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Assuming that the strong interaction II,t is invariant under the particle-antiparticle conjugation C, it
is shown that all possible C-noninvariant electromagnetic interactions H~ can be classified according to the
anticommutator between C and the charge operator Q into two types: (1) (C, Q}=0 and (2) (C, Q}WO.
Discussions of the first type C-noninvariant minimal electromagnetic interaction have already been given in
a previous paper. If (C, Q}&0, then the operator C must be different from what is normally called the
"charge-conjugation operator" C~ which, by definition, changes any state of charge Q to that of —Q. Thus,
iC~, Q}=0 and C&C„.As a consequence, there must exist, at least, a charged particle o whichis an eigen-
state of C; its eigenvalue can always be chosen to be +1.Furthermore, in the framework of a Lorentz-
invariant local-field theory, II,& and B'„are invariant under C~PT, but not CPT. The C~PT invariance
requires the existence of another charged particle u which has the same mass as u+ but the opposite charge.
The a is also an eigenstate of C. The existence of such a+ particles necessitates not only the C nonconserva-
tion of II~, but also the T noninvariance of II,t,. The general algebraic relations between H, f,, B~, and these
symmetry operators are studied, and the properties of the particles a+ are discussed. An explicit spin--,
model of u+ based on the principle of minimal electromagnetic interaction is given. A possible unifying view
connecting the present C, T noninvariance with the well-known C, P nonconservation of the weak inter-
action is discussed.

I. GENERAL DISCUSSIONS
' 'N this paper, we assume that the following two propo-
~ - sitions are valid:

(i) The strong interaction is invariant under the
particle-antiparticle conjugation C.

(ii) The electromagnetic interaction is not invariant
under the same particle-antiparticle conjugation oper-
ator C.

At present, there is good evidence that proposition
(i) is correct. For instance, we may mention the recent
study' of the equality between the energy distributions
of sr+ and sr in the annihilation of p and p,

p+p ~ 7r++sr +—
which places an upper limit on the C-noninvariant
amplitude to be not more than 1% of the C-invariant
amplitude. A similar upper limit of 2%%u~ is obtained
by studying the energy distributions of E+ and E in
the same (p+p) annihilation experiment. Further evi-
dence of C invariance of the strong interaction comes
from the smallness of the observed decay amplitude' of

where

and

Let us de6ne

8.=~.+&.~

CJ„C '= —J„
CE„C '=+E„. '

(6)

reactions. 4 (See theorems 2 and 6 in the subsequent
sections. )

The transformation properties of the known strongly
interacting particles under C can be determined from
the various observed strong reactions: e.g.,

cl p&=
I x», cll&= ln&,

clw+)= lw-), clio)= le&,

Proposition (ii) is purely a theoretical possibility. ' '
As'has been pointed out in Ref. 5, this possibility is
consistent with all existing experiments, and it gives
a natural explanation for the smallness of the observed
amplitude of reaction (2), which is about (o./7r) times
that of Kto-+ sr++sr .

Using the notations of Ref. 5, the electromagnetic
currents of all strongly interacting particles can be
written as

Es'~ sr"+sr (2) Qg= i J4d'r——

Additional supporting evidence can also be obtained
from the p-p double scattering experiments' and from
the experiments on reciprocity relations in nuclear

*This research was supported in part by the U. S. Atomic En-
ergy Commission.' C. Saltay et al. , Phys. Rev. Letters 15, 591 (1965).

2 J. H. Christenson, J. %. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964). See also, A. Abashian et al. ,
ibid. 13, 243 (1964).

3A. Abashian and E. M. Hafner, Phys. Rev. Letters 1, 255
(1958); C. F. Hwang, T. R. Ophel, E. H. Thorndike, and R.
Wilson, Phys. Rev. 119,352 (1960).

Qrc = i E4d'—r.

The total charge Q of the system is given by

Q=Qs+Qz
4L. Rosen and J. E. Brolley, Jr., Phys. Rev. Letters 2, 98

(1959);D. Sodansky et al., ibid. 2, 101 (1959).
~ J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,

a165O (1965).
e Cf. also S. Barshay, Phys. Letters 17, 78 (1965).
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The operator C anticommutes with Qs but commutes
with Qz.

CQg+QgC= 0,

CQz —QzC=O.

(10)

Qz/0, (15)

which means Qz must have at least one eigenstate, say

( a+), with a nonzero eigenvalue. We may write

All C-noninvariant electromagnetic interactions, in-
dependent of whether they are minimal or not, can
be classified into two types:

(1) The operator Qz is zero for all physically ac-
ceptable states. Thus, we have

CQ+QC= 0.

(2) The operator Qz has nonzero eigenvalues, and
therefore

CQ+QCW0. (12)

The 6rst type of minimal C-noninvariant electro-
magnetic interactions has been discussed in a previous
paper' (hereafter called Paper I). In Paper I, the cur-
rent E„ is given by the derivative of the magnetic-
moment matrix of a set of spin-1 particles; thus, the
spatial integral Qz of its fourth component is always
zero.

The second type of C-noninvariant electromagnetic
interactions will be studied in this paper. We note that
if Eq. (12) holds, then the particle-antiparticle conju-
gation operator C must be digerertt from what is nor-
mally called the "charge-conjugation operator" C~
which, by definition, changes any state of charge Q to
that of —Q: that is C satisfies

C„Q+QC =0,
but the operator C does not; consequently,

C/C~.

From Eq. (12), it follows that the operator

According to Eqs. (11), (19), and (20), the three
operators H, &,, C, and Qz mutually commute. Thus, the
state ~tt+) can be set to be also the eigenstate of H, s

and C:
H„~a+)=Z. [u+)

C I ~') =~.
l
u'),

(21)

(22)

where, by a gauge transformation of the form C —&

C exp(sQz8), the phase factor rt, can always be chosen
to be unity,

(23)gC

(iii) All interactions can be described by a local-field

theory which is invariant under the continuous inhomo-
geneous Lorentz transformations, and the usual relation
between spin and statistics is valid.

(iv) The principle of minimal electromagnetic in-
teraction holds; furthermore, the total electromagnetic
current ci„can be expressed in terms of the "bare" field

operators of various spin-2 and spin-0 particles only, "
and the charges of these particles are all of the same
unit e.

Propositions (ii) and (iv) require the electromagnetic
interaction to be of the second. type; i.e., (C,Q}&0.

The state ~u+) is a charged state, s but it is also an
eigenstate of C; its existence necessitates the C non-
conservation. We note that in the absence of the electro-
magnetic interaction H~ (i.e., e=0), Eq. (22) does not
appear strange, and C is conserved. In the presence of
H~, C conservation must be violated.

Another consequence is connected with the fact that
the "CPT" operator derived in the usual "CPT"
theorem' must be one which changes all particles of
charge +Q to that of —Q. Therefore, it canrtot be the
CPT operator" used in this paper; rather it should be
identified as the C~PT operator. The general algebraic
relations between H, &, B~ and these symmetry operators
will be investigated in this paper.

To make our subsequent analysis de6nite, we shall
assume, in the following sections, two additional
propositions:

and
LH, t,Q] =0

[H„,C]=0. (19)

Equation (18) follows from the total charge conserva-
tion and Eq. (19) is simply the proposition (i). By using
Eq. (17), we find that H,„also satis6es

LH i Qz7=0.
' T. D. Lee, Phys. Rev. 140, B967 (1965).

(20)

where eN0. The charge Qz is related to the total charge

Q =-'LQ+CQC 'j. (17)

The strong-interaction Hamiltonian H,~ satisfies the
commutation relations

'The total charge of the state ~a+) is (a+~Q(a+)r. By using
Eqs. (10) and (22), we find (a+[Qs[a+)=0. Thus, (a+[Q[a+)
= (a+IQzla+)=e&0' W. Pauli, Reefs Bohr and the DeveloPment ofPhysics (Pergamon
Press, London, 1955), and J. Schwinger, Phys. Rev. 91, 720, 723
(1953); 94, 1366 (1953). See also G. Luders, Kgl. Danske Viden-
skab. Selskab, Mat Fys. Medd. 28, No. 5 (1954).

'0Throughout the paper, I' and T refer, respectively, to. the
space-inversion and the time-reversal operators. Both operators
do not change the charge of the particle. (See, however, Sec. V.)
The operators C and E are both unitary operators, but T is not.
For a definition of the T operator, see E. P. signer, Gott. Nachr.
Math. Naturw. Kl. 546 (1932). In our discussions, we will often
say that a certain Hamiltonian, say II~(t), is invariant under T.
Such a statement refers specifically te the Schrodinger representa-
tion in which B~ is independent of t.

"Consequently, given the set of these spin--', and spin-0 field
operators, the structure of the current g„ is uniquely determined
by the principle of minimal electromagnetic interaction. (See,
especially, footnote 2 of Paper I.) The same problem can also be
readily analyzed without this assumption by using the method
developed in Paper I.
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Thus, the state
~
tt+) must exist. From proposition (iii),

it follows that there must exist another state
~
u ) which

has the same mass but opposite charge. The states
~

it+)
and

~

tt
—

) are not related by C.
It will be shown that, in the absence of the weak

interaction, the state ~it+), or ~u
—

), cannot decay into
any final states consisting of only known particles. Thus,
among all such states the ones with the lowest mass m,
behave like metastable particles; they can only decay
through the weak interaction. Because a+ and u—are
strongly interacting particles, their mass m, is not
expected to be small. "The existence of such particles
u+ implies not only the C noninvariance of the electro-
magnetic interaction, but also the T noninvariance of
the strong interaction. Nevertheless, it can be established
that, in the limit e=0, reciprocity relations among all
known particles remain valid, although the mathemati-
cal requirement of T invariance is violated. The role of
the particles a+ and a for the C, T noninvariance is
somewhat similar to that of the neutrinos for the C, P
noninvariance.

The details of the general consequences of these propo-
sitions and their applications to particles a+ are given
in Secs. II and III. The properties of the leptons and
the weak interactions are discussed in Sec. IV.

A possible unifying view which connects the present
C, T noninvariance and the well-known C, P noncon-
servation in weak interactions is discussed in Sec. V.
In the Appendix, an explicit spin- —,

' model of such par-
ticles u+ and. a is given. Some further experimental
consequences are discussed.

II. SYMMETRY AND ASYMMETRY PROPERTIES
OF Hsg AND H

establish that both II,~ and B~ are invariant under the
space-inversion operation P; i.e.,

LH.t,Pj=0

PHv, Pj=0.
(25)

(26)

CH~C '/H7.
Since H~ is invariant under T and P, we find

(CTP)H„(CTP) 'WHv. —

Instead, the usual "CTP" theorem' becomes

(29)

(30)

(CrTP)H, (CVTP) '=H„. (31)

Theorem X. There exists an operator C~ which satisles

C,g„(x)C = —g„(x)
and

Cr(Ht. ..+H~)C„'= (Ht...+Hr). (28)

Proof. From proposition (iv), it follows that
(Ht„,+H„) is, by itself, separately invariant" under P,
T, and C„, where C~ satisfies Eq. (27). Theorem 1 is,
then, proved.

Comparison between Eqs. (4), (6), and (27) shows
that the operator C~ is different from the particle-
antiparticle conjugation operator C; i.e.,

C~4C.

The operator C„satisfies Eq. (13); therefore, C~ is the
charge-conjugation operator. It is this mismatch be-
tween these two conjugation operators C and C„, that
gives rise to all the noninvariance properties of the
combined Hamiltonian (Ht, «+H, t+H~).

According to proposition (ii),

In this section we will analyze the consequences of
propositions (i)—(iv). For clarity, all conclusions will

be stated in the form of mathematical theorems.
The total Hamiltonian is assumed to be given by

Theorem Z. The strong-interaction Hamiltonian
satisfies

(32)

(33)

CH~C ~H~,
TH,~T-'~B,~,

(CvT)H, t(CrT) '=H, t, .
H= Ht„,+H„+H,t+H„t„ (24) b«

(34)
where Hf„, is the free-particle Hamiltonian but with
the masses given by the observed physical masses, and
H~, H, t,, H & are, respectively, the electromagnetic, the
strong-, and the weak. -interaction Hamiltonians.

There are, by now, numerous experiments" which

Proof. From proposition (i), we have

(35)CB,~C-'= H,».

'~ If a+ does not decay through weak interactions, then a lower
limit mo&5 BeV can be set by using the recent experimental
results of D. E.Dorfan, J. Eades, L. M. Lederman, W. Lee, and
C. C. Ting, Phys. Rev. Letters 14, 999 (1965). If a+ does decay
through the weak interaction, then the present lower limit of m~
becomes 1 BeV, or ~1.5 BeV, depending on whether a+ is a
boson, or a fermion.

~ We list but a few of the relatively recent such experiments:
F. Boehm and E. Kankeleit, Gait-63-13 report (unpublished);
Yu. G. Abov, P. A. Krupchitsky, and Yu. A. Oratovsky, Compt.
Rend. Congr. Intern. Phy. Nucl. , Paris, 1964; L. Grodzins
and F. Genovese, Ph s. Rev. 121, 228 (1961);R. E. Segel et ttl. ,
ibid. 123, 1382 {1961;D. E. Alburger et al. , Phil. Mag. 6, 171
(1961);R. Haas, L.B.Leipuner, and R. K.Adair, Phys. Rev. 116,
1221 (1959);F.Boehm and. U. Hauser, Nucl. Phys. 14, 615 (1959);
D. A. Bromley et aL, Phys. Rev. 114, 758 (1959).

(CvTP)H, s(CvTP) '=H, t, . (36)

Equations (33) and (34) are direct consequences of
Eqs. (25), (32), and (36).

Theorem 3. Both H, t and. H„commute with Q~ and

Qtr l 1.e.)
(37)tH",e.)=LH. ,e-j=o

L.Hv Q~j= LH~ Q~j=0
al1d

(38)

If C~H, gC~ =H,g, then we could have defined C=C~,
and would violate proposition (ii); therefore, Eq. (32)
is established. From proposition (iii), and. Eqs. (30)
and (31), it follows that
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P
C
C~
T
CT
C„T
CP
C~P
P'T
CPT
C~PT

H,g

X
X
X

X
X
X

H~

X

X

X

X
v'

X
X
X

X
X
v'

X

I urthermore,
LQ~ Q~j=O.

Proof. Equation (37) is identical with Eqs. (18) and
(20) proved in the previous section. To establish Eq.
(38), we observe that from proposition (iv) and Eqs.
(5) and (6)

and
L~. QR= P.Q~j= 0

Ãs Q~j=L&wQ~P=o.

(40)

Consequently, Qz commutes with Qir, and H7 commutes
with both Qg and Qir.

The symmetry and asymmetry properties of H,& and

H~ are given in Table I. The corresponding properties
of H„~ will be discussed in Sec. IV.

Twerp I. Symmetry and asymmetry properties of different
interactions. fH z' includes only the u+-independent part of the
weak interaction. j

A-nucleon-pion system through H,&. Theorem 4 is, then,
proved by using theorem 3.

Let ~u+) be an eigenstate of H, » which has Qq=O
and Qrr=e. The state ~a+) satisfies Eqs. (16), (21),
and (22). Since H„ is invariant under (CVT), the state
~u ), defined by

l~ )—= (c.r) l~+), (42)

must be an eigenstate of H, &, and it has the same
eigenvalue as ~a+). From the definition of C~, we can
conclude that the state ~a ) has Q~=O and Qrc= —e.
The state

~

a ) is also an eigenstate of C.
In the following, the particle u+ (or a ) refers to the

state that has the lowest mass among all states with
Qq=O and Qir=+e (or —e).

Theorem 5. In the absence of the weak interaction,
the particles a+ and u are stable.

Proof. Theorem 5 is a direct consequence of theorems
3 and 4.

The particles u+ and a can be produced in pairs
through H, &,

. e.g. ,

p+p~ p+p+o++& + " (43)

It is important to note that since H, & is not invariant
under either C„or T, neither C~~a+) nor T~a+) are
eigenstates of H,&. Similarly, under either C~ or T, a
physical proton p does not transform into either p or p.

Theorem 6. In the absence of the electromagnetic
interaction, the usual reciprocity relation holds for any
strong reaction which consists of only the presently
known particles.

Proof. From Eqs. (34) and (35), we find

III. APPLICATIONS C '(CVT)H.»(CYT) 'C=H, ». (44)

Since H,», Qz, and Qz mutually commute, we may
diagnolize these three matrices simultaneously. The
eigenstates of H,& can, therefore, be classified according
to their values of Qg and Qrc.

Theorem 4. All presently known strongly interacting
particles have Qir =0.

Proof. From the observed C invariance of reaction
(1),it follows th«C(P)= (7i), C~s.+)= )s

—).Thus, both
the nucleon and the pion must have Qrc=0. By using
theorem 3, we conclude that all known strongly inter-
acting nonstrange particle states, such as p+, Ã*, p',
etc. , must have Qrr=O.

The A' has a total charge

Q(A)=Q. (A)+Q (A)=0

Under C, the state ~cV) changes into C~cV) which
remains an eigenstate of H, ». The state C~A') has the
same mass mii, but it has a charge = L

—Qq (A)+Qrc(A)].
The only known particles that have mass m+ are A'

and h.'. Thus

Under C, any known strongly interacting particle, say p,
becomes its antiparticle p. Under (C~T), p is trans-
formed back into p but with its spin and momentum
directions inverted. . Thus,

C '(C,T)ip(k, s))=»imp( —k, —s)), (45)

where k and s denote, respectively, the momentum and
the spin of the state and g is a phase factor. Similar
relations hold for all strongly interacting particles with

Qrc ——0. Theorem 6 can be easily proved by using Eq.
(44)

Similarly, one can prove that for any collision process
consisting of only the known strongly interacting par-
ticles all other consequences of C '(C~T) invariance —are
also identical to that of T invariance. Thus, the experi-
mental results cited in Refs. 3 and 4 can still be used as
supporting evidence of C invariance for H,~, even though
H, & is not invariant under T.

The reciprocity relation does not hold for reactions
that involve a+. For example, the strong reaction

(46)
and consequently Q&=0 for A'. All the presently known
strongly interacting particles can be connected to some

is related to
(47)
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through C~T, and is related to

a +e+m+ ~ a +p (4S)

where l=e or p, , and other possible decay modes. An
analysis of the various possibilities will be given
elsewhere.

through C '(C~T). Neither one is the usual reciprocity
relation.

An explicit spin--, model of the particle a+ is given in
the Appendix.

IV. LEPTONS AND THE WEAK INTERACTION

The leptons have no strong interaction. Thus, the
particle-antiparticle conjugation operator of the leptons
is determined by the electromagnetic interaction; i.e.,

H„g=H„p'+H„g, (50)

where H k' consists only of the field operators of the
known particles, and H k depends also on the particle
gk

If H~ violates C invariance, then reaction (2) can be
attributed to the radiative correction effect, and there
is no particular reason to assume, in addition, that
H„qo has a (CP)-noninvariant amplitude which happens
to be 0 (n) times that of the (CP)-conserving amplitude.
We will, therefore, assume

The C of the entire system is the product of (C)&,~&,„
times the operator C of the strongly interacting particles.
All above theorems 1—6 remain valid, if J„(conse-
quently, also H~) includes the known leptonic electro-
magnetic currents.

The weak-interaction Hamiltonian H„k can be de-
composed into

and

C,t= C,

T,g C'(C~——T),

E,t——E,=J',

TV=T

(57)

(58)

(59)

(60)

E'„C,tT,t ——P,C,T, . (61)

The Hst is invariant under P,t, C«, and T,t, while

(Hq„,+H~) is invariant under P~, C7, and T~. The fact
that C,t/C~ and T,t/TV gives rise to the "C" "T"
noninvariance of the combined Hamiltonian (Ht„,
+H~+H, g).

In the absence of H~, we cannot differentiate a charged
particle from a neutral particle. Thus, there is no
difFiculty in accepting the u+ and e as eigenstates of
C,t. The difference between u+ and the known particles
can be attributed to, say, the baryon number N. We
may assign

(62)

V. A UNIFYING VIEW OF DISCRETE
SYMMETRY VIOLATIONS

From the above discussions, it is clear that the
operators associated with the various discrete symmetry
operations can be different for different interactions. For
example, we may define

LH„go,CPj=0. (51)
for u+, and require that

$H g~,C~Pj=0.
From (C~PT) invariance

(52)

(C„PT)H„,'(t) (C,PT) '= H„;( t), -(53)—
it follows that

TH,o(t) T-i H,o( t), (54)

C-'(C,T)LH„,o(t)j(C„T)-'C=H„,'(—t), (55)

CPTH„g'(t)T 'P 'C '=H„j,'( t). — — —

The Hwk' is, of course, not invariant under either C,
C~, or P.

These properties of H k' are summarized in Table 1.
The remaining e+-dependent part H„k is totally un-
known. The main question is whether a+ can decay
through H k . It seems reasonable that there should be
weak decay processes such as

u+ ~ t++neutrino+ .

In the framework of a local-field theory, H k' is a func-
tion depending only on the "bare"-Geld operators of
the known particles. Therefore, we expect that

C.gcV+lVC. g
——0. (63)

Under C,t, a baryon with N= 1 must transform into an
antibaryon with Ã= —1. The known ¹=0mesons can
be regarded as composites of baryons and antibaryons;
their transformation properties under C,t are determined
by those of the baryons.

The C~ satis6es
(13)C.Q+QC7= o.

Consequently, neither a+ nor u can be an eigenstate of
C~, which results in the mismatch between C,t and C~.

The same view can also be extended to the weak
interaction. %e note that in the absence of H7 and the
leptonic mass terms in Hg„„ it is rot possible to differ-
entiate p, e, y„, and p, through either their mass
differences or their charge differences.

We will now require that H„k be invariant under
Cwk, Ewk, and T„k, where

Twk Tst (64)

+wkCwkTwk +stCstTst ~

LFrom Eqs. (54) and (55), it follows that if we con-
sider only the a+-independent part Hwk', then an
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equally good choice can be given by T k=T~ and
P„gC„gT„g=P,CVTvg.

The C„q must be zzzdeperzdezzt of the space-time trans-
formation, and, in analogy to Eqs. (63) and (13), C klf iC„I, ' ——cos8$s+sin8gs. (78)

where Gy and G~ are real parameters and 0 is the
Cabibbo angle. "Equation (75) can be satisfied if

C gL+LC g=0, (66) The remaining component (sin8lf s—cos8lf s) is an eigen-
vector of C„k. Thus, we hand

where I. is one of the lepton numbers. '4

For clarity, we will consider only the leptonic part of
the weak interaction. (All following considerations
can, of course, be applied to the nonleptonic part of
II„k as well. ) Let

and

Cwk+wkCwk =+wk )

PwkItwkPwk +wk )

T„gII„g(t)T„g '——H„g(—t),

(79)

(80)

(81)

II„g= (1/%2)g„(Ii*j~+Iijr*+j)*j~), (67)

where g„ is the p-decay coupling constant,

Z ~t» (1+&a~.„
l=e, p

j~*=z Z f.item~(1+Vs)A
l=e, pc

(68)

(69)

and. I&, Iz* depend only on the strongly interacting
particles. In Eqs. (68) and (69), we find it convenient to
represent the neutrino fields by 4-component operators.

We define

and

C„gP.(x)C„i,-' ——P„„(x),

C„ply „(x)C„g-'——P„,(x),

Cwk' ——1.

(70)

(71)

(72)

The leptonic current jz(x) transforms into ji*(x) under
Cwkj l e )

(73)

I.= —i for e+ v„p, ) v„. (74)

In order that H„k be invariant under C k, we must
have

C„gIi,(x)C„g ' ——Ii,*(x). (75)

The simplest way to study the action of C k operating
on nonleptons is to use the quark model" or any one of
the triplet models. "Let Q r,lt s,ps) be the field, operators
of the triplet (ni&+',ns', ns'), where the superscripts
denote their charges. The corresponding currents Iq
and I),* are given by

Ii*=zpi y4yg(Gv+Grips) (cosg s+sin8lf s) (76)

Ii= z (cos81t s+ sin&ps) "y4yi, (Gv+Gz~s)p„(77)
'4 Without Eq. (66), the invariance requirement of II k can be

trivially satisfied by choosing Cwk 1 & k Pa&Ca&) and &wk= ~st.
"M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN

{unpublished report).
See, e.g., T. D. Lee, Nuovo pimento 35, 933 (1965) for a sum-

mary of the different triplet models.

The operator Cwk anticommutes with I, provided we
asslgil

L=1 fOl e ) v) p ) vs
and

Pst+Pwk )

~++~st ~wk )

PstCstT st PyCy~y PwkCwkT wk )

and consequently,

C.tWC, WC kWC.t.

(82)

(83)

(84)

(85)

If the identity of a particle could be taken for granted,
then it would be possible to define T, the pure time re-

versal, and P, the pure space inversion, unambiguously.
However, the distinguishability between different par-
ticles depends on their interactions, and degeneracies
occur if certain interactions are absent. It is, therefore,
not possible to give a unique de6nition of P and T
without any reference to some specific interactions.

At large distances, because of its long-range character,
the electromagnetic force predominates. Thus, in all
collision processes, the asymptotic conditions are deter-
mined by the physical masses and the electromagnetic
properties of the incoming and outgoing particles.
It is, therefore, convenient to identify T=T~ and
P=Pv, since (IIi„,+IIV) is invariant under both T„
and P~. On the other hand, the internal structures of
these particles are determined mainly by H, t, which
makes it convenient to associate the particle-antiparticle
conjugation operator C with C,t. It is because of these
particular identi6cations, that II,t becomes noninvariant
under 7, H~ becomes noninvariant under C, and H„k
becomes noninvariant under C and P.

'r N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).' We note that if the physical masses of particles are not de-
generate, then I'~, C~, and T~ can be uniquely determined by
(Hi, +If„),apart from a gauge phase factor. Both ff,i and H s
are invariant under some other groups of unitary transformations,
denoted by G,t and G„k, respectively, which are not connected
with the space-time transformations. For the II,t, we have the
isospin transformations; for the II k, we have a U2X U2 group «
transforrnations. LSee T. D. Lee, Nuovo Cimento 35, 945 (1965).j
From any special solution of C;, P;, T; (z=strong or weak) we
can easily obtain the general solution by transforming C; —+ SC;,
I'; ~S'P;, and 7; —+ S"7; where S,S', and S"are members of the
group G;, provided Eqs. (63), (66), and (82)—(84) are satisfied.

where Pwk=P. tC.tC k '.
Each interaction II; (i=strong, or y, or weak) is

invariant" under its own P;, C;, and T;. The observed
violation of these discrete syrtimetries is due to
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APPENDIX

In this Appendix, we give an explicit model of the
particles e+ and u by assuming that they are spin-~
fermions and that their strong interactions are invariant
under the usual SU3 group of transformations. Conse-

quently, the particles a+ and u—must belong to certain
irreducible representations of the SUB group. The
simplest case is that the a+ and a are both unitary
singlets. It is also possible that there might be neutral
u's, so that (at+,ass, ass) and (at,assAs) could form two
unitary triplets, etc.

We consider first the case in which the u+ are unitary
singlets. As an illustration of some possible forms of
strong interactions between the a+ and the known
spin —rsbaryon octet Bs&' (where j, t't= 1, 2, 3) we may
give the phertomelotogicu/ Lagrangian density:

Lint(&) ~glmN PB s|47' YSBj )
8$ 8$",

X ttt.y4ys — Visit" +gsmsr '
8$gg 8$p

88~' Bent jg~

X B'a'y4V, -- —— V4v,BI' L4'.V4~s.4'.] (A1)
~St, &v

where the dimensionless coupling constants gj and g2

are real and large, m~ is the mass of the nucleon, all

repeated indices are to be summed over, p;, v vary from
1 to 4, and. j, k vary from 1 to 3. The f, and Bs& are,
respectively, the field operators of a+ and the spin-~
baryon octets, and Pt„Bt;s their respective Hermitian
conjugate operators. The y~, y2, ~, y~ are five mutually
anticommuting (4X4) Hermitian matrices, and o„„
=(2i) '(y„y„y„y„)—For d. efiniteness, let us choose

p&, p2, p3 to be real and p4, ps to be pure imaginary. In
addition to L; ~(x) there are also other strong interac-
actions between the known particles and that between
the u's.

The electric currents are, in the absence of the strong
interaction, given by"

&s=&sit'.V4Vs4"

~.=so(4t.V4VA. O'=- V4VA =--+"—), - (A3)

"It should be noted that because of the derivative couplings
in the strong interaction, Eq. (A1), there are the induced electro-
magnetic currents whose amplitudes are proportional to eg1 and eg2.
In this and other similar cases, the total interaction Hamiltonian
II is not a linear sum (II,q+II«+II q). Our general supposition,
expressed in Sec. V, remains valid provided

H,t—=limH, at e=g„q=0,
H~—=hmH, at, gst =

gwine
=Op

and
Hw~=—limH, at e=g.t=0,

where g and g„z represent, respectively, all strong- and weak-
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where Q„=Bs', f-„. =-Br', etc., and ~ ~ ~ represents the
currents due to other known spin-~~and spin-0 particles.

Similar expressions can be easily written down if the
a's are unitary tripletsm (or octets, etc.) instead of being
unitary singlets. We note that the C=+1 current E„
is a unitary singlet if a+ and u are unitary singlets;
in footnote 20, it is shown that E„remains a unitary
singlet, even if the e+ and a—are not themselves unitary
singlets.

Under C, C~, and T, the field operators transform like

and

CBs& (r,t)C '= Bt,—"(r,t),

Cps'(r, t)C '=Bt;s(r, t),

TBs&(r,t)1 '= yryrysBs'(r, t), —

C4"(r,t)C '=0"(r,t)

CA-(r, t)C =4'.(r,t),

TP (r,t)T =y y gyes (r, t), —

(A4)

(AS)

(A6)

(A'7)

(A8)

(A9)

where, for simplicity, all phase factors are chosen to be
unity.

It can be readily verified that I.; t is a Hermitian
operator and it satisfies

and

CL;„t(r)t)C '=+L; t, (r,t) )

C,L; t,(r,t)C, '= —L;„,(r,—t),

TL; t,(r,t)T '= L;„g(r, t)—. —

(A10)

(A11)

(A12)

Thus, the resulting H.» is invariant under (CrT), C,
and (C„PT), but it is not invariant under either Cr,
T, or CI'T.

interaction constants. Each interaction II; (t=strong, y, and
weak), thus defined, remains invariant under its own C;, T;,
and I';.

I wish to thank Professor L. Van Hove for raising the question
of derivative couplings.

~ To show this, let us consider erst the functional relation be-
tween Q~ and I„where I, is the z component of the isospin
operator I. Since the eigenvalues of both Q~ and I, are additive
quantum numbers, there can only be linear relations between
these two operators; i.e., Qx =XI,+A, where X is a constant and
A must be another additive quantum operator. By applying this
relation to all known particles, for which Q~=O, we find 'A=O.
Thus, Qrr is independent of I.. By extending this argument to
include other components of I, it can be established that LQx,I]=0.
Similarly, it can be shown that Q& is an SU& unitary singlet. By
proposition (iv), it follows, then, that IC„ is also a singlet under
either the SU3 or the isospin transformations.

It may be instructive to give an explicit example of nonsinglet
a particles. Let us assume the existence of a unitary triplet of
spin 0, or ~, particles (a1+,a2,a30) where all the a's are of Q~=+ ~,
the a1 and a2 are of I=-', N =S=0, and aa is of I=0, N =0 but
S=—1. The total charge Q is given by

Q =Is+ s (X+S)+Qx.
This triplet has, therefore, total charges (+, 0, 0). It becomes one
with total charges (0, +, +) under C,& and a different set with
total charges (—,0, 0) under T,t,. The C,» and T,t invariances,
then, generate from the triplet (aq+, ag, ago) a total of four different
set of triplets. Nevertheless, the current E'„, given by the minimal
electromagnetic interaction of all these triplets, remains a unitary
singlet.
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The currents J„and E„ transform in the same way
under either C~ or T, but difkrently under C:

We 6rst list the consequences of E„satis6es the

~

AI
)
= 0 rule".

but

C,J„(r,t)C, '= J„—(r,t),
C,K„(r,t)C, '=——E'„(r,t),

TJ„(r,t)T '= —J„(r, t),—

TK„(r,t) T '= —K„(—r, t)—,
CJ„(r,t)C—'= J„(—r, t),

(A13)

(A14)

(A15)

(A16)

(A17)
or

co'(or P') ~ ~++or +m',

(oo(or yo) ~m++m —+y.

4'~ p'+v

coo -& po+y,

and there is rso x+, x asymmetry in either

(A20)

(A21)

(A22)

(A23)

Remarks

1. From Eqs. (A4) and (AS), we see that C and C~
both change a "bare" p to a "bare" p. By using I.;„,
and in the absence of H~, it can be verihed explicitly
that, because of the virtual creations and absorptions
of the pair (a+,a ), a "physical" p is changed into a
"physical" p only under C but not under CY. Similarly,
a "physical" p remains a "physical" P under C '(C7T)
but not under T.

2, As remarked earlier, the E„associated with the
u+ particles must be a unitary singlet. However, even if
a+ exists, there may still be other "first type" C,t-
symmetry violating interactions H~, and for which

E„may not be a unitary singlet. From a phenomeno-
logical point of view, one should decompose the current
E„ into members of different representations of the
5U3 group:

K„=(E„),+(E„),+", (A19)

where (E„)i is a unitary singlet and (K„)o is a member
of a unitary octet, etc. The experimental consequences
of E„=(K„)o have already been examined in Paper I.

If the current K„=(E„)i, then under the isospin
transformations, E„must transform like an isoscalar,
and therefore it satisfies the

~
DI

~

= 0 rule.

CK„(r,t)C—'=+K„(r,t) . (A18)

Thus, the H~ is invariant" under C~, T, and C~PT, but
it is not invariant under either C or CPT.

There remain, however, x+, x asymmetries in

and

p ~ m'++s' +y,
rto —& or++or +y,

go —& a++or +pro.

(A24)

(A25)

(A26)

o ~ ~o+e++e (A27)

and there are no observable "T" noninvariant effects
Li.e., C '(C~T)-noninvariant effectsf in

Zo ~Ao+e++e—. (A28)

Another consequence of E„=(K„)i is that, in the
limit of perfect SUo symmetry and by using (C~PT)
invariance,

qp -I+ oio+y. (A29)

It should be noted that identical results concerning
reactions (A27) and (A28) can be derived in the limit
of perfect SUo symmetry if E„=(K„)o. However, by
studying reactions (A20)—(A26) and (A29) it is possible
to differentiate whether E„=(K„)i01 Kpg (Ky)i+(Kp)o.

"For a detailed phenomenological analysis of these reactions,
see Ref. 5.

The 3m final state in reaction (A26) contains only the
l= 1, C=+1 and the I=O, C= —1 states.

Futhermore, in the single-photon-exchange approxi-
mation, we find


