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A phenomenological study is made of the weak N~ production process by displaying the matrix element
in terms of eight form factors. Simple functional dependences are adopted for these form factors, and ana-
lytical expressions for the cross sections are given in detail. A numerical analysis is carried out to investigate
the effectiveness of each form factor. Three models are proposed for this process: One assumes the domi-
nance of a single form factor, another incorporates information obtained from N» photoproduction, and the
third employs the SU(6) relations of Beg and Pais. All three models are compatible with the present experi-
mental information, but the one derived from the SU{6) theory is the most encouraging.

vi+N —v N"+l (1.2)

involving the direct production of the 3-3 pion-nucleon
isobar N'(1238).

The most detailed information about reaction (1.2)
at present comes from the CERN high-energy neutrino
experiment and is supplied by the CERN heavy-liquid
bubble-chamber group. ' They 6nd that the number of
elastic and inelastic neutrino events are comparable.
Moreover, below 4 BeV, most of the inelastic events
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L INTRODUCTION
' ~IVE years have passed since Schwartz and Ponte-

corvo independently proposed using neutrinos from
the decay of intense, well-collimated beams of high-
energy pions to probe the weak interactions. ' Since
then, experiments at both Brookhaven' and CERN'
have provided much information about the weak inter-
actions, to wit: The separate identities of the muon
and electron neutrinos, v„and v, , the absolute conserva-
tion of leptons; the apparent absence of neutral lepton
currents; and the nonexistence of intermediate bosons
with mass less than 2 BeV. Even more information
about the weak interactions will be gained when the
antineutrino experiments now in progress at CERN
are analyzed.

Quite aside from the information gained about the
weak interactions, it has recently become apparent
that high-energy neutrinos also serve as a useful probe
of the strong interactions. For example, on the basis of
SU(3) unitary symmetry, ' one should expect to see in
addition to the ordinary "elastic" process,

vi+n-+ P+l, (1.1)

the competing process

involve single-pion production, i.e.,

vi+N ~ l+N+x. (1.3)

Their analysis of the invariant mass spectrum and the
charge/neutral pion ratio demonstrated in fact that a
large fraction of these single-pion events proceed via
the production of an E' and its subsequent decay:
N'-+ N+s. Thus the importance of process (1.2) has
been cordirmed.

According to the usual SU(3) assignments, process
(1.1) represents an octet-octet transition, while process
(1.2) represents an octet-decuplet transition. As such
the two processes are not simply related. However, if
one adopts the SU(6) symmetry scheme' according to
which the baryon ~+ octet and the baryon ~+ decuplet
are both members of the same SU(6) supermultiplet,
56, the two reactions become intimately connected.

As a probe of the strong interactions, the high-energy
neutrinos are thus able to make some critical tests of
the higher symmetry schemes recently proposed. In
this respect, the neutrino experiments play much the
same role as the high-energy electron-scattering
experiments. Neutrinos have the added advantage,
however, that they are able to probe the strong inter-
actions via both the vector- and axial-vector-type
couplings by virtue of the dual-parity nature of the
weak interactions.

In this paper, we present a detailed phenomenological
study of the weak N' production process, (1.2), and its
SU(3)-symmetric counterpart,

vi+N —+ Fg'+f, (1.4)

where the F~'(1385) is the I= 1 member of the decuplet.
The role of the neutrino as a probe of the strong inter-
actions is exploited fully in that the transition matrix
for (1.2) or (1.4) is written in terms of eight form
factors which are functions only of the momentum-
transfer variable. The eGectiveness of each of these
form factors in contributing to the total cross section is
then investigated. Ke also present the detailed pre-
dictions for the E' and Y~' production processes derived

6F. GGrsey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); A. Pais, ibid. 13, 175 (1964); B. Sakita, Phys. Rev. 136,
S1756 (1964).
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from the elastic reaction on the basis of the SU(6)
symmetry scheme. Although the experimental uncer-
tainties are large, the theoretical results are encouraging.
Some of the results obtained in our study were brieRy
reported in two letters. ~' In another paper to be
published, ' we shall report on the cross-section results
derived from the relativistic generalizations of SU(6)
and compare them with those found in this paper in
the nonrelativistic SU (6) theory.

Several authors" have also made a phenomenological
study of the E' process from a somewhat different
point of view. Weaver ef ul. chose the simpli6ed case
with only one form factor present, while Zheleznykh
singled out two form factors. Herman and Veltman, on
the other hand, selected several of the form factors and
hxed their strength according to the conserved-vector-
current and almost-conserved-axial-vector-current hy-
potheses. Kim has also made an analysis similar to the
latter two authors.

Prior to the suggestion of the eightfold way' by
Gell-Mann and Ne'eman, it was natural to focus one' s
attention on process (1.3) instead of (1.2). The peri-
pheral model with one-pion exchange or 8'-meson
exchange was considered by a number of authors for
this single-pion production process. " In this approach,
the effect of the E' is inserted to enhance the appro-
priate intermediate state in a dispersion-theoretical or
static-model calculation. Since this analysis involves
a number of invariant-scattering amplitudes which are
functions of two variables, it is very complex and the
interpretation somewhat uncertain. Their approach is
to be contrasted with ours, where the E' is produced
directly.

The outline of our work is the following. The X-E'
transition matrix element is written in terms of eight
form factors in Sec. II, while III contains the differential
cross section and its low-momentum-transfer limit. The
effectiveness of the various form factors is investigated
in Sec. IV for two different momentum-transfer depend-
ences. Section V contains the predictions of SU(6) and
the conserved-vector-current hypothesis, and VI sum-
marizes the Gndings of our phenomenological approach.
The rather lengthy formulas are recorded in the
Appendices.

Fic. 1.E*production by
neutrinos: notation.

s= —(p,+k,)'= —(ps+k, )',
t =—(p,—p )'= —(k&—ks)'= —q'

(2.2)

The spin-&~ isobar is described by a spinor-vectorial
Geld f„(ps) in the Rarita-Schwinger formalism" with
the subsidiary conditions

aIld
(2.3)

employed to project out the spin-~ components. The
four independent spin states are given by

(2.4)

where
1

e„&'&=——(1,i,0; 0),

(2.5)

II. WEAK ¹ PRODUCTION MATRIX ELEMENT

The generic weak 1P production process,

(2.1)

is illustrated in Fig. 1, where a point interaction is
assumed for the ieptons. We denote by k&(&e&), p&(E&),
ks(&»2), and ps(Es) the four-momenta (energy) of the
neutrino, nucleon of mass M~, lepton of mass m~, and
isobar of mass M&, respectively. "The invariants s and t
are deGned by the equations

'C. H. Albright and L. S. Liu, Phys. Rev. Letters 13, 6'73
(1964).

'C. H. Albright and L. S. Liu, Phys. Rev. Letters 14, 324;
532 {E) (1965).' C. H. Albright and L. S. Liu, Phys. Rev. (to be published).

"D.L. Weaver, H. S. Song, C. L. Hammer, and R. H. Good,
Jr., Nuovo Cimento 35, 150 (1965); I. M. Zheleznykh, Phys.
Letters 11, 251 (1964); S. M. Herman and M. Veltman, Nuovo
Cimento 38, 993 (1965); C. W. Kim, Nuovo Cimento 37, 142
(1965)."J.S. Bell and S. M. Berman, Nuovo Cimento 25, 404 (1962);
N. Cabibbo and G. Da Prato, ibid. 25, 611 (1962); ¹ Dombey,
Phys. Rev. 127, 653 {1962);P. Dennery, ibid. 127, 664 (1962);
Nguyen Van-Hieu, Zh. Kksperim. i Teor. Fix. 43, 1296 (1962)
t English transl. : Soviet Phys. —JETP 16, 920 (1963)j; A. Fujii
and E. Celeghini, Nuovo Cimento 28, 90 {1963);G. R. Henry,
J. ~vseth, and J. D. Walecka, ibid. 36, 509 (1965).

are the polarization vectors of the vectorial Geld. The
2 axis has been selected as the quantization axis which
is deGned by the direction of the E' momentum. The
Dirac spinors I+ and I with spin up and spin down,
respectively, are normalized according to 8;e;=5;;.The
adjoints of the unit four-vectors e„'"'=(e'"'; ieo&"&) are

"We use the Minkowski metric, and all y matrices are taken
to be Hermitian.

'3 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 {1940);S.
Kusaka, ibid. 60, 61 (1940}.
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&b3

FIG. 2. Feynman
diagrams for
production.

tc) {gl3

given by
e (s}—(e(s}+~ ie (s}) (2 6)

(2.8)

where the transition vertex is given by'4

(E'~ J„~N)=}r [l} (F "+F, ,)
+iP&sy„(Fs"+Fsvys)/(M, +Ms)
+p(s(ps+ps), (Fs"+Fs"ys)/(M}+Ms)s

+p}s(p}—ps)s(F4"+Fs"ys)/(Ms+Ms)'juror (2.9)

for the J~=+~+ 1P isobar. This form is convenient for
calculation; an alternative form for the vector contri-
bution is

(~ (
J's")&)=A@~}v+sP})v~s"/(Ms+Ms)
+ipse, .(ps—ps)e&s "/(Ms+Ms)'

+ps (p} ps)s&sv/(Ms+Ms)—'Jesus(, (2 10)

I~ Note that here we have selected the mass &=&I+M, to
render all the form factors dimensionless. In Refs. 7 and 8 we
used M =M1. The new choice seems to be a more natural one as
will be seen in Sec. III, when we discuss the differential cross
section at low-momentum transfer.

where the asterisk indicates complex conjugation. For
an arbitrary polarization state of 1%IIr', it is convenient
to write

P„= (st(,ps) =g„u++f„u =h„u; (2.7)

then the Pauli adjoint Geld is given by

4', = (sT(,i}to)=—h„u,

where the adjoint of h„ is dehned in the same manner as
that for e„("}.With g g+f f=. 1, }p.„ is normalized to
unity.

The dynamics of the 1}i' production process (2.1) is
all contained in the S-E' transition vertex which can
be described in terms of eight form factors under the
assumption of a local V—A lepton current. In par-
ticular, the production matrix element can be written as

ALE I. Form factors receiving contributions from the
diagrams of Fig. 2 as indicated by an X.

Feyn man
diagram Partide
of Fig. 2 exchanged

Form factor contributions
P1A P1V P~A P~V P h P V P A P V

X X X X X X X X
X X X X X X X X

X X X X

X X X X X X
X X X

X X
X X X X

X X

"The analytic expressions derived allow complex form factors,
but all are taken to be real in our later numerical work.

'6 S. Gerschtein and J.Zeldovich, Zh. Eksperim. i Teor. Fix. 29,
689 (1955) t English transl. : Soviet Phys. —JETP 2, 576 (1956)g;
R. P. Feynmen and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

where the two sets of vector form factors are related by

PF gg
V'

F v Hsv+[(Ms M,)/(M, +Ms) jHsv (2.11)
pV gg V pV' ggV'

The form factors are functions only of the momentum
transfer t, and are all relatively real if time-reversal
invariance holds. "

In Fig. 2 we have singled out some Feynman diagrams
which may make signi6cant contributions to these form
factors. A direct 4-fermion interaction is pictured in
Fig. 2(a); representative particle exchange diagrams
are shown in Figs. 2 (b), (c), and (d) where the diagrams
in (c) and (d) exhibit anomalous threshold behavior
in the t channel. Table I spells out explicitly to which
form factors Il;~" the various diagrams of Fig. 2

contribute.
If one imposes the conserved-vector-current (CVC)

hypothesis" for this octet-decuplet transition, only
three vector form factors are linearly independent, i.e.,

(Ms+Ms)'(Fsv+Fsv)
+ (Mss Mrs)Fs" —tFsv 0. —(2.12)——

However, we shall not impose this restriction at the
outset.

We conclude this section by elaborating the charge
channels of process (2.1):

v(+ ss +1P+—+i, (2.13a)

v(+p —+ 1P+++'i . (2.13b)

By analogy with the "elastic" process, v(+}s~ p+i,
we denote the coupling constant for reaction (2.13a)
simply by G, where GM~'=1.02)&i0; for reaction
(2.13b) the appropriate coupling constant is then v3G
under the assumption that the weak current transforms
like an isospin vector operator.
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L L 8+L

L„,~= kl„k1 +k1„k2,—k1 kg„„
LIsor &po apk2aklp y

(2.14a)) +p}No+l+

~)+~~~—+~+. 2.14b
M„."'=-',G' Q}o (N'&»

~ J„~ V)(N'&»
[ J.[N)+.

The reactions corresponding to (2.13) for N' produc- where

tion by antineutrinos are:

Here the appropriate coupling constants are 6 and AG,
respectively, for (2.14a) and (2.14b). The matrix
element for (2.14a) is then given by

(2.15)

in terms of the negative-energy Dirac spinors for the
antileptons, where

Here the adjoint matrix element is found. to be

(N'~ J.~N)*=u}}L—8,.(F)~'—F)~go)
op)pv—.(Fo '+Fo 'vo)l(M)+Ms)

—P).(P)+Po).(Fo"'—Fo~»)/(M)+Ms)'
P~.(p)—Po).(F—'o"' F4""7—o)'(M~+Mo)']0, (3.4)

The summation over the .V' spin states may then be
carried out with the help of the spin-~2 projection
operator

J„+=—J„t, p, =1, 2, 3

J~t p, =4
(2.16) g p o }g, &» o

PWPoo

and J„is the Heisenberg current operator which raises
the s component of isospin by one unit while J„t lowers
I.by one unit. If we now invoke the hl = 1 rule, i.e.,

iv.—Po+Mo
(v Po. &.Po ) -(3.5)

3%2 2M2

After the spin sums are performed, it is apparent
that T can be expressed in the following form:

in terms of a rotation about the y axis by ~ radians,
Eq. (2.15) can be rewritten as T=~4 P R, (~)X;(s,~), (3.6)

Gm'= —(N'+
~ J„~oo)&},y„(1+go)&}}, (2.18)

where here the 3,'—E' transition vertex is just that
given by Eq. (2.9).

where

do 1

dt 2)r (s—MP)'

T=MgMom}&d) Q tOR(',

(3.1)

(3.2)

and sulnmation over the s, E, cV', and l spins are im-
plied. In order to carry out the spin summations, it is
convenient to sum 6rst over the v, X, and l spins and
write

~egg&»~o —1 P oJlt0}oJit(X)t
i,N, E r, N, L

=—(o)o}&o))-'M„.&")I.„., (3.3)
"The kinematics and the cMerential cross section in both

center-of-mass and laboratory systems are elaborated in
Appendix A.

III. INVARlANT DIFFERENTIAL CROSS
SECTION FOR ¹ PRODUCTIOÃ

The invariant differential cross section'~ for V"
production is given by

where
X)——(po ko)(p) k))+(po k))(pg ko),
Xo= (po ko)(p). k))—(po kg)(pg. ko),

Xo——(po ko)(po k)),
Xo——(p) ko) (p).k)),
Xo=M)Mo(k) ko).

(3.7)

The R;(t) are functions only of t and are listed in
Appendix 3, where the X, are also expressed explicitly
in terms of s and t.

From the above grouping of terms, it is clear that
only X~ is antisyrxunetric under k1, kg interchange;
hence only Ro(t) contains V-A interference terms which
are generated by M„L„~.The doubly-induced form
factors Fs"" and F4 ", however, do not contribute
to E~ because of energy-momentum conservation and
the presence of the antisymmetric tensor in L„,".
Finally, we note that for the antineutrino processes
(2.14), the V-A interference term reverses sign so RoXo
should be replaced by its negative vrith the other E;X;
left unchanged.

Aside from the above general statements, little can
be said about the behavior of the differential cross
section until some assumptions are made for the func-
tional t dependence of the eight form factors. However,
for small four-momentum transfer, the invariant
differential cross section depends only on the normaliza-
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Tmzx II. High-energy cross-section behavior arisin, from each F;""of Eq. (4.1) with e 0, 1, or 2.
At large s, s (s) = (P/4s) (

F;"&(0) 'X (appropriate entry in table).

FOHIl
factor

High-energy cross-section behavior
e 1 tl=2

F A

F A

$2

$2

11sll

180~P{~,+~,)~

180M@{&I+&2)'

60WP(u, +u,}

60M/ (3III+Mg}4

60m;(m, +M,}

bs rs)
3Mss kb)

b' rs

3Mss l,b

2b's

9' P {&I+&2)'

2b's

9M@ (N'I+My)'

1835/(ill, +BE,}4

b's'

18SSPyX,+~,)4

mPPs

363EI2'{3III+Mg}4

P(3EI+Mg}'+)bj
9M'~

I (Mg —MI)'+$bg
9' g~

~p+sxp yap —~p)~-
1+ +

Mr@(M +N )' b

b' 3l12+3fP (3E22—AERY)
~

1+ -+
mP(M, +u, )& b bm

b' s)
ln —

f

3Ms'(My+ilk)' bj
b4 s)

ln —
f

3Ms'(My+Ms)' b)

1m' ye, +m, )4s

603E22 {NI+&2)4 36m,&(u,+m, ) 123/p(MI+3f g)4s

tion of the form factors at t 0. In the limit t ~O, it
takes on the foHowing form:

do G' s—Mrs(Mr+Ms)'—(o)=
di 12sr s—Mrs l Ms )

M2 —Mg
~P 3 (2+2 Re(P AP 2"yP AP A')

Mr+Ms

Ms—Mt)'
p ~[s+ [p ~/s+[p v/s+/p, r/s

Mr+Ms)

+2 Re(ps"Fs"'+Fr"Fe~)j
Ms —Mr)s

+2
~

Re(prrps"'+Fs~psr')
Mr+Ms)

Ms —Mr '
+i

(Mr+Mt)

Terms involving [m~/(Mr+Ms)]' have been dropped;
hence F4" ~ do not appear in the above equation since
their coeScients are proportional to the lepton mass.
The direct axial-vector term ~pr" ~' appears to be the
most efI'ective one for this limiting diGerential cross
section. The other form factor combinations fall into
several groups" according to powers of the mass

'll This is a result of our selection of M =M1+M2 to render all
form factors dimensionless, see Ref. 14.

difference, M~—M~. It would thus seem that the next
leading contribution should result from the interference
of Jig" and F3" with F~~—at least at low-momentum
transfer.

IV. PHENOMENOLOGICAL FORM FACTORS
AND NUMERICAL RESULTS

%e now turn our attention to a phenomenological
study of the t dependence for the eight X—E' transition
form factors. Cne salient feature for this study is that
the high-energy behavior of the total cross section
depends critically on the functional dependence of the
F,"~(t). We shall use this as a guide for the selection
of the phenomenological forms.

To calculate the total cross section, we have con-
sidered the following conventional t dependences:

p'"'(i) =F'"'(—0') = [p'" "(o)j/[(1—i/&) "j, (4 1)

where e=O, 1, and. 2. For n=O, the form factors are
structureless; for n=1, they have a simple pole de-
pendence; while for n=2, they are analogous to the
empirical ones appearing in elastic electron scattering
from nucleons. " Ke have evaluated the asymptotic
behavior of o(s) arising from the eight form factors
individually with the above three t dependences of
Eq. (4.1). The results are listed in Table II.

"See, e.g. , R. Hofstadter, F. Bumiller, and M. R. Yearian,
Rev. Mod. Phys. 30, 482 (1958).
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The structureless case, n=0, results in a highly
divergent cross section arising from each of the eight
form factors. This is clearly unacceptable. For the
simple pole dependence, the direct form factors I'~~ ~

are weakly divergent while the others are more strongly
divergent. Kith a small damping effect at large momen-
tum transfer, this behavior is barely acceptable for the
direct factors but still unacceptable for the other
contributions. On the other hand, the Hofstadter-type
dependence yields an acceptable asymptotic cross
section for all form factors provided only slight modi-
fications are made for Ii~~ and Iis". The differential
cross section has been integrated analytically for the
latter two cases, and the total cross section formulas
are listed in Appendix C,

In Figs. 3 and 4, the numerical results are presented
for the simple pole and Hofstadter cases, where the
individual form factors have been taken one at a time,
The cutoff parameter b is set equal to (0.850 BeV)'
which is appropriate for the elastic reaction, "'0 and all
form factors have been normalized to unity. Kith this
normalization, it is evident from Fig. 3 and Eq. (3.8)
that the relative contributions fall into several groups
with Fj~ giving the leading one and in this sense being
the most effective. One also notes that the asymptotic
behavior of the total cross section given in Table II
becomes apparent even for the moderate energy region
included in Fig. 4.

The current experimental information for the weak
E' production process is supplied solely by the CERN
heavy liquid bubble chamber group of Block et al.'
Their results consist of total cross section measurements
up to 6 Beg which are plotted in Fig. 5; in addition,
they estimated an invariant differential cross section
at low-momentum transfer given by

der/dq'= (0.5~0.2)X 10 '
cm'/(BeV/c)' per nucleon (4.2)

in IO cm2/ tBeV/c)
4q2

04" 0 in l0 cm

0.4-

Fxe. 4. Total cross
section for r„+o—+

g ++p correspond-
ing to Fig. 3.

0.3

0.2-

A~~ Fi

//I
/

1 l

FA
5

2
FA
2

A

O. I-

+~F F" FI, 2, 2, 5

2 3 4 5 6 7 8
E& (Lob) in BeV

averaged over the momentum range 0&q'&0.2
(BeV/c)' and energy range 1.0(E„&3.0 BeV.To obtain
the cross sections for the particular charge channel
v„+n —+Ã'++p —, one must divide their results per
nucleon by a factor of two.

Although the experimental uncertainties are rather
large, several features are revealing. The information
provided by the differential cross-section measurement
at low-momentum transfer is valuable since it is
independent of the q' structure of the individual form
factors and depends only on their normalizations. The
direct axial vector form factor Ii j" by itself is able to
accommodate the experimental range quoted in Eq.
(4.2) with normalization near unity, unlike the other
seven form factors. Moreover, Iij" yields a rapidly
rising total cross section above threshold which is
characteristic of the experimental histogram in Fig. 5.
These results suggest that the simplest A production
mechanism is through Ii ~" alone.

Kith this simplicity in mind, we have attempted to
6t the total cross section data by adjusting the cutoB
parameter b for the simple pole and Hofstadter cases
of Eq. (4.1).The results are presented in Figs. 6 and 7.

Fm. 3. Invariant
difFerential cross sec-
tion for the inelastic
process r„+e -+ S~+
+p for each form
factor taken one at a
time and normalized
to unity with gb =850
MeV. The dashed
curves refer to e=i
and the solid curves to
m=2 in Eq. (4.1).

0.5

0.2-

O.I"

002-

O.OI,
0 0.2 0.4 0.6

q2 iri {BeV/c)2

FA
I

FA

&F,",F2V

FA FA
2

FvFY
I~ 2

pApA2, 3
Fv
5

0.8

Fro. 5. Experimental
cross section per
nucleon for single-pion
events as measured by
the CERN group, see
Ref. 5.

l0- 0 in l0 crvP per nucleon

08.

0.6-

0.4-

0.2-

~ Variation of the cutofF parameter b has a sizeable efFect on
the total cross section and the forward/backward ratio. This was
previously reported in Ref. 7.

0 2 3 4 5 6 7 8
Er (Lob) in BeV
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0.5.
Q~ in io cml/{Bev/CP
dq

the other hand lead to a very poor fit, and this case
has not been plotted.

0.2-

O.l-

0.05-

(EI,+ 2 BCV)

55
50)
2al
TQ

Fxo. 6. Differential
cross section for I„
+e —+ E~+p with
pure FI" normalised
to unity. Dashed
curves refer to e 1,
solid curves to e 2.
The number in
parentheses for each
curve is equal to gb
in MeV. This con-
vention is used here-
after.

0,02
0 0.2 0.4 0908

q~ in {BIV/cP

For the rr = 2 case, a median value of (1.22 BeV)' for b

provides a reasonable 6t. Cn the other hand, a lower
median value of (0.77 BeV)' provides a somewhat
poorer 6t for the +=i case. This single form factor
mechanism predicts an equal E' production cross
section by antineutrinos and is thus subject to a simple
experimental test.

Perhaps a more reasonable mechanism is obtained
by considering Ii ~~ together with some vector contribu-
tion. In particular, the CVC hypothesis relates the
vector form factors for the weak e~E'+ process with
those present in S' photoproduction from nucleons.
One 6nds the following relationship for the matrix
elements:

V. PREDICTIONS OF 8U(6) AND THE
CVC HYPOTHESIS

In the last section, we have 6rst investigated the
effectiveness of the various form factors in contributing
to the total cross section and then attempted to "6t"
the experimental results in a rather ad hoc fashion by
adjusting the normalizations and cutoB parameters.
The recent development of the SU(6) symmetry
scheme, on the other hand, enables one to correlate the
tr~rV' inelastic and rr-+ p "elastic" processes and
hence to specify the F,""(0). Here we present the
results based on an analysis of the detailed predictions
of SU(6) and the CVC hypothesis for the form factors.

In the SU(6) symmetry scheme, ' the baryon Jr = -',+

octet and the baryon &+ decuplet are conveniently
assigned to the 56-dimensional irreducible representa-
tion since the spin —unitary-spin content is given by
56=(2,8)+(4,10). The FS meson octet and the V
meson nonet, on the other hand, can be placed in the
adjoint representation, M, since 35= (1,8)+ (3,8)
+ 13,1). In the framework of SU(6), Beg and Pais"
have extended Cabibbo's original hypothesis~ by
making the assumption that the weak vector and axial
vector currents of the hadrons transform like members
of two diGerent 35's. The eEective matrix element for
the semileptonic interaction

(&'+II 'l~&=(&'+l~ "Ip& (4.3)
r r+Br ~Bg+l (5.1)

The E' isobaric model has been used by Gourdin
and Salin" to analyze the pion photoproduction process.
In their notation, the electromagnetic vertex is given
by

(&'+I ~ r
I p&=kiLclb4c75 (Cs/~w)&plx Yy+Ijg„(4.4)

where Cr(0) and Cs(0) are deduced to be 5.6 and 0.37,
respectively. These numbers then imply that we take"

can then be written in the low-frequency limit as

Gp
(BRS6I J„"(35)+ J„~(35)IBr56&1.„

=3B'-./s, ~.'(P2)B* ""(Ir)c;"({f), (5 2)

05- 0 ln lOBI cfn

Frv(0) =5.6 and Fsv(0) = —5.6 (4 5) 0.4.

for the n-+ E'+ process. Since their analysis indicates
that both Firv and F4v are very small, Kq. (2.12) is
satisded.

In Figs. 8 and 9 we have plotted the differential and
total cross sections using the vector form factors
normalized according to Eqs. (4.5) and taking Fr"(0)
= —0.87 so as to yield a more nearly correct differential
cross section at low-momentum transfer. The opposite
sign of Fr"(0) is not considered since it leads to a
decidedly worse Gt to the total cross section near
threshold. For the range of cuto6 parameters included,
a good 6t is obtained with a median value of b= (0.67
BeV)' for I=2. The simple-pole-type form factors, on

"M. Gourdin and Ph. SaHn, Nuovo Cimento 27, 193, 309
(1963).

03

og.

{855
~ P

~ W -W70}
-~22+

Fro. 7. Total cross
section corresponding
to Fig. 6.

O.I. t8RS

0 I 2 3 4 5 6 7 8
E„(Lob) in BeY

~ M. A. B. Bhg and A. Pais, Phys. Rev. Letters 14, 51 (1965).
Note that an error in the sign of the p~ term of Kq. (2) has been
corrected.

II N. Cabibbo, Phys. Rev. Letters 10, 531 {1963).
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where
Gv

~""'(S)= L&'(~o)."—d' (~ qx j'")'L
V2

Gg
+k — (ir 4')', (5 3)

V2'

0.5 0 in lo cm~

0.4

0.5-

850)

d w=K (tS)—d (N)j-, (5.4) Fzo. 9. Total cross
section correspond-
ing to Fig. 8. 0.2- i7 IO)

q= pk —pi. The completely symmetric baryon
tensor of the S6 in the rest frame can be reduced in
terms of the spin and unitary spin tensors~ according to 0 I.

"so)

f
fl ia icky .(0,)—+iikdcaPyg (2eiixk+ ejkxi) eaedpd v

3

+(k"X'+2k"X')e"'fdd j (5 5)

0 I 2 3 4 5 6 7 8
E„ (Lab) in BeV

the appropriate tensor components are bII'g' for n~&

while for N'+ we use &add"= V3ddk'=VSd'" with its spin
+$ component denoted by VSguk=VSg"'=VSX'". We
then have in the nonrelativistic limit0 l„cos8 l„sin8

I„= /„~cos8 0 0
.l~t sin8 0 0

(5.6)
sg„( ' S'+') =(S'+$] (G /v2)J„"

where the Latin indices take on the values 1, 2 and the
Greek indices the values 1, 2, 3. The lepton four-vector
matrix I„=(L,iLk) is given by

where
—d2, =

did�

(kkb„(i+yd) N. (&d), (5.7) + (G~/%~."I~k)I..
and 8 represents the Cabibbo angle, 8=15'.

An important consequence of this SU(6) scheme lies
in the fact that the octet-decuplet transitions can be
related to the "elastic" octet-octet transitions since
both SU(3) baryon multiplets belong to the same
SU(6) supermultiplet. Thus one can make use of the
parameters determined in the well-known dd -+ p
process (GvMv'= 1.02X10 ' and G~ ——1.2Gv) to predict
results for the other processes, e.g., e —+S'+ and
p P' 1Q

We consider first the inelastic reaction dd$ ~E'+$,
where the $ denotes the third component of spin. Here

Gv
(cose) dddvd(qxl) d

42 3

Q~ 242
(cose) ld. (5.8)

v2

This result is to be compared with the nonrelativistic
limit of (2.9) which implies

6 1
mr, Na(dd) ~ x'+)) =— LFdv(0) —F v(0)j

v2 2+618'

0.5- in IO s cm~xyeV@)~
d X (qx l),—g*iF (0)l ~, (5.9)

Fzo. 8.Di8erential
cross section for

v„+e~ E*++p,
with F1"(0)= —0.87
and PP'(0) and
E~~(0) derived from
K" photoproduction
data. Only case e=2
is plotted.

0.2-

O.I-

0.05-

IO).

50}
and

4V3 dd (P)—dd (dd)
F,v(0) F,v(0) =&.5 (5.10a)

5 e/25k

2D Gg
Fd" (0)=- =—0.83,

Gv
(5.10b)

where M is set equal to (Md+Ms)/2. A straightforward
identincation leads to"

002 ~ i ~ d ~ i ~

0 0.2 0.4 OS Og
q~ in (BeV/c)~

~ The notation for the spin and unitary spin tensors is given
in M. A. 3.Sbg, B. W. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).

with G set equal to Gv cos8. The magnitude of Fd" (0)
is determined uniquely with its phase 6xed relative to
Fdv(0). In the low-frequency limit with the baryon
masses degenerate, no information is obtained about
the remaining Gve induced form factors.
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0.5"

0.2- y

O.I-

o.o 5-

0.0 2
0

in IO cm /(BeY/c)
dq~

Em=2 BeV

(550)

(850)
(800)
+50)
(7'50i

~II

~20)
0.2 0.4 0.6 0.8

q& in(BeV/c)~

Fxo. 10. Dift'eren-
tial cross section for

~„+e~ g~++p
with F1"(0) Fp(0)
and F~"(0) derived
from SU(6) and the
CVC hypothesis.
Dashed curves refer
to m=1, solid curves
to a~2.

In order to determine individually the two vector
form factors appearing in Eq. (5.10a), we now invoke
the CVC hypothesis. The resulting linear relation,
(2.12), then reduces to

(~,+~ )'P', "(0)+F "(0)3
+ (M,e MP)F, v(0) 0 (5 11)

at zero-momentum transfer. The E' photoproduction
analysis of Gourdin and Salin" indicates that the ratio
Fg"(0)/Fsv(0) is smalL In addition, its effect in (5.11)
is reduced by the appearance of a small coefficient.
Hence from Eqs. (5.10a) and (5.11), we deduce that"

Fxv(0) = —FI"(0)=3.75. (5.12)

Ke now wish to argue that the sects of the remain-

ing form factors are not appreciable. For this purpose,
we make use of the results of Sec. IV, where the effec-
tiveness of the individual form factors was investigated.
The three form factors, FI", Ii 4", and Ii 4" can be safely
eliminated since their contributions are found to be
negligibly small. For the remaining form factors, P&"
and Ii~", the situation is not so clear. Static theory"

and
f,+p~ &x"+a+,

vw++ ~& +& .

(5.13)

(5.14)

The production cross section for process (5.14) is twice

that for (5.13); therefore, the cross section for I'~'

production per nucleon is 1.5 times that for the I'~"
reaction.

The SU(6) predictions are the following:

(5.15a)

(5.15b)

leads one to believe that Ii~" itself is small, in which

case its contribution to the cross sections wiQ also be

small. Ke shall assume this to be the case. For Ii3",
however, little can be said. Even though it has a doubly-

induced nature, its contribution at I,=0 is nonvanishing

due to the 1P-X mass difference. Since there is no

information on this term, we have dropped it.t'

For the three form factors now considered, we have

plotted in Figs. 10 and 11 the S*+ production cross

section for both the m=1 and n=2 cases for several

values of b Th. e SU(6) predictions are seen to be in

reasonable accord with experiment~' for the e= 2 case
with b close to the "elastic" value, b = (850 MeV)'. The
V—A interference term is constructive for this neutrino

reaction. For the antineutrino process, the interference

term is destructive and the corresponding curves have

been plotted in Figs. 12 and 13. Further discussion will

be presented in Sec. VI.
%e now turn our attention briefly to the S-F&'

octet-decuplet transition. According to the M/EQ =+1

rule, weak Y&' production from nucleons can only occur

by antineutrinos according to

0.4.

05-

,0.2-

0 in lo~ cm~

,.(sso)

/
/

/
/

I
I
I

+450)

(850)

Igoo)

%750)

FIG. 11.Total cross
section corresponding
to Fig. 10.

O.l- . ---&20)

0 l 2 5 4 5 6 7 8
Es, (Lab) in BeV

"See, e.g.s J S Bell and S. M. Berman, Nuovo Cimento 25,

FP (0)= —Fs"(0)=2.85,
Fg"(0)= —0.59,

(5.16)

with G= Gy sin8. We observe from Eqs. (5.15) that the
I'~' and S' antineutrino reactions are similar aside from

lie In Ref. 8, we allowed for a small deviation of Fg" from zero.
The relativistic SU(6} theory predicts the normalizations of all
eight form factors. It turns out that F~"(0) is identically zero,
while the contribution to the production cross section from F3"
is relatively small. These results will be discussed elsewhere; see
Ref. 9.

"The results presented in Figs. 10 and 11 differ slightly from
those published earlier in Ref. 8. This is due to the choice of
Q=)(M1+Mg) in Eq. (5.9) in place of M& as used previously.

~ In the exact SU(6) symmetry limit, only the direct axial-
vector term, F1, survives. In this limit, ¹ J.Papastamatiou and
D. G. Sutherland )Phys. Letters 14, 246 (1965)j have also ob-
served that the invariant differential cross section predicted by
SU(6) is compatible with the CERN experimental result (Ref. 5).

Taken together with the extended CVC hypothesis, the
above then implies that
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the SU(3) coefficients, the tangent of the Cabibbo
angle, and the mass sects.

%e have assumed a Hofstadter-type q' dependence
for Fj", Jig", and Ii~" and neglected all other form
factor contributions, with somewhat less justidcation
than previously. The ratio of Y' to S' production per
nucleon is only about 1.5% and is plotted in Fig. 14 as
a function of antineutrino energy.

0.5
in lo cm /(BeVA)

dq2
{Eq=2 BeV)

0.2-

FIG. 12. DifFeren-
tial cross section for
the antineutrino
process, 7„+p~
E*'+p,+, with the
same form factors
employed as in
Fig. 10.

O,I-

0.02(

(550)
(850)

(800)
(45O)
(750)

O.OI
0,2 04 0.6

in {BeVlc)

{320)
0.8

variable. Ke have presented the general expression for
the di6erential cross section for unpolarized weak S'
production in Appendix B.This formula is considerably
more involved than its "elastic" counterpart, because
of the higher intrinsic spin of the E' isobar.

In Sec. IV, we have seen 6t to limit our attention to
the rather simple t-dependence of Eq. (4.1) for the form
factors involved. As such, each form factor depends
upon three parameters and, except for the structureless
case, exhibits a singularity in the unphysical region for
the production process. The three parameters are the
normalization, F;"~(0); the order, e; and the location,
b,"",of the pole in the complex t plane. In general, the
analytic structure of these form factors is considerably
more complicated; in e6ect, we have assumed that the
structure of each one is dominated by an eEective
singularity on the real axis. This t dependence is not
too unreasonable at low-momentum transfer and, in
fact, for the "elastic" reaction, it 6ts the experimental
results rather well. For practical purposes, we have

VI. DISCUSSION OF THE RESULTS

Our purpose, as stated in the Introduction, has been
to present a detailed phenomenological study of the
neutrino-induced E'(1238) production process. To this
end, we have invoked. the local nature of the neutrino-
lepton interaction to enable us to write the matrix
element for this process in terms of eight form factors
which are functions only of the momentum transfer

cr in lo cm

Fzo. 13. Total cross
section corresponding
to Fig. 12.

0,4-

0.3-

0.2-

O. I-

r/////
////

/
/

/ 50}r
5O)

OO)

(750)

320)

FrG. 14. Anti-
neutrino cross sec-
tion ratios for F1~
compared to K"pro-
duction. The form
factors are deter-
mined from SU(6)
and the CVC hy-
pothesis with I=2.

+ +/+~+
&='Z &= Z

t tZZ
+ + + +

bbb b

0.02-
%.03

O,OI-

4 5 6 7 8
Es (l ob) in BeV

I'These features were previously discussed in Ref, 7 for the
%~2 case.

0 I 2 3 4 5 6 7 8
Ff; (Lob) in BeV

assumed. identical locations and orders of the eBective
poles for all eight form factors; in addition, we have
con6ned our attention to three choices for e, i.e.,
n =0, 1, and 2, corresponding to a structureless, simple
pole, and Hofstadter-type momentum transfer de-
pendence.

Given this functional dependence for the form factors,
one can make the following general remarks. ~ The
invariant diGerential cross section at zero-momentum
transfer depends solely on the normalizations of the
form factors and is dominated by Ii~". Cn the other
hand, the asymptotic behavior of the total cross section
for large s is a sensitive function of the parameter e as
exhibited in Table II. This becomes apparent even at
moderate neutrino energies as shown in Fig. 4. Conse-
quently, we have dismissed the structureless case for
which 0(s) diverges at least quadratically with s and
concentrated on the two cases, @=i and 2. From
threshold to 10-BeV neutrino energy, the 6rst is
characterized by a continuously rising cross section,



C. H. ALB RIGHT AN 0 L. S. L I U

TmLE III. Form-factor parameters for the three models in-
vestigated. Tne characteristic values for gb are drawn from the
experimental results. Those in parentheses indicate that the St
is very poor.

Model

(1) Pure Fi"
(2) S~ photo-

production
+CVC+Pf,"

(3) SU(6)+CVC

Form factor parameters

{I 1) (m~2)
Qb

(MeV) (MeV)

770 1220

Fi~(0) FP(0} PP(0}
1.0 0 0

-0.87 5.6 —5.6 (360)

-0.83 3.7S -3.75 (450)

670

820

while the second leads to a cross section which saturates
within this energy range. For 6xed normalizations,
F;""(0),and given e, the shape of the differential cross
section, and therefore the front-to-back ratio, depends
critically upon the cutoB or "shape" parameter b. As b

is increased, the total cross section increases while the
F/8 ratio decreases by orders of magnitude.

The effectiveness of each form factor in contributing
to the cross sections has been investigated in some
detail. This study is inQuenced to some extent by the
mass one inserts to render all the form factors dimen-
sionless. %ith the choice made in Sec. III and all form
factors normalized to unity, we 6nd that in the low-

energy region they can be listed in decreasing order of
effectiveness according to:

p A (p F psv psA p~x) pal F48 p~v

The ones within the parentheses are about equally
effective.

%e have attempted to derive some quantitative
results from the current CERN experimental informa-
tion on weak E' production by considering several
simple models. In each case, the m=2 Hofstadter-type
form factors yield better results than the I= i simple
pole functions, since the experimental cross section
appears to saturate within 8 BeV. Moreover, the
information on da/dt at low-momentum transfer
suggests that F»" must be present to an appreciable
amount: F~"(0)&0.7 with the same weak-coupling
constant as in beta decay.

In Table III, we have recorded the form factor
parameters characteristic of the three models con-
sidered. The 6rst model is the simplest in that it singles
out the importance of Ji j."alone. In the second model,
FP(0) and Fsv(0) are determined uniquely from the
work of Gourdin and Salin on E' photoproduction,
while F~"(0) is adjusted to yield the observed difFer-
ential cross section. On the other hand, all three form
factors at zero-momentum transfer are determined by
SU(6) and the CVC hypothesis.

The predictions of the SU(6) synunetry scheme are
obviously of greatest interest. This scheme appears to
triumph on three counts. First, the prediction for the

magnitude of F~"(0) is just what is required to give the
correct diGerential cross section at low-momentum
transfer. Second, the V-A interference effect is con-
structive and large in agreement with the rapidly rising
E' production cross section just above threshold. And
third, the Hofstadter-type cutoG parameter is charac-
teristic of that for the elastic reaction, b= (850 MeV)'.
These predictions are rather remarkabl- and. perhaps
somewhat fortuitous.

It is somewhat curious that the predictions from the
S' photoproduction data do not yield better results.
With b= (SSO MeV)' and e= 2, the total cross section
prediction is much too large. ~ Only with a considerably
smaller value of (670 MeV)' is reasonable agreement
obtained.

On the basis of SU(6), E' production by anti-
neutrinos is suppressed at low energies by the large
destructive V-A interference eGect. This is also typical
of the elastic reaction. Yi' production by antineutrinos
is suppressed also by the Cabibbo angle and unfavorable
SU(3) Clebsch-Gordan coeflicients. These predictions
serve as a test for this model.

We shall extend our analysis elsewhere' to include
the predictions of the relativistic generalizations of the
SU(6) theory

APPENDIX A: KINEMATICS

1. Center-of-Mass System (c.m.s.)

In the c.m.s. of the s channel, we deane

kg—- (kg, hog), kg= (ks, ia)s),

pg
——(—kg, iEg), ps= ( kg,i')—

The two independent scalar variables are

(Al)

s= W', t=mP —2ruq&os+2~q[ks~ cos8, (A2)

where 8' is the total c.m. energy and 8 is the c.m. angle
between the outgoing lepton and the incident neutrino.

~This point was also observed by Berman and Veltman, see
Ref. 10.

~ Noh added ie Proof. After submission of our manuscript, it
has come to our attention that members of the CERN heavy-
liquid bubble-chamber group have recently made a more detailed
analysis of single pion production in neutrino reactions than that
published in Ref. 5. Since the new experimental cross section is
considerably larger than the published one, the predictions of the
SU(6) theory now appear to be less favorable. A summary of the
results obtained in this paper with reference to both the published
and the new e rimental andings is presented in Ref. 9.

%'e wish to t Professor Ph. Sahn and Professor C. Franzi-
netti for info~i~g us of the new results prior to publication.
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The momenta and energies in the c.m.s. are

2Wlkal =s—Mp,

2Wlkal = (I s—(Ma—ma)apl s—(Ma+ma)a]}&; (Aj)

8~', is determined by

sin8 '= Ma(l s—(Ma+ma)a]

XI s—(Ma—ma)a]}&/LMa(s —MP)]. (A1P)

a)a= lkal, 2W(ua=s —Mp+mp, The diGerential cross sections in the lab are related to
(A4) the invariant differential cross section according to

2WEa= s+MP, 2WEa= s+Ma' mP. —

The diGerentia1 cross section in the c.m.s. for E'
production is given by

64K do.
=2~alkal-i cos8 dt

2aaMalkal'd{T d0'

d cos8 (M&+~a) I kal —~a~a cos8 dt

do 2(uaMa
I pal

' d0'

d cos8' ~aEacos8' —lfaal(Ma+Ma) dt

(A11)

Here

ka= (ka, ianna), 3:a= (ka, aaaa),

P1 (P aM1) Pa (pa aEa) ~

(A6)

where do/dt is given by Eq. (3.1).

2. Laboratory System

In the lab where the target nucleon is at rest, we
de6ne

where

dr

dt 2ar (s—MP)'
(81)

APPENDIX 8: INVAItGeTT DIPPERENTIAL
CROSS SECTION

The invariant diBerential cross section is given by
Eq. (3.1) as

s=Mp+2~aMq, t=mp —2&aa&oa+2~qlkal cos8«, (A7) T=',G P R;(t)X;(s,t). (82)

where 8~ is the lab angle between the outgoing lepton
and the incident neutrino. The momenta and energies
are now given by

2Malkal =s—Mp,
2Malkal = ([s+t Ma' 2—Mam«j-

Xfg+t Maa+2Mam—ag) &,

2Mal faal =(L(M«+M, )a—«jl (Ma Ma)' —tj}& (AS)

(ga ——lka I,2M«a)a ——s+t—Ma',
(A9)

2MaEa= MP+Ma' t. —

Let 8' be the angle between the E' isobar and the
incident neutrino. The ma, ximum laboratory angle,

The functions X,(s,t) of Eq. (3.7) are given explicitly
in terms of s and t according to

4Xa= (s—MP) (s—MP —mP)

+ (s+t Mp mp—) (s+«——Ma'), (83a)
4Xa——(s—MP) (s—Ma' —mP)

—(s+t MP —mP) (s+—t MP), (83b)—

4Xa——(s MP mP) (—s+ t —MP mP),— — (83c)
4Xa——(s—M P) (s+ t—Ma'), (83d)

2Xa M,Ma(t ——mp)— (83e)
The functions R,(t) are found tobe

R =r'»(I Fa" I'+ IF "I')+r Re(F "F"—F "F ~)
—r'us(Ma/M~)Lu(IF a'I' —IF a"

I a)+s(IFa"I'—IFav I')j
r'((t Mp+Maa—)/2M a—Ma) Re (uFa~Fa~'+ sF a "Fa~)
r'((t MP —3MP)/—2MaM—a) Re (uFg"Fa"'+sFavF, ~)

+raus ReLFa~Fa~' —FavFa~+((Ma —Ma)/(Ma+Ma))(Fa"Fa~ —Fa"Fa"')], (84a)

Ra = Re(Fa"F,~+ru—Fa"Fa~+reF avF a" 2rauwF a~Fa~), — (84b)

Ra —(M&/Ma) (u I
Fa"

I
'+s

I Fav
I
')—r (Ma/Ma) Re (Fa~Fa"'+»vFa~)

(Ms/Ma, )L (IuFa+ I + IF.+la)+a(IF, I + IF, Ia)3+r((t—M a—Ma')/M ')
XRe[F&~Fa~'—F&"Fa~—ru(Ma/Ma)Fa" (Fa~'—Fa~') ra(M /M a)Fava(Fa~——Fa~)g

+2r'cw ReLFa" (Fa~"—Fa"')—Fa"(Fa~—Fa~)j+2r'uv(Ma/Ma) Re(uFa"Fa"'+aFavF, v*), (84c)
Ra= —~&( M/ aM)(al uaF"+ FIaa+slFav~Favla)+r(M'a/Ma) Re(Fa"Fa"'+FavFa~)

2r'(Ma/Ma) Re—guFa" (Fa"'+Fa"')+sFav(Fa~+F, ~)j
+2r ua(Ma//Ma) Re[Fa"(Fa" +Fa~ )+Fav(Fav'+Fav') j, (84d)
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Fg=s(ulF "I'+vlF VI 3)+r suv(IF 3Ats —IFgvI')+r'uv((t —2MP —2Mgs)/2Msg)(ulFs" ('+vl FsvI 3)

M—v(t/2MP) (u) F,"&&3+v [Fgv (') ru—v Re(FOAF gA'+FsvFs~)
+r'uv Re [u(F 4"FA'+F AF4"'—FsAF3A')+v(Fs "Fs~jF&"F4~+F3"Fg~)]

+r'uv((M3 —M&)/(M +Mg))[u(Fs"F4A'+Fs F4"') v(F—svFs~ Fg—vF4 )], (34e)
where

r=M»/(Ms+Ms), 2M&Msu=t —(Ms+Ms)', 2M&Msv=t (—Ms M—s)'

APPENDIX C: TOTAL CROSS SECTION

As stated in Sec. IV, we have adopted the following phenomenological t dependence for the form factors:

F .V, A (0)F,v,A(t)—
(1—t/h)"

For the two cases of interest, n= 1 and n= 2, the invariant differential cross section of Eq. (B1)may be integrated
analytically to yield the following results:

G' b' 2
«(s) =— — h&" (s,t)dt, for n= 1,

4»r (s—MP)' 3
(C2)

where

G' t~
0(s)=—

4»r (s—MP)' 3
h&3»(s, t)dt, for n=2,

t-=M&'+Mss —2&us —2lusl lu&l, t-=M&3+Mss —2E~»+2IPsl In»l. (C3)

The moments and energies appearing in (C3) refer to the center-of-mass variables defined in Appendix Al and
are functions only of s.

The indefinite integrals of h&"'(s, t) are tabulated below. Terms involving F4" and F4" have been dropped, since
they yield extremely small contributions to the S' production process.

h&"»(st)dt=g S;&"»(st) n=1,2 (C4)

S,&.»= —(F,A(0) ( [d,I.(u)+dg. (ut)],

Ss&
"»= —

~
F»v (0) ~'[d,I„(v)+dg„(vt)],

Ss&"»=r'~F3"(0) ~s[(ds—2M&MsmP)I„(uv)+(d4+2MsM3)I~(uvt)+I (uvt')]

S4 "'——r'~Fsv(0) ~3[(ds+2M&MsmP)I (uv)+(d4 —2M&Ms)I (uvt)+I„(uvP)],

Sg&
"»=2rs

j FsA (0)
~
3(((M,/Ms)dg mPdg)I—„(uv)

—[(r'/MsM3)dg —(1+(mprs/M»s))dg]In(uvt) (r'/M&3)dgI„(uvre—))

Sg&"'=2r'~Fs" (0) ~' ((M3 Ms)/(M&+M's—))'((Ms/Ms)dg mPdg)I (uv)—

(M3 M&)s+mP— f2

dg I (uvt) dgI (uvt')—
-M&M 3 (Ms+Ms)' MP

Sr&
"»= r Re[F3"(0)F3"'(0)][(dq+ds+d3—MqMsmP)I„(1)+ (dg+d4+sM3/Ms)I (t)

+I„(P)+2(d, M&MsrnP)I„(u)+2 (ds+M—&M3)I„(ut)+2M&M'smPI~ (uv) 2M»M3I~ (uvt)], —
Ss" =r Re[Fq (0)Fs '(0)][(dq—ds+ds MsMgmP)I (1)+(ds d4+sMs/Mz)I„(t)—

I„(P) 2(dg —MsMsm—P)I (—v) 2(ds+M»M3)—I (vt)+2MsMsmPI„(uv) 2M&M3I (uvt)], —
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S9&"'=—r Re[F&~(0)Fs '(0)]f [((Ms—M&)/(M&+Ms))(2ds+mt')+mPd4]I~(u)

+[2((M2 M—&)/(M&+Ms))d4+Ms' M—&'+mP]I„(ut)+((Ms M—&)/(M&+Ms))I„(uP)

+2r[dq m—P(s+M&Ms m—P)]I„(uv)+2r[d4+M&(Mq+Mq)]I ( uvt)},

S„&"&=—r Re[F&"(0)F&&~(0)]f [2dq+m&'+((Ms —M&)/(M&+Ms)}mjd4]I„(v)

+[2d4+((Ms M&)—/(Mal+Ms)}(Mss M&s—+mP)]I„(vt}+I (vt')

+2r[d,—mj (s—M&Mq —mP)]I (uv)+2r[d4+M&(M& —M2)]I~ (uvt}),

S»&"&= 2r' Re[F2"(0)Fs"'(0)5([r(ds+2ds+m&4) m—&2(s+M&Ms)]I„(uv)+(2s rm—j)I„(uvt)},
S&q&"& = —2r' Re[Fsr(0)F3~(0)]([r(ds—2ds+m&')+((Ms —M&)/(Mal+Ms))mp(s —M&Mq)]I (uv)

—[2((Ms—M&)/(M&+Ms})s+rmP]I (uvt)),

S&&&&"&=Re[F&"(0)F&~(0)][(Mns—MP)mPI„(1)+d4I (t)+I (P)],
&"&=r Re[F +(0)F ~(0)][(M s—M s)mPI„(u)+d4I (ut}+I (uP)],

S&&;&"&=rRe[Fs"(0)F&"'(0}][(Mss M&2)mp—I„(v)+d4I„(vt)+I„(vP)],

S&&&&
"&= —2rs Re[Fs"(0)Fs~ (0)][(Mss Mp) m p—I (uv)+d4I (uvt)+I'„(uvt')].

%e have condensed. the above expressions by using the following formulas:

dq= [(s M&' —mP) —(s M&'—mP)—+Ms'mP]M&/Ms, d4= 2s M&' —MP —mP,—
ds (s 2Ms2 ———mP) M &—/Ms, d s

——(s—M &2) (s—M,')M.,/M „
d =2s' 2s(M&'+M—P+mP)+2M&'Ms'+mP(M&'+M/) dg s mP/4———

ydI,

(t $)sa
(C6}

The symbols r, I, and e were previously dehned in Appendix 3.
In the above formulas, we have adopted a universal cutoff parameter for all eight form factors, i.e., b;~ ~= 5,

for simplicity. U this restriction is relaxed, the changes that must be made in Eqs. (C2), (C4), and (C6) are both
trivial and obvious.


