
system is not zero. The most direct way to obtain Z~ is
to regard the principle of minimal electromagnetic inter-
action as the mathematical requireInent of a minimal

power dependence of the vertex function on its external
momenta. Thus, Z~ contains only the magnetic-moment
matrix M.

A more formal approach is to consider the system as
the limiting case e=o of a corresponding system of N
spin-1 charged particles. Let us start with the field

operator P„given by Eq. (10). In the limit e —+ 0, but
keeping M&0 and finite [consequently, g= (3I/e) —+ ~),
Eqs. (25) and (18) become, respectively,

Remarks Z~= g„A„, (46)

It has been stated in Ref. 7 that if a Lagrangian
density, in the absence of the electromagnetic inter-
action, satisfies the invariance requirement of time
reversal, then the corresponding minimal electromag-
netic interaction must also satisfy the requirement of
T invariance, since (8/Bx„i&A„) transform—s in the
same way as 8/Bx„under T. Thus, a C, T noninvariant
minimal electromagnetic interaction Z~(x) implies that
the free Lagrangian density Z~„,(x) also violates the
following conditions:

CZ„..(x)C-'=@&, (x), (44)

(4&)

To reduce the system to that of only N independent
neutral particles, we impose the subsidiary condition

(48)

By using Eq. (21) and the subsidiary condition, we And

M= —M (49)
and

TZr„,(r, t)T '=Xi...(r, t). —(45) 8
y„~=2i ($„DID„).

ax.
(50)

The magnetic-moment matrix is, therefore, a purely
imaginary antisymmetric matrix.

In the absence of any strong interaction, the question
of C, T invariance is, according to the discussions given
in the previous section, whether there exists a. matrix

We note that independent of whether Zi, (x) satisfies

Eqs. (44) and (45) or not, the free equation of motion

[Eq. (14)j is always irwariamt under C and T. On the
other hand, if Zr„,(x) does not satisfy Eqs. (44) and

(45), then the minimal electromagnetic interaction

Z„(x) cannot satisfy the requirement of C, T invariance;
in addition, the equation of motion in the presence of
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U which satisfies Eqs. (34) and (35). In order to satisfy
the subsidiary condition, Eq. (48), we must also require
in the present case

if P=even, and

U= real. (51) (60)

)0 iq—
oi (53)

and p, is a real constant. In this case, the minimal
electromagnetic interaction has a unique form. Inde-
pendent of the mass matrix, the equation of motion,
Eq. (47), becomes invariant under C and T, provided

where
CP„C '=g,o;f„, (54)

(55)

and q, can be either +1 or —1. Case (i) is then proved.
To establish case (ii), we note that any antisymmetric

Hermitian matrix M can be transformed into a block-
diagonal form by a real orthogonal matrix V:

if S=2n=even, or

p]0y

UMV=

0.
if E=2e+1, where pi p,„are real numbers. The
condition that M comlnutes with m' implies

Vm'V= m'.
Let us de6ne

U= VDV,

where D is a real diagonal matrix,

Theorem 3. The Lagrangian density (gi, +@~) is,
by itself, invariant under C and T (i) if /= 2, or (ii) for
arbitrary E, provided the matrices 3f and m' commute.

From CT invariance, the same conclusion also applies
to T invariance.

Proof. In order to have Z~NO, the system must
consist of two or more neutral spin-1 particles. %e
consider first the simplest case X=2. From Eq. (49),
it follows that

(52)
where

)1 0
C.a4C.» '=n'I 4'~,

&O 1
(61)

where q, ' can be either +1 or —1. By using Eq. (54),
we find that the sum (2,»+2~) must violate C invari-
ance. Since the strong interaction is stronger than Z~,
it is useful to identify the particle-antiparticle operator
C with that determined by the strong interaction; i.e.,

if Ã=odd. It can be readily verified that U satisfies
Eqs. (34), (35), and (51). Thus, theorem 3 is proved.

Theorem 4. The minimal electromagnetic interaction
of a nomdegenerate system of E neutral spin-1 particles
violates C invariance and T invariance, if and only if
a set of numbers (Li,LR, ,L, ), where I is an odd
integer, can be selected from (1,2, ~,Ã) such that the
n matrix elements MI.,I,„MI.,I,„.. -, M~„l,, are all
different from zero.

Here, the violation of C, T invariance, again, means
that the equation of motion, Eq. (47), is not invariant
under C and T in the absence of any other interaction.

Proof The a.ntisymmetry property of M implies that
the phase 0;; of its off-diagonal matrix element 3f;;must
be &(vr/2). Theorem 4 can, then, be proved by using
the same arguments as those used in proving theorem 2.

Theorem 4 can also be proved by noticing that each
nonvanishing matrix element M;; gives rise to the
transition P,' &~Pio+y. Assuming C invariance, the non-
degeneracy of these X particles requires each particle
to have a definite C value. The C values of g and Pio
must, therefore, differ by a minus sign, if M;;/0. This
is not possible if (Li,L2, ,L„) forms a cycle and rs is
odd.

It should be emphasized that so far we have only
studied the C, T invariance, or noninvariance, of the
minimal electromagnetic interaction Z~ by itself. For
clarity, let us denote these operators by C7 and TY. In
the presence of the strong interaction Z,~, even though
2,& may be invariant under the particle-antiparticle
conjugation operator C,& and 7 may be invariant under
the charge-conjugation operator Cv, it is possible that
the sum (2,»+2„) can still violate both the C.» and the
C~ invariances. As an example, we may take the simple
case E=2. Theorem 3 states that g~ is invariant under
the charge conjugation C~. Let us assume that the
strong interaction Z,~ of these particles is invariant
under a different particle-antiparticle conjugation oper-
ator C,& which is different from C7:

C= C.g. (62)
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(7o)

Under the isospin rotation, J„and E„ transform as
sums of I=0 and 1 components:

The C,& (and T,&) noninvariant amplitud. e is, in this and
sense, regarded as generated by the minimal electro-
magnetic interaction. An explicit example of such a C,~,

T,t noninvariance is given in Appendix B.

v= (63)

The minimal electromagnetic interaction of this system
depends only on the magnetic-moment matrix

0
M=i —u

.—b

u b

0 c
—c 0.

(64)

where u, b, and c are all real parameters.
In the following, we will extend our discussions to

include also strong interactions. For definiteness, we
assume that the strong interaction is invariant under
C and T, where C=C,t, and T=T,t,. Furthermore, we
assume that the minimal electromagnetic interaction of
p', p', and oi' is not zero. The minimal electromagnetic
interaction of all other particles is assumed to be in-
variant under C,& and T,&.

From the known strong interaction Z,~, the C,~ values
of P, co', and ps have all been determined' to be —1.
Thus, if M &0, the sum (Z.t+2„) violates C, T invari-
ance. Since 2,t is stronger than ZY, it is useful to attri-
bute such violations as due to Z~, independent of
whether the minimal electromagnetic interaction is, or
is not, by itself invariant under C and T, where C= C~
and. T= T . /See Appendix B.)

Using the notations of Ref. 7, the total (minimal)
electromagnetic current rt„of all particles can be
written as

8.=~.+&.
where E„is the current genera'ted by qp, psi and &is,

(66)

and J„ is that generated by all other existing fields.
Under the particle-antiparticle conjugation (defined by
the strong interaction),

(67)

V. APPLICATION TO fi, ese, AND pe

The mesons qP, coe, and p' form a convenient system
of neutral vector mesons for our consideration. Let us
represent their respective field. operators by P„, to„,
and p„, and define

and
(71)

(72)

where the superscripts s and ~ indicate, respectively, the
isoscalar and isovector properties of these currents.
From Eq. (64), we note that E„'=0 i'f b=c=O, and
E„'=0 if a=0.

Under the S/ J3 group of transformations, the current
J„, in the limit of perfect SU3 symmetry, transforms
like the

201'—02'—03' (73)

member of an octet 0;& (apart from a possible additional
unitary singlet term).

In the same limit of SUB symmetry and under the
approximation of a perfect degeneracy between @' and
ro', one can construct's from the states (ge) and

~
toe) the

following two states:

and
CO

(0

(74)

v2
0.

(76)

where p, is a real parameter. The minimal C, T non-
invariant electromagnetic interaction E„A„now
acquires a unique form.

In Ref. 7, the various possible experimental tests of
an arbitrary C, T noninvariant electromagnetic inter-
action have been extensively analyzed from a~iphe-
nomenological point of view. The present simple form
of a minimal C, T noninvariant interaction E„A„has

where ~tits) and )es') transform, resPectively, like a
unitary singlet and the isoscalar (I=O) member of a
unitary octet under SU3.

We now make the further assumption that, under the
SUs transformations, the C„=+1 current E„also
transforms like (73). It can be readily veriled that, by
using Eqs. (74) and (75), this assumption requires the
parameters u, b, c in Eq. (64) to be related by

a= ti= (c/v2) .

The magnetic-moment matrix M becomes

C,i'„(x)C„'=+E„(x).
Both J~ and E„satisfy the conservation law:

ciJ„/ci&s=o

(68)

(69)

~ The decomposition of p and oP to a SU3 singlet and a SU~
octet has been discussed by many authors: M. Gell-Mann, Phys.
Rev. 125, 1067 (1962); S. Okubo, Phys. Letters 5, 165 (1963);
J. J. Sakurai, Phys. Rev. 132, 434 (1963). The particular forms
of eP and es', given by Eqs. (74) and (75), have been used by
F. Gursey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135, B467
(1964).
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several definite consequences with regard to these

experimental tests.
1. The current E„contains both an isoscalar E„' and

an isovector E„" part. Thus, the C-noninvariant

l
Bi

l
=0 reactions, such as

and
4' ~~+7
q' —+ 2x'+y,

(77)

as well as the C-noninvariant
l
Al

l
=-1 reactions, such as

4'~ p'+7, (79)
etc., can occur.

The existence of both E„' and E„' implies that there
is a m+, m asymmetry in

g' ~m++x-+y,
p'~m-++m +y

Lboth of which depend on E„'],and also in

q' —+x++m +y

cu'~ x++m +y

(80)

(81)

(82)

(83)

l
both of which depend on E„"].

Another consequence is the existence of both the
I=0 and the I= 2 final C= —1 three-pion states in

rp ~ ~++m —+sr'. (84)

The phenomenological analysis of the x+ asymmetry in
this reaction has been discussed elsewhere. "

2. In the limit of perfect SU3 symmetry, the ratio of
the matrix elements for the C-violating decays,

4'~ ~'+v,
4'~ p'+v

are given by that of the corresponding matrix elements
of 3f LEq. (76)].Thus, we have

R t 8'- '+v):R t 8'-"+~)
= m 'm' m' m' —m''

&& $m„'(m@'+m„') (m~' m„')']~0—79 (85). .

Since the charge and the magnetic-moment form factors
of n are both real due to Hermiticity, the same must also
hold for the transition-matrix element

P"l~„yz„leo).

5. Identical reasoning leads to the conclusion that

rl'Wxo+ e++e (90)

in the single-photon-exchange approximation, if SU3

symmetry holds.
As already mentioned in Sec. I, all these experimental

consequences, Eqs. (77)—(90), depend ordy on the
assumed SU3 transforma, tion property of the C, T non-

invariant current E„, and are, otherwise, independent
of the detailed structure of E„.The particular form of
E„given in this section can be regarded as a simple,
but explicit, model of such a minimal C, T noninvariant
electromagnetic current. In this model, the current E„
depends only on one parameter p. A speculative
possibility which relates this parameter p, to the electro-
magnetic properties of other vector mesons E*+, K*',
and p+ is given in Appendix S.
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which is, at present, too small to be of any practical use.
4. Another consequence is the abseece of any T-

noninva, riant effect in the decay

Z' -+ A.'+ e++e—

in the single-photon-exchange approximation, if SU3
symmetry holds. To prove this, we recall tha, t both J„
a,nd E„ transform like (73) under SU3. Thus, its off-

diagonal matrix element between Z' and h.' is related
to its diagonal element at arbitrary 4-momentum
transfer q~, e.g. ,

()pl J„+~„lz)= (v3/2)(Sly„+z„l B). (89)

APPENDIX A
3. A much more difficult experiment is to study the

decay
~'~ p'+v

Assuming SU3 symmetry, we find

Rate(sP —+ p'+y):Rate(p'~ p'+p)
= 2Lm~

—'(m '+m ') (mq' —m ')']-'
)&Lm~ '(m„2+m ')(m '—m ')']~1.7X10 ',

In this section, we discuss the canonical formalism

(86) for the system of 1V spin-1 charged fields. We shall

use the f-limiting method' and start with the free
Lagrangian given by Eq. (11), plus an additive term
—((8&„*/Bx„)(BP,/Bx,):

'3The suggestion to use the 7f asymmetry in q ~ 3x as a
possible test of C noninvariance for interactions stronger, than the
weak interaction was made by R. I'riedberg, T. D. Lee, and
M. Schwartz (unpublished). Some discussions of such an asym-
metry were given by T. D. Lee and L. Wolfenstein, Phys. Rev.
138, 81490 (1965). A more detailed analysis has been discussed
by T. D. Lee, Phys. Rev. 139, B1415 (1965).

where $ is a positive number. Let g be the metric of the
Hilbert space Lsee Eq. (18) of Ref. 6]. Equation (12)
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is replaced by

where ~ signs are for p&4 and v=4, respectively,
and j' denotes the Hermitian conjugation.

Let us denote the spatial and the time components
of f„and f„*by (g,imp) and (g', imp*), respectively. The
conjugate momenta of g, g', pp, and gp* are, respec-
tively, %, R*, 7l p, and mp*. Furthermore, e and xp are
(Ã&&1) column ma, trices (like g and |t p), while pp* and

7I p are (1XS') row matrices (like g' and Pp*). The free
Hamiltonian density Hf„, can be readily obtained from
Eq. (A1). We find

Hf pep= pp Jp
—g'~p ll-p+ Q Bl'Q —

leap nt pp

[n—g(&A)+(&A*) gn')+(& &4*) (& &4)-[ &-'(g+&—1)(~ e)+(~ e*)~'(g+~—1):)
(~f''/—» ) (g 1)(W—'/»') 5'(&—0') (g 1)—

&&(g+5 1)—(& 4)+(&A*)(g' 1)—(&Pp) (A3)

where i, or j, varies from 1 to 3.
It is convenient to make the Fourier analysis:

g=P 0 '~'[Q((k)eq') exp(ik r)

where all operators P$ Pp Q~ and Qp are referred to the
same k, and k= (k~. The commutation relations at
equal time are given by

[(P-)., (ge) p) = i—&-e~-»

[(P ). (Q ) )=
(A11)

(A12)

and all other commutators are zero, where the index n,
or P, denotes t, t, and 0, and the index a, or b, denotes
12 Ã.

We introduce the canonical transformation

(p).=(P).+'k[g:«-1)).,
(po).= (Pp).—ik[gi*(g—1)).

(p ').= (P *).-'kL(g —1)Q ).,

(po*).= (Pp*).+ik[(g—1)g~).,
ql=gl, ql*=gt",

qp=gp and qp =Qp

It can be verified that p, q, p *, and q„*satisfy the same
commutation relations as P, Q, P ', and Q„'. In terms
of these new canonical variables, the Hamiltonian
Hl, (k) becomes independent of the matrix g:

+P fl '~'[Qt(k)k) exp(ik. r), (A4) Hz, (k) =PFPi —(-'Pp'Pp+ql ~ ql qp ~ qp

—ik[p(qp+ppq( —qp*pp —q)*pp*). (A13)

fp=P 0 '~Pgp(k) exp(ik r),

n=E ~l '"[P~(k)e ') exp( —ik r)

(AS) The subsequent developments for Hq„, and Hq„,+Hv
are exactly the same as those given in Ref. 6. In the
limit (=0+, the vertex functions in the Feynman
graphs are the same ones as those that can be directly+~ ~l [P'( )k) xP( ' ) ( ) written clown by using the g given by Eq. (2S).

and

prp
——P 0-'~'Pp(k) exp( ik r)—, (A7)

where eA, ', ep', and k= ~k~ 'k form a right-handed
orthonormal set of unit vectors. In terms of these
Fourier components, the free Hamiltonian becomes

H(, d'r=P [Hr(k)+Hr, (k)),

where

Hr (k) =P [Pg" (k)Pg(k)+Q, *(k)(u'Q, (k)), (A9)

co2 is a diagonal matrix, whose diagonal matrix elements
are (k'+m ')'tP and a=1,2, ,$. The longitudinal
part Hr, (k) is given by

H, (k) =P,'P, g iP,*P,y—g,*-~PQ, g,*mPQ, —
k'5 'Qi'(g 1)—(g+2k 1)g—~+k'Qp'(g' —1)go-

-'k[p ge.-e:gp')
i+'k[Po(g+ $ 1)Q—(—g("(g+ $—1)P—*),

(A10)

APPENDIX 8
In this Appendix, we discuss the minimal electro-

magnetic interaction Z~ of the qP, pP, &oP system in the
limit of perfect degeneracy; i.e.

SSp 5$(y BS$ ~ (B1)

x1, v

~2 v

«X3 v~

(B2)

Theorem 3 states that for such a degenerate system
(2&„,+27) is, by itself, invariant under C and T, where
C=C~ and T= T~. Thus, we may regard the C, T nonin-
variance as brought in by the strong interaction 4,&,

which, by itself, is also invariant under C and T, but
C= C,& and T= T„.[See, e.g. , Eq. (62).) The combina-
tion (2,„+2~„,+2~), of course, violates both the C„,
T,t, invariances and the C~, T~ invariances.

To see more explicitly the C~, T~ invariance property
of (Zf„,+2„) in this limit of complete degeneracy, we

may start with the general magnetic-moment matrix M
given by Eq. (64). By using Eq. (57), we find the
transformation
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changes the matrix 3f to

0 p 0
VMU= -,'i —p 0 0

. 0 0 0.

and, to 6rst order in e,

g„'= i eg(BV„*/Bx„)Q V„—(8V„*/Bx„)Q V„g
+conjugate terms, (89)

X.—= (1/V2) (Xg, ,+ix2, ,) .
In terms of X„, the current Eq becomes

(84)

where —',p = (a'+b'+c')'" It i.s useful to define a complex
where

field X„: ~(&"+)
0BR=
0
0

0 0 0
p(X*') 0 0.(u+)

0 0 p,.
(810)

E), i@
——(X„'X),—X),'X„).

BX„
(85)

Thus, the current E), can be considered to be one
generated by the magnetic moment of a single complex
Geld X„. The C~, T~ invariance property of ECzAz, by
itself, is, then, obvious.

So far, the parameter p, in Eq. (85) is independent of
the electromagnetic properties of all other particles
such as p+, E*', E*+, etc. The electromagnetic currents
of these other particles are all contained in the C,t———1
current J'„given by Eq. (67). The above representation
of E„suggests a possible unified formulation of E„and
J„.For simplicity, let us only consider the system of
vector mesons. We may introduce a, (4&&1) column
matrix field operator U„:

E*+
Qp

U
Pp

Xp,

(86)

where E„*+, IC„*, and p„+ are, respectively, the field

operators of E*+, E*, and p+. The electromagnetic
current of this system can then be written as

8~= 8~'+ A.

1
0
0
0

0
0
0
0.

(811)

~=~~Q+~~ ~ (812)

where yq, p2 are constants, leads to the relations

and p(E'+), y(E*'), and p(p+) are, respectively, the
(total) magnetic moments of E*+, E*, and p+.

In the presence of the strong interaction, the current
g„~ is a mixture of the C,~

———1 current J„and the
C,„=+1 current X„.To illustrate a possible connection
between p and the other magnetic moments p(E*'),
p(p+), etc. , we may consider the symmetry group U4,
which transforms the four components of U„ into linear
combinations of each other. The free Lagrangian g~„,
is invariant under this U4 group of transformations,
provided these vector mesons are all degenerate. (The
usual SU3 group is rot a subgroup of this U4 group. )
The matrix 5K can assume a definite form, if the current

g„~, like g„', has simple properties under this U4 group
of transformations. For example, the particular require-

ment

where (cf., Eqs. (20) and (21)$ u=I (&") (813)

(8S)
I (&*')=I (I') ~ (814)


