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Non-Reggeization of the Vector Meson~
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Nucleon-antinucleon scattering is treated in a Geld theory of interacting vector mesons and spin-q or
spin-0 "nucleons. "Some involved cancellations in the asymptotic sixth-order amplitudes are demonstrated
and disagreements in earlier papers are resolved. It is found that the vector-meson singularity in the partial-
wave amplitudes is unaffected and that therefore the vector meson does not lie on a Regge trajectory to
this order.

INTRODUCTION
' 'T was demonstrated by Gell-Mann and others in a
- - series of papers' 4 that the effect of radiative cor-
rections on the Compton scattering of vector mesons
and nucleons is to absorb the Kronecker delta singu-
larity in the partial-wave amplitudes which corresponds
to the nucleon, and to place the nucleon on a Regge
trajectory. There has been some interest in treating the
vector-meson channel in the same Geld theory' ' to see
whether it too lies on such a trajectory. The correct
solution of this problem is important since it aQects the
Chew-Frautschi-Mandelstam postulate" that the ab-
sence of Kronecker delta terms in all channels is a
criterion for a "bootstrapped" theory.

The purpose of this paper is to resolve the varying
results that appear in the literature. ' ~ ' We will show
that the vector meson remains un-Reggeized to sixth
order in nucleon-antinucleon scattering (i.e. , does not
lie on a Regge trajectory'~), both for spin-~ and spin-0
"nucleons. "

SPINLESS NUCLEONS

We begin by treating spinless nucleons coupled to
massive "photons" (vector mesons), as in Refs. 5, 6,
and 9. The photon has C= —;since CI'=+ for the
nucleon-antinucleon state, only amplitudes of odd
parity can contribute to the photon trajectory. Thus, if
the scattering takes place in the s channel, we expect the
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scattering amplitude to have the asymptotic formf:p(l& u~(*&
t-+oo

apart from multiplicative factors.
The scattering amplitude in second order is asymp-

totically f:(g'/SsW)(s —X') '(u —t),

(A=photon mass, W'=s) which might turn out to be
the lowest order term in perturbation theory for a
trajectory

n(s) = 1+7(s),
where

Explicitly, if the amplitude were dominated by such a
trajectory, we would expect the leading terms in each
order of perturbation theory to have the form

t &'& —u &'&=ti1+y(s)lnt+-,'Ly(s)inta'+ )
—u(1+y(s) lnu+-', [y (s)lnu]'+ .) . (5)

The photon would lie on the trajectory if y(X') =0.
Since the lowest order term t—I is provided by the Born
approximation, a necessary condition for the vector
meson to be Reggeized is that the form t lnt —I lnl
dominate in some higher order of perturbation theory.

It is well known that the fourth-order diagrams do
not provide such an asymptotic form. The only dia-
grams giving contributions as large as t lnt are those of
Fig. 1. However, their total contribution has the form

(b)
FIG. 1. Fourth-order terms dominant at large t.
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small contributes, so that the form of the amplitude for
large t will be unchanged if we simplify C and D, to the
forms

C~ C =zxzz+zzzz+zzzx,

(a) (b) (c)

D,~D,'=d+z4z6(zz+zzzlyl+zlÃsy2)t,

d =Sy8283$—C'.

(S)

For large t, we fLnd

(b')

FIG. 2. Sixth-order terms dominant at large I,.

(c')

f. :g(s)t lnt,

where

g(s) = (1/Sz W) (—g'/32v4)

t Int+st Inl, which has the wrong parity (it should be
obvious anyway that the two-photon intermediate state
has C=+ and could not contribute to a trajectory with
C= —). The lowest order in which the form t lnt —I lnl
might appear is therefore sixth order.

The only diagrams in sixth order which contribute
terms of order t lnt are those depicted in Fig. 2, as
pointed out by Freund and Oehme. ' We will show that
although each of these diagrams contributes a leading
term proportional to I lrd, a number of cancellations
occur which make the sum of lower asymptotic order.

The four-dimensional integrals for each of these
sixth-order diagrams contain seven propagator factors
in their denominators. %e wi11 combine these in a
particular way that simpli6es subsequent work. Using
the usual Feynman parameterization technique, we
erst combine the propagators arising from the initial
nucleon line into a single factor. Next we combine the
two factors from the anal nucleon line into a single
term. Finally, we combine the 6ve factors which now
remain by yet another parameterization.

For spinless nucleons, the only relevant term in the
numerator in the large-t limit turns out to be (—SP)
and we have simpli6ed accordingly in what follows.

For diagram (a) of Fig. 2, the scattering amplitude
thus obtained is efFectively (all masses have been set
equal to unity in the rest of this section)

f,= (1/Sz W) (—ge/16z")P

1

dhgdzzdygdyzdzg dzgb(z', g+ z.z . 1)—
0

1

X dx&dxsfy&dye&dzsdz&

Xg(z 1+&2 1)g(yl+yz 1)~(zl+zz+zs 1)

XC d (z2+z3&lyl+ zl&2yz)

= (1/Ss W) (—g'/32s') dzidzgzzg(zi+zz+zs —1)

Xd ' In((zg+zs) (zs+zs)/zzzg. (11)

This result was obtained by Freund and Oehme. '
The asymptotic form of the amplitude for diagram

(a') of Fig. 2 is obtained by replacing t by e and aSxing
an over-all negative sign Lthis follows from the crossing
symmetry which relates diagrams 2(a) and 2(a'), and
can be seen by inspecting the four-dimensional integrals
for the two amplitudesg:

f.. :—g(s)N lng.
g-seo

(12)

There seems to be no disagreement in the literature
about these amplitudes for diagrams (a) and (a') of
Fig. 2.

The amplitudes for the nonplanar diagrams 2(b) and
2(c) are more complicated, because the coeKcient of t
in the denominator can vanish within the region of
integration as well as on its boundary. The regions of
s4 and s~ small are still important, but we will have to be
more careful about extracting the large4 form. We have

The method developed by Polkinghorne" for extracting
the asymptotic limit for planar graphs may be applied
to this amplitude. Only the region where s4 and s~ are Xg(xg+xs —1)8(yg+yz —1)

fb =f0= (1/SsrW) (—g'/16s') P
Xb(yj+yz 1)b(zy+ .+zl—1—)z4zsCD ~. (6)

1

X de,dsszdy&dysfz, dsl
0

' J. C. Polkinghorne, J. Math. Phys. 4, 503 (j.963). Xb(z~+. +zs—1)s4zsCDb~, (13)
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where asymptotically we may write

C~C',
extra contribution to the amplitudes thus obtained is

(14) bfi = bf0= (1/Ss.W) (—g'/167r') t'

Db ~ Db =d+Z4z5C(s2+xszl) —(s2+x1ss)ylt]. (15)

Ke may not directly apply Polkinghorne's method
for planar graphs to find the asymptotic form of this
integral. If this is done, an expression is obtained con-
taining a double pole on the path of integration Lthis
occurs for the term fs in Eq. (14) of Ref. 5].This double
pole arises from two poles having pinched the contour
of integration in the large4 Emit; the correct path of
integration actually passes between these poles. It is
necessary to delay taking the large4 limit until the
contour of integration has been pulled across one of
these poles. There arises an extra "pinch" contribution
from the residue of the integrand at the pole, in addition
to the ordinary term one obtains by simply avoiding the
double pole while doing the integral.

The method of obtaining the pinch contribution is
discussed in Polkinghorne's later paper"; it involves
doing a number of the integrations exactly before
extracting the large4 form, Ke perform the x and y
integrations exactly in Eq. (13) (using the still valid
replacement C~ C', Db ~ Db') to obtain

1

X dsi dzr.b(si+ +sg —1)
0

XC'(ss/2t) (sgd+sasstC') '( i7r—)

: (1/S~W) (—g'/16~4) t lnt

X ds~dssds~b(s~+zs+sa —1)(—is/2d) . (19)

fh+ f, - [g'(s) —2sih(s)]t lnt.
g-++oo+ sg

(20)

In this expression, h(s) is the pinch contribution
found above:

tt (s)= (1/Ss W) (—g'/32s 4)

To this must be added the result obtained from the
rational terms R in Eq. (16), which may be correctly
obtained by simply avoiding the double pole referred to
previously in the large-t limit. The net result for
diagrams 2b and 2c is

fg =f.= (1/Ss W) ( g'/16—w') t

1

X dzg ' 'dzsb(zg+ ' '+ss—1)

XC'(s,/2t) (sg+s,s,tC')-'

X dsidssdzsb(si+zs+ss —1)d '. (21)

The function g'(s) is the same form as obtained in Ref.
5, with the prescription that the double pole is to be
displaced from the path of integration when actually

X{R+ln[(d+s4s6tzs)( d+z 4stst) /
doing the integrals.

(d ~ )(d+ d( + ))]) (16) g (s)=(1/8 W)(—g/32 )

Below threshoM, d is negative, and in analytically
continuing a term of the form 1nLd+n(+ ~+is)] from
positive to negative a, one passes counterclockwise
around the origin. Thus we have

ln( —~ —is) =ln(+ ~+i~)+is.(18)

in this problem, and the correct contribution from the
logarithmic term of Eq. (17) in the limit t-++~+is
is just —ix.

This quantity represents the additional contribution
obtained in pulling the contour of integration across one
of the pinching poles, as Polkinghorne showed. " The

"J.C. Polkinghorne, J. Math. Phys. 4, 139{i{1963).

g consists of rational terms which are not aGected when
the contour is pulled across one of the pinching poles.

If I, —++ ~+~a, the logarithmic term has the form

lnL(+~+is)(+~ +i )s/( ~ —is—)(+~+is)]. (17)

1

)( dxy4$+p'idpmdsgkmdz3
0

Xb (xs+xs —1)b (yi+ys —1)b (zq+ss+ ss—1)

X2C'd-' (srxs+ssys —z,x,y&)-'

= (1/8s W) (—g'/32s') dsgdszfssb(s~+sz+s, —1)

fb+ f, - L—g(s) —2sih(s)]t lnt,
te

(23)

and the leading nonpinch terms canceP' for diagrams
2 (a), 2 (b), and 2 (c).

~ The canceQation of the terms involving (s} between Eqs.
(10) and (23) has been veri6ed by Freund private communi-
cation), and it is this cancellation to which he refers in Ref. 9.
However, he did not treat the pinch contribution.

Xd—'2 lnLs&ss/( —ss) (s~+zs)]. (22)

However, a simple change of variables shows that
g'(s) =—g(s). Thus we have simply
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In addition, the pinch contribution from diagrams
2(b) and 2(c) is cancelled by the pinch terms from
diagrams 2 (b') and 2 (c'), as we shall now demonstrate. "

The calculation of the amplitudes for diagrams 2(b')
and 2(c') requires great care. It is true that the foonc
iionu/ form of the amplitudes for diagrams 2(b') and
2(c') is correctly obtained by replacing i by oo in Eq.
(13) and affixing an over-all negative sign /this occurred
for diagrams 2(a) and 2(a'), and again may be seen by
simply examining the form of the amplitudes]. How-
ever, it is oooo true that the correct asymptotic forms for
diagrams 2(b') and 2(c') may be obtained from Eq.
(23) by the same prescription.

The reason is as follows. %hen we take the limit
$ —++ o+oio in the logarithmic term of Eq. (16) to
determine the pinch contribution, we must take the
same asymptotic limit in both the crossed and uncrossed
diagrams; since t~+ o+oi ofor diagrams 2(b) and
2(c), we must take I~—oo i o for diagr—ams 2(b') and
2(c'). That is, the analogy to Kq. (16) for the crossed
diagrams is

fb =f;= (1/Sn. W—) (—go/1&n')No

1

X dz& dzoh(«+ +zo—1)
0

XC'(so/Zu) (zod+z4zoNC')-'

X{8+Int (d+z4zogzo) (d+z4zoooz&)/

(d—s4solzo)(d+z4zoN(zg+zo))]}. (24)

However, when t~+~+ie, I—+—~ —ie and the
logarithmic term becomes

1nL(—oo io)(——oo io)/(+—oo+io)( ~ —io)]=+is
(25)

This introduces an extra negative sign into the pinch
contribution, so that while the pinch contribution and
the "ordinary" contribution have the same signs for
diagrams 2(b) and 2(c) )as in Kq. (23)], they have
opposite signs for diagrams 2(b') and 2(c'):

fb +f — - —P—g (s)+Zm'ijo(s)]N inoo. (26)g~+ soo

In other words, because e and t approach different
limits, we asymptotically reach different sheets of the

"Reference 6 considers the pinch contribution but obtains
(—2) times that given in Eq. (19).In that work, the conventional
parameterization for the four-dimensional integrals was used. It
is essential to explicitly perform one integral to remove the delta
function before 6nding the pinch contribution, but then the
remaining integrals have interdependent limits and the pinch only
occurs for certain values of the other variables. Qn the other hand,
in the treatment here presented the transition from Eqs. (13),
(14), (15) to Eq. (16) could be carried out exactly because the
limits on the integrals were simpliled by the method of parameter-
ization. Actually, however, the main point we wish to emphasize
is not the numerical value of the pinch terms, but the important
fact that they cancel between the crossed and uncrossed diagrams.
This is shown in the discussion that follows.

same function when we study the large4 forms of
diagrams 2(b) and 2(b').

The total contribution to the asymptotic form of the
sixth-order scattering amplitude is the algebraic sum
of Eqs. (10), (12), (23), and (26); there are no surviving
terms of order t ink. '4 The terms which remain do not
give the asymptotic form of the amplitude because of
our previous neglect of terms of order t. Reference 6 did
not properly obtain the additional negative sign
and so does not exhibit the cancellation of the pinch
contributions.

Ke conclude that no terms of the form t lnt —e lnl
appear in the scattering amplitude through sixth order;
therefore, the Kronecker delta term is not removed and
the vector meson remains un-Reggeized to sixth order
when interacting with spinless nucleons.

~:"=..~, -(-+1)/(J--),
~oo"L~(~+1)] '"=n.+So+/(~ a), —
&o. +(J(&+1)] '"=go g,+/(J —n),
&oo'~=no+go+/(J —a),

(27)

where p, and v take the values 1 and —1.
From this we 6nd that if the parity-conserving

helicity amplitudes are dominated by this pole at large
z, they will have the asymptotic form

f „+ .-X (or/Vl sinora)g +q+(n+1)(—ao)(—z)~'

fqo+ ———fox+ -. iV (or/VZ sin7ra)

X

pi+no+�

(n+1)n (—z)
(28)

fo i+= f io+:N (s—./V2 sinora)

Xqo+g i+(n+1)n( —s)

foo+ -- 1V.(or/v2 sinsa)gonzo+(a+1) (—s) .

As in Ref. 3, we de6ne

X =—@22~'I'(a+a)/or'Ioi'(a+ 2) . (29)

%'e expand as we did in the spinless case, taking

"This same cancellation is even found if one obtains the pinch
contribution following the approach of Ref. 6, giving proper
attention to the asymptotic limit. In that method, the logarithmic
term obtained is ln(+ ~ +is) (+~ +is)/( —~ —ie) (—~ —ie}= —2m for diagrams 2(b) and 2(c) and ln( —~ —ie)(—~ —ie)/(++i~)(+~+is) =+2m for diagrams 2(b') and 2(c'), and
again the pinch terms cancel.

SPIN-i NUCLEONS

The analogous problem with spin-2 nucleons may be
reduced to the spinless case. %'e take nucleon-anti-
nucleon scattering in a theory with interacting nucleons
and vector mesons and Reggeize as in Ref. 3. Near a
trajectory with J=a., the partial-wave amplitudes will
have the form
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e=1+y, to get

f"'- +—n.+n'(1+v lns+ ),
f&o'= —for'-~vs go+(1+v lns+ ),

for+=-f—so+-&ss&oQ s+(1+y lns+- .),
foo+- —go+&&o+s(1+y h&s+. ),

(30)

fs& ~ (—gs/SsrW)(s —l&s) '(—SE')

fso
—+ (—gs/Ssr W) (s—l&s)-'(SmE),

foo ~ (—gs/Ss&W)(s —l&s)
—'(—Sm's).

(31)

(E=nucleon CM energy, A= vector meson mass, m=
nucleon mass). This of course looks like the lowest
order term of Eq. (32), with

&s(»s /s&o ) =E/m. (32)

%'e are now prepared to look at sixth order in the
spinor nucleon scattering problem. Rather than (—Sts)
in the numerators as before, the dominant terms for
diagram 2(a) at large s are the "explicit" terms

(us I v.(ps+m)v. (ps+m)v. I v4)

X(vsIy. (P&+m)y„(P&+m)y„Ius). (33)

For diagram 2(b), again the "explicit" terms dominate
at large s:
(us I ~.(ps+m)v. (ps+m)v. l vs)

X (vsI y (Ps+m)y„(P&+m)y, I us) (34).

However, both these forms may be reduced to

16(ps ps)'(usI y. I vs)(vs I y. I us), (35)

so that the amplitude for Fig. 3(a) explicitly factors out
of each of the sixth-order asymptotic forms. %e thus

except for an over-all multiplicative factor.
The Born-approximation diagrams appear in Fig. 3;

in the asymptotic limit, the negative parity amplitudes
arise only from the pole term 3(a). The independent
amplitudes are at large s 1' IG. 3. Second-order terms.

hand that for large s, the diagrams of Fig. 2 give

fss —+ (—1/2t)( —SE')f&'&,

fso —& (——1/2t) (SmE)f&'&

foo ~ (—1/2&) (—Sm s)f&'&
)

where f"& is the asymptotic form of the sixth-order
scattering amplitude for spi&sless nucleons:

f'"=f +fb+f.+f"+f'+f" (3&)

Therefore, through sixth order, the amplitude does
factor in the manner of Eq. (30) at large s, and again
the Reggeization depends upon there being surviving
terms of order t int in f&'& Since .the r in' terms cancelled
for spinless nucleons, we may conclude that the vector
meson is not Reggeized in spinor nucleon-antinucleon
scattering through sixth order. This result agrees with
Mandelstam's treatment of the same problem by quite
diBerent methods. '
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