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Noncovariance of the Dirac Monopole
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Starting from the equations which express the divergence of the Maxwell Geld tensor and its dual in terms
of the electric and magnetic current densities, a field theory of the Dirac magnetic monopole is constructed.
It is shown that such a theory is incompatible with the requirement of Lorentz invariance if the usual
number of degrees of freedom of the electromagnetic Geld is to be preserved. It is further demonstrated by
an explicit construction of the generators of spatial rotations that, independent of the question of Lorentz
invariance, the usual argument for the quantization of magnetic charge is not consistent with rotational
invariance. A soluble Geld-theoretic model is given which clearly displays the diKculties of Lorentz in-
variance inherent in any theory of the Dirac monopole. The mass spectrum of the Maxwell field in this
model is shown by direct calculation to be explicitly noncovariant if and only if both the electric and mag-
netic couplings are nonvanishing.

I. INTRODUCTION

'HE great proliferation of ever larger symmetry
groups witnessed in the past several years has

now made fairly commonplace the view that one of the
major problems of high-energy physics is the discovery
of a group large enough (and flexible enough) to accom-
modate the known particles and resonances. Thus the
simplicity which the physicist has come to expect (and
even demand) of nature has most recently been sought
almost exclusively in terms of symmetries rather than
detailed dynamics.

One outgrowth of such a philosophy has been a
revival' of the old symmetry argument for the existence
of Dirac's magnetic monopole. ' According to this
view the usual form of Maxwell's equations for the
field tensor Ii&" and its dual I'&"=——,'e&"""F„)„

Q PP&= pojP (1a)
B„FI""=0, (lb)

display a lack of symmetry which must be remedied
through the replacement of (1b) by

Q„pP"=gojP (2)

where j&'(x) is a conserved "magnetic" current which
now provides a "monopole" source for the magnetic
field.

It is usually stated that a consistent quantization of
such a monopole theory is possible only if a very definite
relation exists between the electric and magnetic
coupling constants. Since, however, there has thus far
been no complete field-theoretical formulation of Dirac's
monopole, previous derivations of this relation have
been semiclassical arguments which are consequently
not in agreement with respect to the question of re-
normalization. Thus, it is not at all 'clear at present
whether the usual constraint

g'/4s =xn'(e'/47r) —' n= 1 2 (3)

~Research supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(30-1)-875.' K. %. Ford, Sci. Am. 209, No. 6, 122 (1963).' P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931);
Ph~-s. Rev. 74, 817'(1948).

is to be required of the renormalized or bare coupling
constants. Unless one is willing to take the questionable
step of requiring that the appropriate renormalization
constants be rational, it is clear that this ambiguity
already suggests a possible complication in the formula-
tion of a theory of the monopole and must cast con-
siderable doubt on the utility of (3) in the analysis of
experimental results. '

In view of these rather uncertain foundations it is
somewhat surprising that the monopole has long enjoyed
an immunity to attack by theorists. This situation has
recently been remedied by Zwanziger4 who showed that
the monopole requires the existence of singularities
which are not usually admissible in an S-matrix theory.
Unfortunately, however, this argument fails in the
important case in which the theory is assumed in-
variant under the parity operation. I'urthermore, %'ein-
berg' has subsequently suggested from arguments based
on perturbation theory that the monopole may well face
even greater difhculties associated with the more funda-
mental test of Lorentz invariance. It is the object of this
paper to further examine this question and to show
that is is indeed impossible to formulate a Lorentz-
invariant Geld theory of the monopole.

In the following section we carry out a radiation gauge
decomposition of Maxwell's equations in the presence of
both electric and magnetic coupling. While it is con-
venient for this analysis to introduce a set of potentials
into the theory, it is to be emphasized that no loss of
generality ensues from this device as the entire pro-
cedure could alternatively be carried out by using
explicitly nonlocal functions of the electric- and mag-
netic-Geld strengths. Section III presents a construction
of an energy momentum tensor which generates the

3 W. V. R. Malkus, Phys. Rev. 83, 899 (1951); M. Fidecaro,
G. Finocchiaro, and G. Giacomelli, Nuovo Cimento 22, 657 (1961);
E. Amaldi, G. Baroni, H. Bradner, L. Housman, A. Manfredini,
G. Vanderhaege, and H. G. de Carvalho, Notas Fis., Centro
Brasil. Pesquisas Fis. 8, No. 15 (1961); E. M. Purcell, G. B.
Collins, T. Fujii, J. Hornbostel, and F. Turkot, Phys. Rev. 129,
2326 (1963};E. Goto, H. H. Kolm, and K. %'. Ford, ibid. 132, 387
(1963).

4 D. Zwanziger, Phys. Rev. 137, B647 (1965).
~ S. steinberg, Phys. Rev. 13S, B988 (1965).
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group of translations and spatial rotations on the
fundamental Geld variables but fails to yield the genera-
tors of pure Lorentz transformations. It is subsequently
shown that it is not possible to modify this energy
momentum tensor so as to admit the construction of a
consistent set of generators of the Lorentz group.
Finally, in Sec. IV we illustrate these general results by
presenting a soluble Geld-theoretical model which has
both electric and magnetic couplings. Although the
model is fully consistent for vanishing eo or go, in the
case eogo/0 the excitation spectrum of the Maxwell
field is shown by direct calculation to be explicitly
noncovariant.

In order to preserve the invariance of the theory with
respect to both parity and charge conjugation, ~ it is
necessary to introduce a second Fermi field P'(x) and
define the current by

j s"(x) = '4'p-V sV"qV

where q' is the symmetrical matrix

The operation of electric charge conjugation may now be
introduced by requiring

G. FORMULATIOH OF THE THEORY

The basic equations (1a) and (2) which de&ne the
fundamental ingredients of a monopole theory may be
split quite naturally into two distinct sets of equations.
Of these the 6rst,

so that

Eg(x)E'= q'P(x)-,

Ef'(x)E '=P'(x),

Ej "(*)E '= j"(*),—
Ej so(x)E-'= jso(x) .

(4a)

(4b)

serves to express the longitudinal parts of the electric
and magnetic 6elds in terms of the appropriate charge
density while the remaining set,

(Sa)

(Sb)

consists of the equations of motion for the true degrees
of freedom of the Maxwell field. In writing (4b) and
(Sb) we have introduced the convenient notation js"(x)
for the magnetic current in accord with our intention to
construct a parity-conserving theory describing the
coupling of a pseudovector magnetic current density.
%hile the 6nal results do not depend upon the assump-
tion of parity conservation, this seems to be the more
interesting case and serves to illustrate all the essential
points.

We shall construct the current j"(x) for a spin one-
half Geld in the usual way:

j"(*)=kf&v"4

where g is the imaginary antisymmetrical charge matrix
which acts in the two-dimensional internal space of the
Hermitian 6eld f(x).s With regard to the construction
of js"(x) it is crucial to note that the assumption that
js&(x) be formed without the use of derivatives is an
essential restriction without which the usual Pauli
moment coupling term could be used to provide a
perfectly consistent realization of (1a) and (2). While
it is well to note explicitly this additional assumption,
the basic philosophy of the monopole must in any event
require us to retain as much as possible the formal
similarity in the construction of jo(x) and js»(x).

I We use a Majorana representation of the Dirac algebra and
the metric (1, 1, 1, —1).

Similarly, magnetic charge conjugation is defined by

Mf(x)M '=P(x),
MQ'(x)M '= i''(x),

with the consequent result

Mjo(x)M-'= jo(x)
Mjso(x)M-'= —js~(x).

Thus the transformation induced by the product
operator C=EM on both current operators, together
with the prescription

CEo"(x)C-'= F~"(x)—
ensures the invariance of (la) and (2) under the com-
bined operations of electric and magnetic charge
conjugation.

The equations (4) together with the decomposition
of the electric and magnetic fields into their three-
dimensional transverse and longitudinal parts,

Fo (*)=F,o (x)+F,o (*)=F,o (x)—a~(x)
p's(x) =Ii ros(x)/PE's(x) =F ' (r)sx8~'(x), —

yield the identi6cation
epj'(x')

A(x) = —V 'eoj'= d'x'—
kn [x—x'[

gojso (x')
X'(x) = V 'goj so= ds*'—-

4o)x—x')
7 By charge conjugation we mean the product of electric charge

conjugation {E)and magnetic charge conjugation (M). See also
¹ F. Ramsay, Phys. Rev. 109, 225 (19S8).It should be empha-
sized that although a theory describing a particle having both
electric and magnetic charge can be constructed if the requirement
of invariance under charge conjugation is dropped, the basic
inconsistency problem remains unaltered.
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p~ok — gQ +g~kltng g—2j na

Ppk —~klsssg g

The consideration of the equations of motion (5) is To this end we introduce the transverse potential
somewhat more complex and is most conveniently per- A k(z) by writing in analogy to ordinary electrodynamics

formed by the introduction of a vector potential. In the
absence of the magnetic current jo"(x) this is usually
done by using the divergenceless character of the mag-

Use of Eq. I',5bj enables one to wrj.te
netic field to write P'k(x) as the curl of a transverse
vector,

while for co=0 the equation
which, together with (Sa), yields

8 Ak ejoT +goo 808lr7 7k

can similarly be used to introduce the pseudovector One can now construct in a straightforward way the

potential Bk (x), Lagrangian appropriate to this system
Pok ~klmg g

Thus, one can readily verify that for so=0 a consistent
monopole theory can be described by the Lagrangian

ski —— ,'F~"F„,+ ',—F—e(8„B. -8.B„)o&"e-
goj o"B.+—&'(0'), (&)

in direct analogy to the gp=0 case for which one has the
more familiar Lagrangian'

'F&"F 'Fo"——(8-A—-8„A„)+eoj—~A„+Z'(P). (8)

This leads in a natural way to the question of the
number of degrees of freedom to be allowed the electro-
magnetic 6eld if one is to describe a nontrivial monopole
theory. In particular we note that the equations of
motion implied by Eq. (7),

p~g ~ ~f'vat

~v~~""=gojs"

together with the equations resulting from the
Lagrangian (8),

p ~"=8~A"—8"A~

p'zl""= eoj
allow the construction of a tensor pI'"—=p~l'"+p~l'"
which satisfies the equations (1a) and (2). Since ea,ch
of these two theories is (kinematically) completely con-
sistent, an essentially trivial monopole theory is real-
izable. However, this not unknown result has been
accomplished only at the expense of a doubling of the
usual number of degrees of freedom of the electromag-
netic 6eld, thus implying the existence of distinct
"electric" and "magnetic" photons. Since these photons
furthermore do not interact with each other (thereby
negating any argument for the quantization of charge),
we shall i~mediately reject this formulation in favor
of an approach not requiring a photon doublet.

' It is well to note here that a straightforward application of the
action principle fJ. Schwinger, Phys. Rev. 91, 713 (1953)j yields
the commutation relation

s(H —0')I E (~),e {~')g=—i;» a„s(~—~'}
for each of the two theories described by Eqs. (7) and (8).

y" —8„eoqAp +m—/=0,

V"-8,+VkVkq'o" 8i~ 'Fo"+V'goVoq'r7 '7'o' 0'=0,

by using the potential Bk(x)=— ek'~8&7 Fo~ a—nd
Bo(z)=go% 'joo can b—e giv-en the more symmetrical
form'

B„p "=eoj

~.~"'=gojs",
ff1

8„—eoqA„+m $-=0,
Ei

(10a)

(10b)

(10c)

8o goqroBo f-=0—(1
Ei

(10d)

Finally, we obtain from (9) the only nonvanishing
equal-time commutation relations among the canonical

9 These equations are essentially identical to those obtained by
Cabibbo and Ferrari, Nuovo Cimento 23, 1147 (1962).

,'QP r"8„—$ ,'mfPf—+—,'g'PT"8-„f'
+ 'F&"F '—F&"(8„A—„—8„A„)—
+e PA +g~koklm8 g 2j s—a

Igplmoklss8„q-oj 0 (9)

where we have taken the bare mass of the f' field zero
in order to have B„j6&=0.Since the magnetic current
interaction appears to have been slighted by our choice
of the potential Ak(x) rather than the Bk(z) of Eq. (6),
it is well to emphasize here that one could equally well
use this latter potential to obtain our result. The
essential point to note is that the theory described by
the Lagrangian (9) is inconsistent only in the case
8ogp+ 0.

It can now be readily demonstrated that the equa-
tions implied by (9),

Fok 8 Ak 8„Ao+g~klna8 r7 2j wa-
plm gg g g +g ~ktmg p—2j o
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variables P(x), P'(x), Fr'"(x), and Ao(x):

{P(x)pP(x') }b(x'—x")= b(x—x'),
{P'(x),y'(x') }&(e e'—)= g(x x')—,

(Fr 2(x) A'(x')]8(x —x ') =25/P(x —x'),

a list which may be supplemented by the derived
relations

(Fr"(x) B'(x')]8(x' x")=——25gi (x—x'),
/Fr" (x),Fr"(x )]8(xo—2, ') = 22,—(„8~6(x x'—) )

LA "(x),B'(x')]5(x—x ')= 22/, $
—a 'q 28(x x'),—

to give a more symmetrical result. It is well to note that
our reluctance to increase the number of degrees of
freedom of the Maxwell Geld has made the potentials
A&(x) and B2(x) canonical variables, a point which is
intimately related to the basic inconsistency of the
theory.

Although we have now succeeded in writing the
equations of motion of the monopole in the seemingly
covariant form (10), it will nonetheless be shown that
this theory fails to yield a consistent set of generators
of the Lorentz group. We shall now focus attention on the
proof of this important result.

III. PROOF OF NONCOVAMANCE

We shall approach the question of the covariance of
the theory constructed in the previous section by
seeking an explicit operator realization of the energy-
momentum tensor T&" such that the generators

It is convenient in working with P'~ and J~g to use in
place of (12) the form

1 1
F,o (a,A, ay—,)y ,'y a-,y-+ ,'y' a-,y-'

+2~i(42aoet)+2~i(4'2aA') (13)

which divers from it by an inconsequential divergence
term. Since (13) is identical to the momentum density
operator in the absence of coupling, it is clear that (12)
leads immediately to the structure relations appropriate
to the three-dimensional inhomogeneous rotation group.
More generally, one can show by straightforward
calculation that P~ and Jk~ generate the group of
spatial translations and rotations upon all the basic 6eld
operators of the theory.

Before turning to the question of pure Lorentz
transformations we shall briefly remark upon the last
term of Eq. (12). It is clear that this expression exactly
cancels any contribution to the momentum density
arising from purely static electric and magnetic 6elds.
Thus it is signi6cant that there can be no intrinsic
angular momentum associated with a stationary elec-
tron-monopole pair, in direct contradiction of one of the
more elegant formulations" of the argument for the
quantization of charge. According to this latter view
the classical angular-momentum density r x (E x H) of
the electromagnetic 6eld should give rise to a net
angular momentum for an electron-monopole pair with
respect to the relative direction they de6ne in space.
Thus in the classical limit

P»= d'x T"(x), (11a)
eoj o(x) =eb(x) b(y) b(s a), —

goj '(')=g~(*)~(y)~( ),

d'xgx»T'"(x) x"To»(x)], —
one might expect an angular momentum about the z

(11b)

satisfy the structure relations
Jo —— Lr x (E x H)],d'x

[P»,P"]=0,
2L»,~».] g~.P—» g~»P. , — —

—2LAx)&».]=g»~&.,—g.d'». —g».&.) +g-&»x

d s 1 8 1= —28g
(4 )2 Lx2+y2+ (2 a)2]lt2

gg 1

4~
x dx [r2+a2 —2rax] "'drof the inhomogeneous Lorentz group. It is clear from

(11) that, for the verification of these commutation
relations, it is sufhcient to carry out the construction
of To»(x).

For P o(x) we shall show that the appropriate
operator is

)o (r) ~

x dx g ~

—
~
P( (x)

o ka&

eg dr

4x p u

co
d

eg

4x+i~i(4k~.4)+2~i(4'kao+') Fi"2""F—~'" (12)

1 1T'"=F"F"'+g Bo eoqA f+—g—' 82 goyoq'Bo ~p'— —
z

where
~22= ~ooLV' V']

'o This formulation is due to M. Fiery, Helv. Phys. Acta 17, 2'7
(1944).
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eg= 2s&.
i—F0» P(x)j= (x'8» x»—80)y 22P~

+-,'iepq( 8»,f), (15b)Although one could, in principle, hope to retain this
argument by seeking an alternative form for E~ and J~~,
it is an immediate consequence of Schur's lemma that
these operators are unique and that the last term of (12)
is essential to the preservation of rotational invariance. "
We have thus uncovered serious objections to the quan-
tization of charge independent of the more complex
question of Lorentz invariance.

Having now established the rotational invariance of
the theory (at the expense of giving up magnetic charge
quantization) we must now go on to consider the pure
Lorentz transformations to display the fundamental in-
consistency of the theory. To this end we propose for
the operator P (x) the form

where
e»= B„V 2(x»-P'") x'B—„V 'F'"-

V
—2 x»]Fpm

In spite of the absence of manifest Lorentz invariance
in this theory one has the familiar result that the
equation of motion

y(' —.8„epqA—„~+222 /=0
j

is covariant with respect to the Lorentz transformation
described by (15). A similar situation occurs in the
case e0=0. Here the vector potential J3„(x) and the
spinor f'(x) satisfy the commutation relations

1
Vv" (v) =gl3v —8,— VA,)pe+»f() pv

z
Jo»,B'(x)j= (x'8» x»80)B—( 8»(BP+—8(6)», (16s)

the quantization of which leads immediately to the well- limit one has from (14) the result

—iPJ0»,A '(x)g= (x 8» —x»8')A ' —8»2AP+ 8(8», (15a)

1
+lt'()v' a vv'vp )0'-+'*—D&")'+(&")'3 (v4)

As the first and most obvious property of P (x) we must
require that I generate the development in time of all
operators in the theory. Thus

i
d»x'L7'00(x'), X(x)j=-BpX(x)

for any operator X(x), a result which is readily estab-
lished by straightforward calculation. Another im-
portant condition is the requirement that J ~ as defined
by (11b) transform F)'" as a second-rank tensor, i.e. ,

i'" F—»"j= (xpB x'8')F~"+g&F""—
gkizPOv+ gk~PDp g

s(0Pk p

Again one can directly verify this commutation relation
as well as the corresponding vector transformation
properties of both j('(x) and jp"(x) thus establishing the
covariance of Eqs. (10a) and (10b) for the P (x)
of Eq. (14).

It is, however, well known that in the radiation gauge
formulation of electrodynamics A„(x) (f(x)) fails to
transform as a vector (spinor) in spite of the covariance
of (10c).Thus the question of the behavior of Eqs. (10c)
(when gp= 0) and (10d) under a Lorentz transformation
is considerably more complex, and it is precisely here
that a monopole Geld theory must founder. In the g0 ——0
"The inclusion of this term reduces EI, and Jqg to their free-field

forms, thus immediately displaying the rotational invariance of the
theory.

it'J—'»,y'(x) j= (x'8» —x»8')((f'

—x2&VV'+pigpen»(» 0') (16b)

V—2(x»Fpm)+x»8 V—2Fpm

LB V—2 x»]Fpm

a result which establishes the covariance of the equation

tt'i

v"l -&.—v v'vent)t'(*) =p.
2

In the case of nonvanishing electric and magnetic
couplings, it is clear that, for the energy density of
Eq. (14), the transformation properties of f and )Iv' are
given by (15b) and (16b), respectively. However, be-
cause of the presence of the term gpjp»B» in (14) and the
noncommutativity of A„(x) with 8»(x), the commuta-
tion relation (15a) becomes

—i'-,A, (x)j= (~8,—* 8 )A -B„A
+8(8»+goP™egV ' x"jjp" (17)

while (16a) now has the form

iLJ0»,fl((x)j= (x'8» x»80)B, 8»,g—P
+8($»+epp'""t('B„V ' x»]j". (18)

The presence of the additional terms in both (17) and
(18) has destroyed the covariance of Eqs. (10c) and
(10d), as a Lorentz transformation on these equations
now has the eBect of introducing a direct interaction
proportional to epgp between the fields f and iP'. Thus,
provided that the uniqueness of P (x) can be estab-
lished, we have the gratifying result that the theory
fails the test of Lorentz invariance if and only if e0g«0.

The question of the uniqueness of P (x) can be
handled by relatively straightforward considerations.
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First, it is to be noted that, since the equations of
motion of the Maxwell field (1a) and (2) are fixed, and
the P (x) of Eq. (14) transforms F»"(x) as a second-
rank tensor, that part of P which contains terms in-
volving Fr'" and Fr" (as well as A k and Bk) is unique.
That is, any attempt to include additional terms in
P"(x) involving the dynamical variables of the Max-
well Geld must alter either the fundamental equations of
motion or the transformation properties of F»"(x). Thus,
we have only to deal with the somewhat more subtle
problem of whether covariance can be restored by intro-
ducing a direct interaction between the currents j& and
j&&. It is clear that such a coupling must be proportional
to eogo and involve no dimensional parameters. It is not
dificult to verify, however, that there is no rotationally
invariant parity-conserving coupling, either local or
nonlocal, which can be introduced between these two
currents.

It is perhaps instructive to briefly view here the
question of covariance in terms of the commutation re-
lations of 2'»" (x) with itself as discussed by Schwinger. "
In particular he has shown that a sufhcient condition for
Lorentz invariance is

—i(P (x),P (x')]
= —(P"(x)+P"(x'))8kb(x —x'). (19)

IV. A SOLUBLE MODEL

As a simple realization of a theory which illustrates
all the essential features discussed in the preceding
sections, we shall construct here a soluble model de-
scribing the coupling of conserved electric and magnetic
currents to the electromagnetic Geld. To this end it is
convenient to introduce the scalar and pseudoscalar
fields g(x) and 00(x), respectively, which, in the absence
of coupling, are described by the Lagrangian

&=4'"~A'+ 04'"4'»+ V'"~»P+ 0 00"0'». (2P)

"J.Schwinger, Phys. Rev. 127, 324 (1962).

In the present case this rather complex condition may
be simpliGed considerably by noting that it is certainly
valid for eo or go equal to zero. It is an immediate
consequence of this observation that (19) is not satisfied
for the P'"(x) and. M(x) of Eqs. (12) and (14) in the
two important respects:

(i) The commutator fails to generate the last term
of (12).

(ii) The commutator of j"Ak with jkkBk is not
accommodated by the structure of (19).

It requires only a slight extension of this result to again
establish the uniqueness of P (x) as well as its necessary
incompatibility with the structure relations of the
Lorentz group„ thus further verifying the basic in-
consistency inherent to a monopole theory.

As a result of the equations of motion,

gg»= p,
8pp+= 0 p

(21)

implied by (2p), the fields g»(x) and p»(x) describe
conserved vector and pseudovector currents, a result
which is unaltered by the inclusion of any coupling
which does not explicitly involve the fields g(x) and

0 (x)."Thus we are led to propose the model described

by the equations
~„I'~"=eel',

&P ""=goo".

(22a)

(22b)

In the special case go=0 such a theory is described by
the complete Lagrangian

Z= 'F»"F ,'-F»"(8+—, -B„A„)—
+y a„y+~y y„+e

In the former case one Gnds that the two transverse
modes of the Maxwell Geld corresponding to a given
momentum combine with the scalar mode of the Geld

g (x) to describe the three degrees of freedom of a vector
meson with mass eo'. It is therefore of no surprise that
in the case of purely magnetic coupling the transverse
electromagnetic modes together with the field g&(x)

describe a pseudovector Geld of mass go'. This, however,
suggests that in the case of nonvanishing electric and
magnetic coupling there might well result serious com-
plications as p(x) and 0 (x) compete in their efforts to
determine the character of the Maxwell Geld.

Proceeding in direct analogy to the approach de-
veloped in Sec. II we can now write the Lagrangian

F""F„„~F»"(8„A,-B„A„)+y»8„&+ y—»y„+v»8„0—
+ +»vp +&~»A +g~k0kl g g 2+—

lgg'Lmkklmg g—2~0 (23)

appropriate to Eqs. (21) and (22). In addition, one
finds from (23) the equations

~k — gk~ g
~kloof p'—2POns

+0— $0++ &g 0klwag g-0Flns

"This point has been discussed in some detail by G. S. Guralnik
and the author (to be published).

'4 D. G. Boulware and %. Gilbert, Phys. Rev. 126, 1563 (1962).

which is identical to a model previously considered in
the discussion of the connection between gauge in-
variance and mass. "The symmetry between electric
and magnetic coupling is displayed by the observation
that for eo——0 one has as the appropriate Lagrangian

~F»"F„„+',F.s(B„B„-B,B„)0 0»"—

+0»~»v+00»0» g0B"0»—
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which upon introduction of 8& as dered by

P 0« — e«(wag

p Ok — $/30

assume the form

pg= —jp p—gojgls ~ (24)

It now requires only simple manipulations on Kqs.
(21), (22), and (24) to derive the reduced 6eld equations

(—8'+e0')y(x) =0,
(—8'+gp') qr (x)=0,

( g2+e 2+g 2)Pro«(x) —e «g 2P 2P 0«—

While the 6elds p(x) and q (x) each appear to be un-
aware of the presence of the other, the Maxwell field,
unable to choose whether to be a vector or axial-vector
meson, experiences a fatally noncovariant distortion of
its excitation spectrum if and only if eogoWO. Thus the
breakdown of Lorentz invariance which revealed itself
in the general monopole theory through the non-
covariance of the equations of motion has been given in
this soluble model an explicit and dramatic realization.

In order to illustrate more clearly the correspondence
with the general monopole theory, we shall brieQy
discuss the covariance problem from the viewpoint of
the preceding section. In this case one has

P'«(x) =4'(—aA —e~ «)+ V'( —a«y —go'13«)+ A'P"
ego( jg lp 9@0)~«lm(g 'p——

2&po)

(25)and

In analogy to our previous result the last term of (25) is
necessary to preserve rotational invariance while at the
same time it eliminates the necessity for the quantiza-
tion of charge. One further 6nds that the Hamiltonian
P' generates the time development of all operators in the
theory and. that J» correctly transforms F~"(x) as a
second-rank tensor.

There is however, one noteworthy distinction between
this model and the more general theory which arises
from the fact that the currents p&(x) and y&(x) are
linear rather than bilinear in the operators of the
charge fields. Thus, in view of the result of Eqs. (17)

and (18) together with

—i'«, y (x)5= (x'8« —x«8')y —eon«,

i—P», q (x)]= (ea« —x«a, ) «
—g,(a„

it follows from (24) that p&(x) and y"(x) cannot trans-
form as vectors. This has the immediate consequence
that none of the equations of this theory are covariant
with respect to the Lorentz group if eogoQO.

With this minor difference all our previous results
carry over to this model. The general proofs of the
inconsistency directly apply and at the same time we
have the further advantage here of being able to
explicitly calculate the noncovariant mass spectrum of
the Maxwell 6eld.

V. CONCLUSION

Although the pursuit of the magnetic monopole has
never attained the distinction of being considered one
of the most pressing problems in particle physics, the
demonstration of its incompatibility with the axioms
of quantum 6eld theory does dispose of what has been
at least a mildly annoying problem of electrodynamics.
While it goes without saying that the Gnal verdict on
this question must be given by the experimentalist, the
discovery of such a particle (without a "second photon" )
would require a drastic reformulation of some of the
most fundamental aspects of quantum 6eld theory.

Despite the fact that invariance under parity and
charge conjugation has been incorporated into the
proof given here, it is to be emphasized that this point
is quite inessential, the conclusion resting solely on the
assumption of the existence of a Lagrangian and a well-
de6ned set of generators of Lorentz transformations. It
is well to note further that this paper has emphasized
throughout the symmetry between electric and mag-
netic couplings, and the basic consistency problem only
arises in Gtting both into the same theory. While there
is thus no fundamental basis for choosing between the
two types of coupling (as there is no reason why
matter should be locally favored over antimatter),
nature, having once decided on a vector coupling, is no
longer free to admit a pseudovector interaction.
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