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%'e derive, through sixth order in the Fermi momentum, the many-fermion energy expansion. This ex-
pansion is compared with actual energies previously computed for the square-well potential. %e introduce an
approximation scheme, valid over a significant range of conditions, which includes, we think, in6nite nuclear
matter. %'e show that saturation is almost certainly a singular point of the many-fermion energy curve.

1. INTRODUCTION

'N this paper we attempt to synthesize, in relatively
~ - easily calculable form, the results of our two previous
papers. "We found in those studies that the Brueckner
approximation, even though it sums more terms than
the ladder approximation, is not a more accurate ap-
proximation than the ladder approximation. In fact, in
the low-to-moderate density range, the sum of the
complete potential perturbation theory may even lie
on the opposite side of the ladder approximation from
the Brueckner approximation. The reason lies primarily
in the neglect of the ring diagrams.

Since nuclear density is only a small fraction of closest
packing density for the currently accepted diameter of
the nuclear hard core, we have extended the power
series in the Fermi momentum found by Huang and
Yang' to include the sixth order in kF. A discussion of
this expansion is given in the second section. We find
that in addition to ordinary powers of kF, terms in
kF lnkF also appear. In contrast to the terms found by
Huang and Yang, the additional terms are not com-
pletely determined by the two-body scattering pa-
rameters but also depend on many-body aspects
(off-diagonal terms) of the scattering matrix.

In the third section we evaluate the additional terms
for the soft, repulsive, square-well potential and com-
pare the results obtained with those obtained by other
methods previously. Reasonable accuracy is obtained
for the potentials investigated to a density of nearly
kF= 1.0 for strong interactions and more for weak ones.

In the final section we discuss the calculation of the
energy in the infinite-nuclear-matter problem and out-
line a calculational method, which combines aspects of
the Brueckner E-matrix approach and the Monte
Carlo procedures used in I and II, that should accu-
rately reproduce the many-fermion energy over a
significant range of conditions. We discuss the analytic
structure of the many-body energy and the inclusion of
spin-dependent forces and isotopic spin.

*Work supported in part by the U. S. Atomic Energy
Commission.' G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev.
1M, 1373 (1963);hereinafter referred to as I.' G. A. Baker, Jr., B.J. Hill, and R. J. McKee, Jr., Phys. Rev.
135, A922 (1964); hereinafter referred to as II.' K. Huang and C. N. Yang, Phys. Rev. 1{}5,767 (1957).

2. THE FERMI-MOMENTUM EXPANSION

Our procedure for obtaining the expansion of the
ground-state energy of a many-fermion system in terms
of the Fermi momentum is to select from the perturba-
tion expansion in the potential all those terms which
can contribute through the desired order in kF and sum
them to all orders in the potential strength. The basis
of our selection procedure is the observation that the
creation of an independent hole momentum at a poten-
tial vertex implies that the contribution of the diagram
must vanish at least as one higher power of kF in the
limit as kF goes to zero. The reason for this result is
that the volume in momentum space is proportional to
kF', however, there is one more denominator which
may reduce the volume factor by kF' leaving a net
result of kF'. The only vertex which neither creates nor
destroys a hole is the particle-particle scattering vertex
(vertex 2 in the notation of I and II) illustrated in
Fig. 1.

Since the leading terms in the energy are of the order
kF', it follows that if we agree to iterate' every relevant
vertex by applying an indefinite number of vertex A' s,
we may obtain (2+n)th order in kp by considering the
nth in potential strength to find the basic graphs. It
will be convenient, following Brueckner, to denote the
iterated vertexes with a E and the uniterated ones
with a V.

By examination of the catalog of graphs given in I
we may classify the basic graphs for the first six orders
in kF as follows: Those proportional to kF' are elabora-
tions of B1.Those proportional to kF' are elaborations
of R3 and H3. Those proportional to kF' are elabora-
tions of F3, I.6, IA.1, IA.2, IA.3, II.3=II.4, II.5, II.7
= II.12, II.S=II.11, II.9, II.10, IIA.1, IIA.2= IIA.4,
IIA.3, IIA.5, IIA.6, III.2, III.9+10. The other dia-

F1Q. 1. Vertex which does not
lead to an increase in the power of
the Fermi momentum multiplying
a diagram.

4K. A. Brueckner, The Many-Body Problem, edited by C.
de%'itt Qohn Wiley 8z Sons, New York, 1959), pp. 65 et sett.
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grams in that catalog are either included as part of
the elaboration of the above, or (IV.4-7) are of higher
order in kF. These sequences must be expanded in kF
to give the Fermi-momentum expansion. For instance,
the ladder diagrams, 81, B2, B3, I.1, all vanish as
kF' goes to zero; however, they also contribute terms
like kF', kF', kF', etc. Starting with the elaborations of
F3 terms proportional to kF' lnkF are obtained.

Our procedure for obtaining the higher order con-

tributions from the ladder series is to consider a typical
term„ to rewrite it as a sum of terms whose behavior as
a function of kF is simple, and then to identify and sum
all the in6nite sequences of them which occur. %e will
consider for simplicity an ordinary, central force, al-
though, as we will point out later these results may be
easily generalized. Let us now consider, for example, the
third-order (in the potential) ladder term, B3. Its
contribution to the energy is

B3=3Mo/[2"or1okpoko] dpdkdkpdk1
I kp+& I &». I kp+&o I &», I kp+» I &».
lip —&I &» Ikp-&oI &». Ikp-»I &»

v (kp k) v (kp —k1)[v (k1—k) —o v (k1+k) 7
X (2.1)
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ko'kp

r (ko) v(kp —k1)~ov(k1)
B3=3M'/[2"or"ko] kvo(-', or)' dkpdk1
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—')7[(k '—ko)—1—(k ~)7
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k'

2ko'kx4 t



PERTURBATION SERIES FOR THE GROUND STATE

where F(p,k) is 1 if ) sy+k( &kg and ) $p—k) &kp and zero otherwise, and f'"(k=0) is the second derivative
with respect to the magnitude of k, evaluated for

~
k

~
=0, of 7 =s(ko—k)s(k&—ko)[s(k&—k)—ss(k&+k) 1, aver-

aged over the angles of kp and kg. The terms corresponding to T'(k=0) vanish by synunetry.
The coefficients of kr', kr4, and kr' are potential-dependent constants. Following Yang and Huang' we will now

observe that these constants are closely related to those which appear in the expansion of the zero-energy scattering
length and several other potential-dependent parameters. For this purpose we note' the solution of the integral
equation

~el~—~'l

0 ~(r) =e's' —— U(r')%~(r')dr'
4r [r—r'[

(2.3)

can be expanded (in momentum representation) in powers of X as

yy(r)dr= (27I') ~(pi p) X(pP+g ) +(p pl)+~ (pl +g ) +(pl pm) (ps +g ) N(p2 p)dp2

with the notation

(Pl +g ) N(pl y2) (Ps'+ q') 'I (ys—ys) (Pm'+ q') '~ (ys —y)dydy8+, (2.4)

N(qq —qs) = (2s) ' w~u'~U(r)e*~~'~dr). (2.5)

From the well-known integral expression for the scattering length (p= q=0)

a= (1/4s) U(r)+0(r)dr (2 6)

and. expansion (2.4), it follows, as Yang and Huang have shown, that the coefficient of kr ln (2.2) is the third-
order term (in potential strength) in the expansion of a constant times the scattering length. The remainder of the
scattering-length series similarly appears in higher order. The coefEcients of kF' contains the two terms which
result from the expansion of a constant times the square of the scattering length, as found previously by Yang
and Huang. The rest of the terms in this expansion appear in the higher order terms. The 6rst two integral co-
eKcients of kr' are a constant factor times the first (third-order) term in the expansion of a constant times the
scattering length cubed. The last integral coeScient of kp' contains two types of terms. In order to sum them to all
orders let us consider the auxiliary quantity,

(kp) = [M/k2][3~/(2~@kp~) j
where q is taken as zero here. Ke note that

))y+k(&ky, )yP-1 )&A.F

e+'"'U (r)%'~ (r)d rdkdp, (2.7)

and deGne
a=s0~(0) = 8+(0)—-', 0 (0),

k~=k[o+" (0)-PRO"-"(0)j
(2.8)

(2.9)

where Q&+ comes from the direct, and 0~ from the exchange, contribution. The quantity b& is seen, by means of
expansion (2.4) to be exactly a constant times the sum of the T'"(k=0) terms which appear in every order of the
perturbation expansion.

The last two terms are part of the expansion of

drdr'dk%'0(r) U(r) [(1—e'~' &'—"&)/k4j U(r')+0 (r'), (2.10)

as can be shown by use of the expansion (2.4) and by considering the corresponding terms in higher order. The
~ See, for example, T. Y. %u and T. Qhmura, QueeAcm Theory of Scattering (Prentice-Hall, Inc., Englewood CliBs, New Jersey

j.962), Sec. B.
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%o(r) =+ (2l+1)i'Pg(r)Pg(cosg),
l~

(2.22)

where PI, are the Legendre polynomials and 8 the angle
between y and r; it follows that

Although these could be carried further analytically
we have preferred to evaluate (2.17) and (2.18) nu-
merically. We obtain

gi= —5 566X10 ' g2=6347X10 '
(2.20)

g3= —3.824X 10—', hg ———2.968X 10—'.
We remark that all the terms g; kF~' aj+' occur in the
ladder series. Because of the last ln term in r~ there
appears in the integrand for g; a term proportional to
(lnp)' (for p small). This term leads to a contribution
of the order of j t, and hence there is at least a subse-
quence of terms in the kF expansion which is a divergent
series. Whether or not this divergence is canceled by
other terms, we do not know, but we feel that it is not,
except in very special cases.

It is both instructive and useful to reduce the for-
mulas for b~ and b2 to simpler form. It turns out that b~

can be directly related to the experimental two-body
phase shifts, as of course can the scattering length a.
First, we can rewrite (2.3) as a diGerential equation:

(—P+g)+o(r)+ U(r)+o(r) = (p +q')e'o' (2.21)

For q=p, the boundary conditions are that 4'o(r) be
6nite at r=p and that the expression ~%', (r)—e'o'~
tend to zero like r—' as r tends to infinity. ' To obtain b&

it is convenient to make a partial-wave decomposition
of 4', (r). Thus if

We have not been able to express b2 in terms of phaM
shifts alone, and believe that it is not so expressible,
as we found in I and II that different potentials with
identical two-body phase shifts yielded different many-
body energies in ladder approximation. For spherically
symmetrical potentials we can reduce b2 to

1
bo r—o—dr—(r') odr'Po (r) U (r) (3r&+r&o/r~)

20
X U(r')fo(r'), (2.29)

where r& and r& are the greater and lesser, respectively,
of r and r'.

We wish to point out that all these results also hold
for the velocity-dependent forces considered in II be-
cause the potential factors in the interior (i.e., not the
erst or last) of a ladder term do not depend on the hole-
state momenta but only on k;—k~& and k;+k~& or
q,—q~& and I—a+ q;+q~& in the notation of II.

We now turn to those terms whose contributions
start in fifth order in kp. The sum of those diagrams
which are elaborations of H3 contributes a term pro-
portional to kF'a'k'/M in leading order; we may cal-
culate the coefficient by evaluating Eq. (2.7) of I for
the arguments of the potential set to zero. The coeK-
cient (obtained by Monte Carlo integration) is 5.74
X10-'&1.0X10 '. By proceeding as we did in (2.2)
we may show that there are two terms contributed by
the H3 sequence in sixth order in kF. One term comes
from differentiating the contributions of the E matrices
which now stand at each vertex of H3. This term con-
tributes 3(5.74X10 ') ( 3ngq)a kr—ok /M=9 03X10 'a4
XkFok'/M. The other contribution is of the form abo.
It is

—$20/(277r') ]kFoabok'/M . (2.30)
d re+*"'U (r)+g (r)

=4o. g(21+1)(~1)' j ~(kr)U(r)tP~(r)r'dr. (2.23)
l~ 0

The terms proportional to k' now come from the I=O
and l= 1 terms alone. If we use the asymptotic form

fg(r) =j~(kr) —A ~(k)k'/r'+' (2.24)

and the Hermiticity of the l=0 part of the scattering
matrix for the ladder series, we can easily show that

o o+"(0)= 5LA o"(o)~3A ~(0)], (2 25)

where, if in two-body scattering for the l=0 and 1
phase shifts

The other terms which start in fifth order are
elaborations of R3. We obtain, proceeding as above,
contributions of

(—2.863X10 'a1 7X 10 ')kF'a'k'/M
+3(—2.863X 10-') (—37rgg)k p'a'k'/M

+kpocgk'/M. (2.31)

The term c~ arises in a similar manner to the ab2
term in H3; however, in the calculation of c~ we must
consider the effects of a hole-filled-state interaction in
the presence of an excited Fermi sea. In this situation,
solutions of (2.3) or (2.21) occur with q not equal to
zero. Let us define

then

k cotbo = —1/a+-,'roko —.
k' cotbg ———1/A g(0)+

(2.26) It(k)= jo(kr)U(r)P (r)ro'dr,
0

(2.32)

00

Ao" (0)= oa'ro —— r U—(r)fo(r)——dr, (2.27)
0

4= —(3/20)a'ro+ (27/10)A g(0) . (2.28)

1
X~(k) =—e+&'~'U(r) jgo(r)dr,

4m
(2.33)

where po(r) is that of (2.21)—(2.22) for f= p, p= p, g= 0,
and
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where g~~ is the solution of (2.21) with p=qk, and
q'=gk'. 0 we expand

P)g(r) =Q(21+1)i'g((r)Pg(cose), (2.34)

then

E~(k) =g (2l+1)(&1)' j g()kr) U(r) fg(r)r'dr. (2.35)
l~ 0

We may now write down cg. It is

2
ci————dk(E'(k))E (k)—2E+(k)]

9x

+E'(0)E(k)}/k'. (2.36)

%e shaH now turn to those sequences of terms whose
contributions begin in sixth order in kp. The self-energy
corrections which are elaborations of the 6nal third-
order graph F3 are of this type. If we write this con-
tribution as kF'cg, then by application of the techniques
used above we can show that

dkE'(k)$21+(k) 'k—(k) E(—0)]/k'. (2.37)

As X'+'(0) =X' '(0)WO, the integrals (2.36)—(2.37) for
c& and c& diverge logarit&mically as k goes to zero. This
behavior is symptomatic of the appearance of a kp' ink p
term in the expansion. We can isolate this term by
replacing the kg dependence in the lower limit of the
integral and calculating the various contributions which
arise in c~+cs. They are

co= „,t:E(0)]' +'(o)

+k&s f jy+h'( &kr. f fy+R[ )sr. ks(1+Pk)IS~-&'I&», l&l -~l »~

2E'(0)X'+'(0)k
dl E (k)(M, (k)—2X (k)—E(o)]—E (o)E(k)— '

k 4, -
9x' 1+Pk

(2.38)

(2.39)

~a= — dpdinf&'E'(0)k+'(0) kL(k' —k")-'—k~]
Ik&+&'I &~. I ku+&I &&.
Ik~-l 'I &~. I k~-&I »

= (2.00X10 '&1-OX10 )E'(0)X'+'(0).

(2.40)

+3 p(1—kp)'(1+4p)L1+2p —(1—Xp')'I']

(1 xp) 1/8-

X 1
( ~

dp (2.41)
I1+gp)

plus terms which vanish as kr goes to (2.41) zero. We
have evaluated the integrals in (2.41) by Simpson's
rule. It should be pointed out that the division between
the kr'1nksp term and the ks' term (c,+bs) is some-
what arbitrary because of the scale factor p.

One may easily show (since X'+'(0) comes from the
l=o terms alone) by considering the wave function in
the region beyond the range of the potential as a linear
combination of a solution (even in k) of Eq. (2.21) and
a solution of the homogeneous part of Eq. (2.21) (even
in k), that

X+'(0)= )@So' .
Thus we get

c,= LSV3/(9'')] In(kFP)+ 1.443X 10 '. (2.43)

The quantities be and c& are now convergent and the
inky part comes from c alone. Evaluating c, analyti-
cally we get

16
E (o)X','(0) l (k,P)

9x'
TABLE I. Va1ues of the coefficients.

Diagram CodEcient Standard deviation

I.6
IA.1
IA.2
IA.3
II.3
II.4.
II.S+IIA.1
II.7
II.8
II.9
II.10
II.11'
II.12~
IIA.2
IIA.3
IIA.4'
IIA.S
IIA.6
III.2
III.9+10

Tota1

—3.39 Xio '
—1.81 Xio '
—8.41 X10—1.67 X10-I

8.38 X10
8.38 X10 4

29 X10 4

—973 Xio 4

—1.900X10 3

4.96 Xio 4

174 X10 4

—1.900X10-g—9.73 Xio 4

1.68 X10 g

—229 Xio 4

168 X10 ll

1.756X10-I
1.674X1O-'—1.589X10 '
2.404X1O-~

—3.94 X1O-'

4.2xio 6

1.4X10-»
3.6Xio-s
9.0X10 4

6.4X10 e

6.4X1O e

2.0Xio '
4.6X10 6

9.0Xio-
4 8X10-e
2.8X10 '
9.0X10 '
4-6X 20-s
4-7X 10-'
2.3X10 I
4.7X10 '
6.2Xio-s
8.7X10 s

1.1X10 ~

1.3xio ~

7.0X10-~

a Identical with a previous diagram but must be included in the total.

The contribution of the remainder of the sequences is
of the form kF'a'. Ke have calculated by Monte Carlo
the values of the coefEcients from the formulas of I
and listed them in Table I. %'e remark that IIA. 1 and
II.5 separately are not of this form, but their sum is.
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Ke point out that the insertion of all A-type vertices
in IIA. l and II.S leads to full three-body scattering.
However, as IIA. i and II.S, as well as the A-type
vertex insertions in them, diBer only in the order in

which holes are filled (which permutation changes the
overall sign of the contribution found by setting the
hole momenta equal to zero), this three-body eifect
cancels exactly to leading order (kr'). There remains,
however, a residual kp'a' contribution. It might be
thought that one should also permit the I—q line in

II.6 or III.i to interact via an A vertex with the pair
of 6lled state lines connecting the second and third
vertices„and hence include full three-body terms in the
elaboration of R3 or F3; however, these terms in fact
are the same terms that we are counting as elaborations
of IIA. 1 and II.5, and hence we would be including
them an extra time.

Combining our previous results we obtain for the
Fermi-momentum expansion

Ag/ay= (ki/M) f(3')—'kr'a+5. 566X 10 'kp'a'

+4.058&(10-'kr'a'+ (3') '(bi+bi)kp'
+3.624)&10 kp g4 —2.968)(10 2kp aha

+6.021' 10 'kF'ab2+kF'b3

+[8%3/(9s')]a4kp' ln(kgb)+ . (2.44)

Through sixth order in the Fermi momentum, the many-
body energy series depends on four potential-dependent
parameters, u, bj, b2, and b3. Of these, u and b~ are
directly measurable from two-body scattering and b2

and b3 relate to other aspects which do not follow
directly from the scattering phase shifts.

3. THE SOFT) REPULSIVE SQUARE-WELL
POTENTIAL

As an illustration of the calculation of the Fermi-
momentum expansion, we choose a soft, repulsive
square-well potential because most of the calculation
can be done analytically, and because there are data
available (paper I) with which we can compare our
present results.

= (1 a/r—), r) c, (3.1)

where M is the mass, V the potential strength, c the
width of the potential, and h Planck's constant. The
scattering length is, by (2.6), for (3.1)j,

where

a= c(1—tanhp/p),

p= (M Vc'/k')"'.

(3.2)

(3.3)

Next, using asymptotic form (2.24) to compute A r(0)
and. (2.27) to compute Ai" (0) we compute from (2.28)
for bg,

b&= (9/10)c'f1+3(1—p cothp)/p']
—I/10c'(1+ (6/p') —L(3/p)+ (6/p')] tanh p& (3 4)

The computation of A, (0) requires the solution of the
i= 1 Eq. (2.21) p=q=0. We may compute bi by sub-
stitution of (3.1) into (2.29). The result is

bi= (1/20)c'f1 —(tanhp)/p](3+6p '—«anhp/p)
+f1+6p '—(3+6p ')(tanhp)/pj
+3(f1—(tanhp)/p3/p'+tanh'p/p') (3 5)

The calculation of b3 is more &~+cult and we have not
completed it analytically, but we have reduced it to a
numerical integration. To obtain b3 we need several
subsidiary quantities. We need K(k) from (2.32) and
(3.1), it is

fp sin(kc)g(kc) —cos(kc)p tanhp
K(k) =c

p'+k'c'
(3.6)

We need, further, the solutions, for all f, of (2.21) with
p=-,'k and 4s=4k'. They are

The 6rst step is to solve for the l=0 wave function
from (2.21), p= q=0. It is, for this case,

sinhf (M Vr'/k')'I'j
A(r) = r&c,

(M Vr'/k')" cosh((M VC'/k')'I'j

where

p'Rij,(r) = ji(pr)+ j~(i(p+p&c')»&r/c),
p'+k'c' p'+k'c'

k'c'

sivSkck&""(~siVSkc)j &(~~kc) xskck&&" (xsiV—Skc)j&'( k xs)c

givSkck(&"'(xsiVBc)g((i(p'+sik'c')'I'r/c) i(p'+s k'c')i"'k—(&'& (xsiVSkc)j )'(i (p'+fk'c') "r/c)

(3 7)

From the g&(r) we may compute the quantities k~(k). They are, by (2.35)

They may be used to compute, via

X'((k) = j((gkr) U(r) g((r)r'dr.
6

K~(k) =P (21+1)(~1)'X')(k),

(3 8)

(3.9)
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the k~(k) as

(k2c') p2- j&(kc)
— p' H (j( (-', kc) ——,'kcj~,(-',kc)-

X'~(k) =c -', for + and for —+c P(2l+1)(a1)'
p'+k'c' kc k2C2+ p2 H)—Ji

where we define
X L

—xskcj~&(x2kc)+ J&j&(s'kc)j, (3.10)

H(= ', i&-kckg g&" (2iv3kc)/k(&'& (-', jV3kc),

&~=i(p'+P'c')"'j wx(i(p'+-,'k'c')'I')/j (i(p'+-'k'c')'~')
(3.11)

and j~ and hq&') have their standard meaning as spherical
Bessel functions. On substituting (3.6) and (3.11) into
(2.36) and (2.39) one may obtain k& numerically. We
have used Simpson's-rule integration to calculate b3.

In Table II we give a short list of the numerical re-
sults for the various parameters.

We can compute the ladder-approximation energy-
series coeKcients from (2.12), (2.20), and Table II. We
give a short table of them in Table III (DEISM/O'X
=AgkF'+A2kp'+. ).

If we compute the ladder energy from a power series
of four terms, the results are in excellent agreement
with the results reported in I which were calculated by
the standard methods, and for weak to medium po-
tentials, by the Pade approximant method. The error
increases to about 10% for ks=1.0 with a hard-core
potential and decreases rapidly for smaller kpc. For
weaker potentials the range in kFc increases. For t/ = 1.0,
the error does not reach 10% until kFc=1.5 and for
V=0.125 the 10%point is about kpc= 2.0.

We can conclude from these results that, in spite of
the probable asymptotic nature of the kF expansion,
Eq. (2.12) forms a good summary of the ladder energy
for low to moderate densities (such as that of nuclear
matter). If the ladder-approximation energy in this
density range is desired it can be calculated by (2.12)
with a great resulting economy in eGort compared to
standard methods.

If we now form the di6'erence between the complete
energy and the ladder approximation as given by (2.44)
and (2.12), we may compare it, for weak to moderate
potentials, with the results found in I. When this
comparison is made, the same general-error pattern
emerges when due regard is taken for the fact that for
weak potentials the di6erence is quite small. For very

TABLE II. Square-well parameters.

b1

strong potentials tending towards the hard-core limit
we have nothing to compare our results against. How-
ever, as long as the corrections calculated to the ladder
approximation are small, we expect the results to be
accurate.

a' 3(as'+ar') (4.3)

where again, for a spin-dependent, isotopic-spinless
problem, we have ag2. There are two kF' terms. In the
a' one the corresponding replacement is made.

4. INFINITE NUCLEAR MATTER

There are two further points which need to be dis-
cussed before we can use our results for nuclear matter.
The first is the inclusion of isotopic spin and of spin-
dependent forces and is quite straightforward. The
second, which is less straightforward, is the inclusion
of attractive forces.

The inclusion of isotopic spin and of spin-dependent
forces can be treated by noting that for the ladder
terms the exchange is given by

TrLL(I—Eg)j, (4 1)

where E is a scattering operator, I the identity, and
P;; is the permutation operator for the scattered par-
ticle. For no isotopic spin, spin —,' "particles" (such as
He'), the quantity I I',; is twice th—e singlet (odd in
spin space) projection operator in the limit of zero
momentum where (k)E(k) and (—& ~It

~
k) matrix ele-

ments are equal. For the case where there is also
isotopic spin, then I—P;~ is 6P8+2Pz, where Pq and
Pz are the singlet and triplet projection operators, re-
spectively. Thus taking into account the three triplet
states, we replace, in the kF' term in the energy,

a ~ 3(as+ar) (4.2)

where a is, in a spin-dependent isotopic-spinless prob-
lem, a8. In like manner, we can treat the kF4 term as

0.125
0.25
1.0
2.5
5.0

10.0
100.0

10000.0

3.968X10 ~

7.577X20 ~

2.384X 10 '
4.189X10 ~

5.629X10 '
6.849X10 '
9.000X 10-'
9.900X10 '

1.0

5.025X10 '
1.Q08X10 '
4-024X10 ~

9.520X10 '
1.682X10 '
2666X10 '
5816X10 '
7.762X10 '

0.8

2 433X10 '
8.878X10 '
8.852X10 '
2 767X10 ~

5.083X10 ~

7.720X10 ~

2.482 X2~
1.941X10 '

0.2

2.64X 10-7
2.08X 10-6
1.24X10 '
1.37X20-g
554X10 '
1.48X10 ~

5.83X20
8.84X 10

TABLE III. Ladder-approximation coefBcients.

V Ag Ag

0 125 4 211X10 ' 8.765X10 ' 5.630X10 4 —5.681X10 6

1-0 2.530X10 ~ 3.164X10 fl 6.069X10 ' —1.299X10 '
5 Q 5.972X10 1.764X10 3.456X10 ~ 1.453X10 g

1.062X10 ' 5 566X20 ~ 1.696X10 ~ 2.746X2M
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The dehnition of bj is modiied for spin-dependent
forces (no isospin) to be

b3= 4L2(o'S+"(o)+os-"(o))
+ (O (0) 0 — (0))) (44)

which becomes, by (2.25),

br= —(3/20)as'rs3+(27/10)AT3(0) (4.5)

where P44(a) permutes the spins only, and that every
time an exchange should occur /see Eqs. (2.6)-(2.16)
from paper I for this information), a factor of (I P,,)—
must be inserted. For the case where there is no isotopic
spin u is always replaced by a&. For the H3 contribution
a' and a4 and cb2 are replaced just as they were for
ladder terms.

We calculate that the contributions for R3 $Eq.
(2.31)) are replaced by

where the subscripts S and T indicate the analogous
singlet and triplet quantities. VVhen isotopic spin is
included as well, we obtain

(—2.863X10 ')kp'( —4(as+at) (14asar —Sats —Sas'))
Xj32/M+3( —2.863X10-2) (—3Fg,)k,'
Xr 4( SaT +6ar as+6aT as +6a2'as Sas ))

XjP/M+kp3g3j32/M (4.10)br= 4[-'(4os "(o)+2o"s-"(o))
+-;(4OT+"(O) —Ze, "(O)))

which becomes, by (2.25),

br —(9/——20)as'rs3+ (9/10) A sJ(0)
—(9/20) at'rt3+ (81/10)A r 3(0) .

(4.6)
for the isotopic-spin case.

The contributions from the primitive u4 terms group
themselves by classes as assigned in I. The substitu-
tions for the ladder terms hold for class I, i.e.,

(4 7) a' ~ 3 (as4+ar4)

For the quantity b2, we must calculate directly from
(2.11) and. for no isotopic spin we use just the corre-
sponding singlet result. %hen isotopic spin is also
present, we get three times the singlet contribution plus
the triplet contribution. In the calculation of the triplet
contribution the potential is interpreted as a 3)&3
matrix and the wave functions as 3 component row and
column vectors, so as to yield a scalar result.

In order kp', we simply form the analogous terms by
6rst multiplying the singlet and triplet parts separately
and adding together. So we get, for the isotopic spin
case

a ~ 3(as +ar ), ab1~ asbs1+arbt3,
ab, —+ asbs2+arbr2. (4.8)

The replacement rules for the nonladder terms are
slightly more involved. They can be obtained easily
(though the calculation is somewhat tedious) by noting
that replacement for a single vertex scattering operator
at zero energy is

'(at+as)I+ '(a-r as)P' (~) -—(4.9)

for the isotopic-spin case.
For class IA we get the substitution

a' -+ —,
' (—6ar'+ 232ar'as+ 604atsas'

+232aras' 6as4) (4.12)—
for the isotopic-spin case.

Classes II and IIA go together and we get the
substitution

a ~ 4 ( oar +6aT as+6ar as
+6aras' Sas4) (4.1—3)

for the isotopic-spin case.
Finally, for class III, and in c& and c2 we substitute

a' ~ 3(ar'+as') (2ar'+as') (4 14)

for the isotopic-spin case.
To summarize, Eq. (2.38) remains, for the case of

spin-dependent forces but without isotopic spin, the
same, except that (i) a becomes as, (ii) br and b2 are
now computed as described in (4.5) and after (4.7);
(iii) the compution of b3 will be discussed below. For
the ease of isotopic spin as well Eq. (238) becomes

(4.15)

The quantity b3 is to be replaced by

&E/ItI= (k2/M)[(1/2r)kp3(as+at)+0 1670kp4(as2+. ar2)+0 2076kp (as3+. ar )+ (1/32r)kp (b2+b2)
+2 147X10 'kp3(as+ar)(14asar Sar Sas')+4—693X—10 kp (as .+ar )
+3 121X10 'kF'( . Sar4+6ar3as—+«r2as2+6aras3 Sas') —1 08X—10 'k. p'( 6ar4+23—2ar'as+604aras'
+232aras' 6as')+5 743X—10 'kp'(ar'+as')(2ar'+as') —2 968X10 2kp3(asbis+arbrr)
+6.021X10 'kF'(asb2s+aTb2T)+kp3b3+ (AS/3F ) (ar +as ) (2ar +as2)kF ln(kpp)+ ~ ~ ~ ).

b3 ——

9x4
dk Tr{E&2(k)(I—P») (E+,23(k)P23—X',23(k)I)E33(k) (I—P23)+E»(0) (I—P»)

XE23(k) (I—P23)E23(0)(I—P»)+E23(k) L(X'+,23(k) —E23(0))I—(X',23 (k) —E23 (0))P23)E33 (k) (I—P (3)

—ZEy2(0)E+, 23 (0)LI—P23)E23(0)LI—P23)$1+Pk) )k ~ (4,16)
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Fio. 2. E. versus
kF. The jagged line is
the locus of branch
points and the other
lines are lines of con-
stant V which come
in to the locus of
branch points with a
horizontal slope.

where the E;, are now 64X64 matrices acting in spin
and isotopic-spin space between the pair (i,j). In the
no-isotopic-spin case, they are 8)&8. As the interaction
and hence E are usually isotopic-spin independent, one
can easily sum out the isotopic spin and reduce the
matrices to 8)&8 in both cases. The permutation opera-
tors used in (4.16) act only in the spin and isotopic-
spin space; we have already taken account of the inter-
change on the momentum in the d.e6nition of the E's.
This discussion completes the terms in the Fermi-
momentum expansion when we are given a spin-
dependent potential.

Let us now consider the inclusion of an attractive
potential outside a central repulsive one. First we will
examine the ladder approximation, whose structure is
more transparent. In II (Sec. III) it was shown that if
the potential is such that

[H„(1/F)Psj(o—=OR p—au= 0, (4.17)

where I'= 0 for states in the Fermi sea and, 1 otherwise,
and there is a smallest eigenvalue F)—Fo(kF), then the
ladder energy expanded in a potential strength pa-
rameter X can be put in the form fPaper II, Eq. (3.13)j

AE=c iX—)
xdq (u)

(4.18)
—ro(&F) ~++~

where y(N) is monotonic, nondecreasing. From (4.18)
it follows that X= LFO(ks) 1 ' is a singular point of the
energy in ladder approximation. If e is selected of unit
strength (just produces a bound state), then

limFO(kp) =1;
kFM

(4.19)

and, as the projection operator in some sense excludes
a portion of phase space and therefore raises the energy
compared to the corresponding unprojected state, we
get Fo(kr) to be monotonically decreasing as kr in-
creases, so the singularity moves to larger X as kF
increases. This situation is very reasonable physically
and we expect that it will persist in the complete theory.
We know that for the complete energy there is some
form of singularity in the energy curves for constant X

at the saturation density as for higher density the
physical system is one phase and for lower densities it

is two phase. The energy curve is E=constant in the
two-phase region and not in the one-phase region. We
identify (in the absence of any cooperative phenomena
such as superconductivity, superfluidity, etc.) the
branch points in the ladder approximation as the ladder
approximation to the saturation branch points of the
complete energy. Thus we expect a situation as illus-
trated in Figs. 2 and 3. We remark that there must be
a X)0 (as shown in Fig. 3) for which condensation does
not occur at infinite dilution (kr=0) for a force of
6nite range as we can always make the attraction small
compared to the zero-point energy required for binding
by the 6nite range. Thus we expect to be able to con-
tinue to the saturation density by the route shown in
Fig. 3 although the portion of the plane above the locus
of branch points will be unobtainable. This situation
should hold for the Brueckner approximation as well,
as the singularities have physical significance. When the
ladder or Brueckner approximations are evaluated by
the usual numerical techniques, the introduction of a
6nite mesh for the various integrations involved can
be expected to move the branch point to larger values
of the strength parameter, hence explaining its non-
discovery by Brueckner and Gammel' and subsequent
workers, all of whom computed only values close to
saturation.

We wish to point out that the notion that the
boundary between the one- and two-phase regions is
the locus of branch points has also been advanced for
classical gases with short-range forces. '

On the basis of the data accumulated in Papers I
and II and herein, and the above discussion, we are
now in a position to put forth an approximation for the
many-body energy which will at the same time deal
with strongly interacting non-dense systems and non-
strongly interacting dense systems. Fundamentally, we
start with the ladder approximation as ordinarily
calculated (see Sec. V, Paper I, for a description). To
this approximation we append the three sequences

Fro. 3. X versus
kF. The jagged line is
the locus of branch
points. The arrows
indicate the path of
analytic continuation
to the point of physi-
cal interest.

o K. A. Srueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

~M. E. Fisher, private communication; S. Katsura, Advan.
Phys. 12, 391 (1963) (see p. 416); J. W. Essam and M. E. Fisher,
J. Chem. Phys. 38, S02 (1963};A. F. Andreev, Zh. Eksperim.
i Teor. Fiz. 45, 2064 (1963) {English transl. :Soviet Phys. —JKTP
18, 1415 (1964)g.
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which start with the third order (in potential strength)
and a part of the sum of the fourth-order sequence,
which contribute to order kF'. %'e think it should be
adequate for the in6nite nuclear matter problem.

The program is as follows: First calculate the ladder
approximation as ordinarily calculated (Sec. V of
Paper I). It will be remembered that oif-energy-shell
effects do not enter into this calculation. In addition we

will need nondiagonal values of Eq which connect rela-
tive momenta of less than kp to relative momenta which

may be greater than kp. These values may be con-
veniently computed by replacing Paper I, Eq. (5.10) by

2
(k'~ Z,

~
k)= q—, (k'r) V(r)44, , ,(r)r24fr, (4.20)

g o

where
~
k

~
&kp. We will also require the diagonal values

of EC~(k) under a particular assumption concerning the
excitation of the Fermi sea. This assumption can be
affected by changing Paper I, Eq. (5.6) to

x4P=k'+-,'kp'

and Paper I, Eq. (5.8) to

(4.21)

lL(k) = —3E(k) . (4.22)

With these quantities computed as a result of an ex-
tension of a ladder energy-approximation calculation,
we may now evaluate, by Monte Carlo integration, the
energy corrections due to the sequences which start
with diagrams H3, R3, and F3. These corrections are
calculated by placing the appropriate (k'~E~k) and
X'+ factors in place of the p's which appear in Paper I,
Eqs. (2.7)—(2.9), and integrating as described therein.
In order to include to some extent the terms starting
in fourth order we now de6ne

~=Pp~41E&/&'&kp'j, (4.23)

which goes to the scattering length when kp goes to
zero; then our approximation to the energy is de6ned by

E/E~(h'/M) (31(K)+ H3 (E)+ R3 (X)
+F3(X)—3.9&(10 484k p4} (4.24)

where by X(E) we mean diagram X with p replaced by
E or E+ as appropriate. The reason for using 8 instead
of u in the last term is that, to leading order in kF, the
fourth-order diagrams from which the terms arise con-
tain the product of four Ematrices coupled by vanishing
momenta. There are, of course, other terms omitted of
the same order in kp as those included by this change;
however, in the case of a potential slightly stronger than
needed to produce two-body binding, the scattering
length u becomes large and repulsive, whereas 8 (at
densities somewhat above saturation) remains moder-
ately attractive, which is a physically more reasonable
behavior to expect of these terms. This approximation
has the properties that the true energy diBers from it for
small kp by terms which vanish more rapidly than kp'.
The 6rst three orders in the potential strength per-
turbation expansion are treated almost exactly to all
orders in kp and the fourth term is given to within
about 5% to kp= 1.0 for the square-well potential of I
and to better than k+= 1.5 for the velocity-dependent
potentials of II. The spirit of this approximation is in
accord with our previous discussion on the correct path
for analytic continuation in the presence of an attractive
force. We continue first accurately for weak potentials
to the desired density and then continue to stronger
potentials. Due to the nature of the ladder approxima-
tion, there will be singular points somewhere near the
correct location.

The regions in which this approximation is expected
to depart from the correct results are the cooperative
regions. In addition to the two-phase region discussed
previously, one would not expect validity near the hard-
core jamming region or where any transition to an
ordered state takes place.
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