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Starting from the axial-vector current algebra suggested by Gell-Mann and the hypothesis of a partially
conserved axial-vector current, we derive a sum rule relating 1—gq~ to off-mass-shell pion-proton total
cross sections. Numerical evaluation gives the theoretical prediction g~=1.24, in good agreement with
experiment. A simjtlar sum rule for pion-pion scattering can only be satisfied if there is a large low-energy
1=0, S-wave pion-pion scattering cross section. We suggest tests, in high-energy neutrino reactions, of an
algebra suggested by Gell-Mann for the vector and axial-vector current octets.

INTRODUCTION

ITHIN two years after the discovery of parity
~ ~

violation in the weak interactions, the main
features of P decay were clarified. ' It was found that
only vector and axial-vector couplings are present. The
vector coupling constant was found to be identical with
the vector coupling constant in muon decay; the axial-
vector coupling constant was found to dier by a factor
g~= 1.2 from the value expected for a pure V—A inter-
action. The identity of the vector coupling constants
in beta and in muon decay was soon explained by the
hypothesis of a conserved vector current (CVC).' The
value of the axial-vector coupling constant, on the other
hand, has remained somewhat of a mystery. '

Ke give, in this paper, a theory of the axial-vector
coupling-constant renormalization g~, based on the
axial-vector current algebra suggested by Gell-Mann'
and on the hypothesis of a partially conserved axial-
vector current (PCAC). ' In Sec. I, we discuss the
assumptions made. In Sec. II, we present two deriva-
tions of a sum rule relating 1—g~ ' to oG-mass-shell
pion-proton total cross sections. Numerical evaluation
of the sum rule, in Sec. III, gives the theoretical pre-
diction g~=1.24. In Sec. IV, we derive a sum rule
relating 2g~ 2 to pion-pion scattering; we Gnd that this
sum rule can be satis6ed only if there is a large low-
energy I=0, 5-wave pion-pion scattering cross section.
In the Anal section, we propose tests, in high-energy

*An abbreviated version of the calculation of gg has appeared
in Physica/ Review Letters I S. L. Adler, Phys. Rev. Letters 14,
1051 (1965)g. After this calculation was completed, I learned
of similar work by Weisberger Phl. I. Weisberger, Phys. Rev.
Letters 14, 1047 (1965)j.

t Junior Fellow, Society of Fellows.' M. Goldhaber, Proceedings of the 1958 Annua/ InternationaI
Conference on High Energy Physics (CERN, Geneva, 1958), .233.' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 1958).' Previous papers on the axial-vector coupling constant renor-
malization include: R. J. Blin-Stoyle, Nuovo Cimento 10, 132
(1958); S. Okubo, ibid. 13, 292 (1959); J. Bernstein, M. Gell-
Mann, and L. Michel, ibid. 16, 560 (1960); A. P. Balachandran,
ibid. 23, 428 (1962); H. Banerjee, ibid. 23, 1168 (1962); V. S.
Mathur, R. Nath, and R. P. Saxena, ibid. 31, 874 (1964); Y. S.
Kim, ibid. 36, 523 (1965);Y. Nambu and G. Jona-Lasinio, Phys.
Rev. 124, 246 (1961); Nguyen-Van-Hieu, Nucl. Phys. 42, 129
(1963).

4 M. Gell-Mann, Physics 1, 63 (1964).
5 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);

Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys.
Rev. 137, B1022 (1965).

neutrino experiments, of the algebra proposed by Gell-
Mann' for the vector and the axial-vector current
octets. The tests make no assumptions about partial
conservation of the currents.

j)," =i:g~g2rg»

jg~ =i,:4~),ys 'rV~-
(2a)

(2b)

Actually, we know that mesonic and other terms must
be present. Fortunately, in what follows we will not
have to assume any speciGc expressions for Jz" and J),~
in terms of particle 6elds.

Since the vector current is conserved, the vector
coupling constant is unrenormalized. The renormalized
axial-vector coupling constant g& is de6ned by

9'(V)l j l&(V))=(~ /Co)G ~ (C)

X (vt +g~yzys) r+&~(q) . (3)

(3) The axial-vector current is partially conserved
(PCAC),

M~M 'gg
g JAe 0

g +NNw (0)
(4)

Here g, is the rationalized, renormalized pion-nucleon
coupling constant (g,'/Sr=14. 6), E~~ (0) is the pionic
form factor of the nucleon, normalized so that
E~~ ( M') =1,and& 'is —the renormalized pion field.

' N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

I. ASSUMPTIOHS

The sum rules for g~ discussed below are derived
from the following assumptions:

(A) The hadronic current responsible for M=O
leptonic decays is

j&,—G& cosa(j&F&+jj&F2+j&At+ jj&A2) (1)

where Gy is the Fermi coupling constant (Gy=1.02
X10 '/Mg) and cosa is the Cabibbo angle. 6 Here
Jq~ is the vector current, which we assume to be the
same as the isospin current, and Jq"' is the axial-vector
current. In the Fermi theory, we would have had
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According to Eq. (4), the chiralities

X+(Z) =—z dsz(Jz"'+zJs~)

satisfy
v2M~M 'gg

~+(z)= d'xf ~.
g gNNs(0)

This implies that the chiralities satisfy

[x+(Z),x-(Z))= 2Iz, (7)

where 13 is the third component of the isotopic spin.
The assumptions (A) are the usual ones for the

leptonic decays. The vector-axial-vector form of the
leptonic weak interactions is, of course, well estab-
lished. ' There is also considerable experimental evi-
dence for the hypothesis' that the weak vector current
Jq"' is the same as the isospin current. ~

The hypothesis (8) of a partially conserved axial-
vector current (PCAC) was introduced by Gell-Mann
and Levy~ and by Nambu~ to explain the successful
Goldberger-Treiman relation for charged pion decay.
In addition to predicting the Goldberger-Treiman rela-
tion, PCAC predicts an exper™entally satisfied relation
between the pion-nucleon scattering amplitude A ~(+~

and the pion-nucleon coupling constant g,.'
The commutation relations (C) play an essential role

in the calculation. emote that Kq. (6) is a somewhat
stronger assumption than Kq. (7), since even if spatial
derivatives of the delta function were present on the
right-hand side of Eq. (6), they would integrate to zero

(C) The axial-vector current satisfies the equal-time
commutation relations

[~s"'(z) ~s"'b)jl. ,=—&(x—y)""Js'(*) (6)

in Kq. (7). Only Kq. (7) is actually needed in the
derivation below. ] The hypothesis that Eq. (6) or
Eq. (7) holds exactly is due to Gell-Mann. s Gell-Mann
and Ne'eman have emphasizedm that Eq. (7) is the
most natural way in which one can make meaningful
the idea of universality of strength between the weak
couplings of leptons and baryons, without spelling out
in detail the construction of J)~" from particle fields.
Gell-Mann has also pointed out" that Eq. (7), by fixing
the scale of the axial-vector current relative to the
vector current, can, in principle, determine the axial-
vector renormalization g~.

To sum up, Eqs. (1), (3), (5), and (7) are the hy-
potheses on which our calculation of g& is based. They
are mutually consistent, in the sense that there is a
renormalizable field theory (the o model of Gell-Mann
and Levy' ), in which they are exactly satisfied.

II. DEMVATIOHS OF THE SUM RULE

We give, in this section, two diGerent derivations of
a sum rule expressing g~ in terms of oB-mass-shell
pion-proton total cross sections. A third derivation has
been given by Weisberger. '~

A. Method of Fubini and Furlan

The simplest derivation uses a method proposed
recently by Fubini and Furlan. "We take the matrix
element of Eq. (7) between single-proton states (p(q) I

and
I p(q')). The right-hand side gives

&p(q) I2I'I p(q')&= (2~)z&(«—»'). (g)

In the matrix element of the commutator we insert
a complete set of intermediate states, separating out
the one-nucleon term (to which only the neutron
contributes):

d'k
&p(q) Ih+(~),x (~)3I p(q')&= & &p&q) Ix+(z) I&(&))&~(&)Ix. (&) I p(q')&

spin (2g)
+2 &p(q)lx+(&)lj&Vlx (z)I p(q')& —(x+~x ) (9)

The one-neutron term is easily evaluated using Eq. (3), giving

'tPk

&p(q) Ix+(z) l~(&)&&.(~) Ix-(z) I p(q')&
spin (2w)

3E~ Mpp k+z3E~~
(2n)zb(» —k) (2n)zb(k —»') a '~(q)vv Ivv~(q') (1o)

(2m)z qp kp 2iM~ )
= (2 )'~(»—«')r '(1—~~/q").

' C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).
'M. L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193 (1958).
9 S.L. Adler, Ref. 5.' M. Gell-Mann and Y. Ne'eman, Ann. Phys. (N. Y.) 30, 360 (1964)."M. Gell-Mann, Phys. Rev. 125, 1067 (1962).~ W'. I. Keisberger, Phys. Rev. Letters 14, 1047 (1965).~ S. Fubini and G. Furlan, Physics 1, 229 (1965).
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In the summation over higher intermediate states we maite use of Eq. (5), giving

(P(q) I f&z 4-'li)(i I
J'd'*4. IP(-q'))

g ItNN~(0) (qo—qio)

From Eqs. (10) and (11), we see that there is a family of sum rules, with qo as a parameter. In the limit as qo

approaches in6nity, a sum rule for 1—gz ' is obtained. Let us assume that the limiting operation can be taken
inside the sum over intermediate states in Eq. (11).It is useful to write this sum in the form

day, 00

dW P ~(W M, )—,
(2g)'

INT

(12)

where q; is the total momentum and where "INT" denotes the internal variables of the system j.We have denoted
by M, the invariant mass of the system j.The integrations over x and q, can be done explicitly, giving a factor
(2')'8(q —q') and constraining q; to be equal to q. Let us write

&i I &-'(0) IP(q)) = ((M~/qo) (MJlqio))'"~~

so that Ii, is a Lorentz scalar. Then we have for the summation over higher intermediate states,

92M~M 2'
(2~)'~(q —«') dW 2 &(» M;)(MN/—qo)(Mi/q~')(qo qio) 'Llf'—i I' IFi'I'j —(14)

—g re (0) — irk+ ir~
INT

Using the equations

q 0= (qg'+M j Mpg)i12, —

(qo—qi~) '= (qo+q~ o)'/(M&' M.v')', —

the limit as qo
—+~ of Eq. (14) becomes

(15a)

(15b)

&2M~g~
(2~)'&(q —q')

g ANN@ (0)

MNH~ Lqa+(qP+W' —MpP)'"j'
dH~ lim

(1g i MN
2)2 00

q 00 (q 0
2+W12 M~2)1I2

&&»m i& L»', (q—qi)'1 —It+I:W, (q
—

q )'j I (16)
eO oo

where we have defined E+LW, (q—q;)'j by the equation

K+LW, (q—q;)')= P b(lv M;)M.'IF,+I—'
g&N

Note that E'+ can only depend on the indicated variables because (i) K+ is a Lorentz scalar, and (ii) all internal
variables are summed over. '4

It is noir trivial to take the indicated limits. The limit of the quantity in curly brackets is 4, and the limit of the
momentum transfer (q

—q;)~= —
Lqo

—(qo'+W —Mir')'I']' is 0. Thus we are left with the sum rule

1 2M' " 4M~WdW
I X+(W,O) —E (W,O)g.

g
'i

g 2+itiN+(0)2 ('g12 Mg)2

To complete the derivation, we must express K+(W,O) in terms of pion-proton scattering cross sections. Let
o'0+(W) denote the total cross section for scattering of a sero-muss w+ on a proton, at center-of-mass energy W. It
is easiest to calculate 00+(W) in the center-of-mass frame. If we let k and q be, respectively, the four-momenta of

"An average over initial proton spin is understood, but is not indicated explicitly.
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the initial pion and proton, then we have'4

I &jl J-'(0)
I p(v)&l',

no+(W) Qux= (2or)' Q b'(q —
q
—k)

j&N 2kp

I (jl ~-'(0)
I p(~) & I',= (2x)' b'(q; q

—k)—
(2or)o r ~s 2k,

INT

l&jl~- (0) Ip(v)&l'
&(0 o

—A —ko).
j&N 2ko
INT

go+&o= ~", q;o—=~;;
flux=

I Itl/ko+ I lr I/go= Ilr/qo',

ko= (W' —Mpg)/(2W);

(20b)

(20c)

&jl ~.+(0) I p(~) &
= M-'& jl4-+(0) I p(v) &

=M '(M~/qo)'loF;+. (20d)

Combining Eqs. (19) and (20) gives

o.o+(H') = (2xMrr/(ll ' Mrr')) 2—o(l'V Mi)M 4I Fi+ I—'
j&N
INT

Keeping in mind the fact that the initial pion has zero
mass (k'=0), the following center-of-mass-frame equa-
tions may be derived:

(20a)

Let us take the matrix element of this equation between
states &P(kr) I

and Ia(kr) &. We get the equation

o(kr —kr)~(P—(kr) lpga(0) la(kr))
=&P(k.) I d(0) l-(k.». (24)

Let us now consider what happens as (kr —kr) -+ 0. In
this limit, only those pole terms of &P(kr ) I jz(0) Ia(kr) &

which behave as (kr —kr) ' will contribute to the left-
hand side of Eq. (24). It was shown in (II) that these
singularities arise only from insertions of the vertex of
j z on externa/ lines of &pla&. Furthermore, in the limit
as (kr —kr)-+0, these insertions leave the external
particles on mass shell. Thus we get a "consistency
condition" expressing

= (2orMN/(H~ Mro ))E+(—W0) (21)
lim &P(kr) ld(0) la(kr)&

Comparing with Eq. (18), we get the simple and exact m terms of the physical matrix element (pla& Clearly
sum rule the same procedure can be applied to the quantities

1 4M''

g&2 g 2+rrN~(0)2 or ~ &r ~o M+2

While the derivation just given is straight-forward,
it seers from the defect of requiring an additional
assumption: We must assume that the limit qp

—+ ~ can
be taken inside the sum over interemdiate states in
Eq. (11).The next derivation which we give clarifies
the meaning of this assumption.

j(&)= d'xj 4(x, t) and d(t) = Box d(x, t),

which satisfy the equation

dj(r)/eh = id(t) . (26)

Of course, the resulting formulas will not be manifestly
covariant. What was done in (II) was to study in detail
the case when j(t) is simply the chirality g (t). We will
now apply the same method to a somewhat more
complicated object,

B. "PCAC Consistency Condition" Method

In two previouspapers" (hereinafter called I and II), j(xo) = 4'os '"'"'&»'(Q)
I
TCX'(xo)x (yo) jl&& (q)&, (2&)

we showed that the hypothesis of a partially conserved
axial-vector current leads to consistency conditions in-

in order to rederive the sum rule for g~.volving strong-interaction scattering amplitudes. The Let us consider the quantity J. de6ned bymethod used is a general one. Suppose that we have
local field operators jz(x) and d(x) which satisfy the
equation T= dept' ' dype

—'
&),j~(*)=d(x) (23)

"S.L. Adler, Phys. Rev. 137, B1022 (1965), hereinafter called
I; S.L. Adler, Phys. Rev. 139, B1638 (1965),hereinafter called II.
See also the related papers: Y. Nambu and D. Lurid, ibid. 125,
1429 (1962);Y. Nambu and E. Shrauner, ibid. 128, 862 (1962).

rfxo g lo*o~ (xo) (28)
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0p. (x) by the equat'Leet us also dehne e uation

J "p(x) =Pp(x),xA

xp) satisfiesso thath t the chirality xp(xo

ADLERSTF P HEN

that P (*&"&.'(*)the assump

(29)
t,me-trans a '

' x )= d'x P (x) .X»=
dxo Consequently,

'~o*oXconstant.j(xp)=e-' o (31)

d oe ''"(»(q)lj(xp) = dyp e
dip

» *x b.)]I»(q)&.

dxo

d e-'oo-(»(q)
I T[P *xd p d $8

'(*o)x'bo)] I»(q)—Ie p—ikp j(xp)

'(»)] I »(q))+

w rite it as

—-'"'*' » (q) I [x'(xp),x

ortiona o —'
we can rewrite i

=e 'o

f E ortional to exp( —ikoxp, wf E . (32) is proportiona oS ce the second ter
'

ht-hand side o qm on the rig

T[P'xx o'b )]I »(q) & (33)

yp~ glv

(«),x'(*o)]l»(q) &
i(ipop)*p(»-(q) o x—fkpT= dgo e

in

y e — M. )(»(q) I
e iopv4—(dyp x e

e; ' anbe justi ee . '
an j '6 dbythe1 sx;thisc

3 and then interchanging the or eruse o w ."Combining Kqs. 2use of wave packets. ' om
' '

'
esover xp and

with

-' » q»'(*)x'bo)]I»(q))—i pvp( gp+~ )(»' q T Pp x xdyo d'xe '& —, ' sV q

' » q» (*)x'bo)]l»(q))p — ' '"*p(—++M ')(» q T P xx pji(yp)= d4xe'p*p — . p» q T

dxo e'&a p

yo), droe[x (0),x'(p)]l »(q)&+= 2prb(lp kp)(»(q—

=e'""oXconstant.

Treatmg gr(y

& o
'i = ' d'x e'""o(» (q) I [x'(y&&oji(yo)=M.' d xe'

armer as wann s we treated j gp,
'

xp), we getp) in the same mann s w

2 I 2

o) P (xyo)]I»(q)&

x P'b)]I»(q)) (36).' —g„+3d.)&»(q) I
T[P.(*)Pode d ye '"*'(—,+31 ') —Qv+M'

d
'

ed the identitywe have deriveTo sum up, we

xoe'"*p dype (»(qko dgo e"o p y

1
'(P& P'(XP)] I»(q)&+ —d'x(» (q) I

» q I [X (o),xo(o)]l»(q) +=2prB(4 ko) (» —
q ', ' +

I
T[P'(*

'(xo)x'bo)] l»(q)

)P'b)]1»(q) &. (37)+~.')(- o.+~.)(» q

1
d4 iippp-iopvp(

1
de d ye''—l2 il(M '—koo) (M.'—/p ilo

he time variable.
' te ate yb parts with resp'tl We will never in gr
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Since we will obtain the sum rule for g& from the part of Eq. (37) which is miiryowmetric in o and b, let us drop

all terms which are symmetric. Because I y.'(xo),go(xp))= io"'I', and since dI'/dxp=0, we have dQ'(xp), y'(xp) j/
Ch0=0. In other words,

d'xP"(x, x,),xo(x,)j= d'xP"(x,x,),~.(xo)g,

indicating syrrunetry under interchange of u and b. Thus we can drop the term proportional to

&N(q)II '(0).I'.(*,0))IN(q)&

Let us now consider the antisymmetric part of Eq. (37) for small kp. At the end of the calculation, we will let

ko approach 0. On the left-hand side, only diagrams with y„ inserted on the external nucleon lines will make a
contribution of zeroth order in kp, as was shown in (II). This can be seen directly by inserting a complete set of
intermediate states in the time-ordered product:

dXO dye"0 0 '~0~0 E q T Xo X~ (i X q

d*o dyoo'"* '""'Z L&N(q) Ix'(xo) li&&ilx'&yo) IN(q)&e(*o—yo)

+&N(q) Ix'(yo) li&&ilx (xo) IN(q)&e(yo —xp)3

=2 DN(q) I
~4"'(0) li&&J II4"'(0) IN(q)&i(ko —~ ) '—(N(q) II4"'(0) li&&il ~4"(o) IN(q)&i(ko+~') '0

X2s8(lo ko) (2s')o8(0)8(@—q) (39)
where

6;—= (qp'+M/ —MN )'~' —qp. (40)

Clearly, only the one-nucleon intermediate state (j=N, 6;=—0) gives a singularity behaving as kp '. Evaluation
of the spin sum, as in Eq. (10), gives, for the left-hand side of Eq. (37),

(2 )'b(0)~(io—ko) """(' ')&1—M~/ ")+O(ko& (41)

where O(kp& indicates terms which vanish as kp ~ 0.
Let us now evaluate the terms of the right-hand side of Eq. (37). The commutator of the chiralities is easily

evaluated, using Eq. (6), giving

2s6(lo ko)&N(—q) I Q'(0) xo(0)j!N(q))= (2pr)'b(0)b(io —kp)io o'Pr').

In the last term of Eq. (37), let us introduce the PCAC hypothesis,

M~M 'gg
P~&x) = y '(x)

g gz~v(0)
glVlIlg

(42)

(43)

M' M' —
M~g~ -' 1

! d4g d4y gil pep—ikpyp

&M.'—kp' M.'—fp' g,E"~ (0) il p

X&-o.+M:&&-o.+M-&«q) IZ~. (*)~.b&jlN(q». (~)

Apart from factors, this is just a pion-nucleon scattering amplitude. In fact, the off-mass-shell pion-nucleon scat-
tering anlplitudes

A +~ ~(v,vs, M~', M ) and 8 N~ ~( v vMs', M f),
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where M ' and N ~ are, respectively, the masses of the initial and anal pion, are dered by"

de d e "e'~'~ —Q, M~ —Q„+M~ E qq T p xqh ~ S q~

—=—i(2o )'i5 (q&+k —
qo —l) ((M»/q&o) (M»/qop) )'to

Xu»(qo)([A»& &( ,v&v,M, ',M~r) ik—B "& &(v, v&,M,',M~r)g o[r,r'g+isospin symmetric}u»(q&),

ve k l/——(2M»), v= —k (qg+qo)/(2M») .

The term 8 can be separated into pole terms, ' and a nonpole part which we label 8:
B '=(,'/2—M )E" [—(M ')'$E [—(M. )'](( —) '+( + ) ')+B "' '.

The integral in Eq. (44) is identical with Eq. (45), with

l= (O,ilp) =k= (0iko), M '=M f=kp, vs= kp/(2—M»), v=qoko/M».

Combining Eqs. (44), (45), (46), and (47), we find that Eq. (44) becomes

(45a)

(45b)

(46)

(47)

(2s)'b(O)b(lo —ko)io "(sr') g~'—M»/q 'o
2M»s 1 —

1g~o—[A~»& ~(v,0,0,0)+vB»& ~(v,0,0,0)j +O(ko) (48)

2
G(0) =— dv—ImG(v) .

Mst+M&'/ ~g~N ) V

(51)

It is easily veri6ed that

frnG(v) = 4 (oo-—oo+) . (52)

Changing the integration variable from v to the center-
of-mass energy W [v= (W —M» )/(2M») j, »d com-
bining Eqs. (49), (51), and (52) leads to the sum rule
of Eq. (22). Thus, the assumption that the limit qo

—+~

~7 G. F. Cheer, M. L. Goldberger, F. E. Lour, and Y. Nambu,
Phys. Rev. 196, 1337 (195'tr).

with v= qoko/M». The term proportional to —g~oM»o/
qoo arises from the Born term in Eq. (46) when the sub-
stitutions of Eq. (47) are made, and just cancels the
similar term in Eq. (41). Thus, in the limit as kp o 0,
we obtain from Eq. (37) the Lorentz-invariant identity

1 —2M»'
1— = G(0)

g o+»»v(0)o
where

G(v) = v '[A v»&-&(v 0 00)+vBv»& &(v,0,0,0))
=v '[A "&—i(v,0,0,0)+vBv»& &(v 00,0)g. (SO)

%e are able to drop the bar on 8 because the Born
term (v» —v) '+ (vs+ v)-' vanishes identically at v&=0.

Equation (49), which follows solely from the assump-
tions of Sec. I, is our anal result. From the crossing and
analyticity properties of A ~|: & and I3 ~&-~, we know
that G(v) is an even function of v and is analytic in the
v plane, apart from cuts running from +[M +M '/
(2M»)] to W oo. Let us assume that G(v) satisfies an
unsubtracted dispersion relation in the variable v. Then
we may write

III. NUMEMCAL EVALUATION

Because Eq. (22) involves off-mass-shell pion-proton
scattering cross sections, a little work is necessary to
compare it with experiment. Let us split the right-hand
side of Eq. (22) into the sum of three terms:

1—gs '= (4M»'/g, ') (E&+Eo+Eo), (53)

B Amblard cf cl s Phys Letters 1os 138 (j964) s Cr HQMer,
G. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).

may be taken inside the sum o~er intermediate states in
the method of Fubini and Furlan is equivalent to the

assumption that G(v) obeys an unsubtracted dispersion
relcti on.

There is evidence that an unsubtracted dispersion
relation for G(v) is valid. First of all, provided that the
Pomeranchuk theorem is valid, the integral in Eq.
(22) is convergent. Secondly, Amblard et al. and
Hohler et cl. have shown' that the, forward charge-
exchange scattering amplitude

A "& &(v, —M.'/(2M»), M.,M )
+vB»&-&(v, —M,'/(2M»), M,M.)

satisles an unsubtracted dispersion relation. It would
be surprising if this result were changed by the ex-
trapolation of the external pion mass from M to 0.
Clearly, if a subtraction were required, the sum rule
for gg would be useless.

By writing a dispersion relation for the last term in
Eq. (37), roithout assuming the PCAC hypothesis, one
gets a sum rule relating 1—g~~ to cross sections measur-
able in high-energy neutrino experiments. This sum
rule is discussed further in Sec. V.
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1 dv M'
RI———— —Ima v, —,M, M

Mr V 2M@

" dv—(v' —M ')kl'Lo+(v) —{r (»)j,
2' M» v

It is interesting that the region around the 600- and
900-MeV pion-nucleon resonances makes an important
contribution to the sum rule. If only the contribution of
the (3,3) resonance is retained, we get the result g„
=1.44. In other words, the (3,3) resonance does not
exhaust the sum rule.

(54a) The remainder of this section deals with the details
of the numerical evaluatio~

dv M'
R2——— —Ima v, — —,M, M

v 2M~

dv—ImG(», O,M,M ), (54b)
7I M»+M» /(2M~) V

QO dv—Im G(v,O,M„M )
M»+M» j(2Mf{kr) V

G(&,0,0,0)
(54c)

It N N~ (0)Q

G() "»M 'M )=& I A { (v, &&&,M ',M )

+)B "{&(&,&s,M.—',M~~)j. (54d)

I'here is a de6nite reason for splitting things up this
wav. Numerically, we find that If{'&I)ISkI) IXII The
dominant term, R&, involves only the physical pion-
proton scattering cross sections 0+, and thus can be
reliably determined. The terms I/2 and Re are correc-
tions, which take into account the fact that the sum
rule involves the forward charge-exchange scattering
amplitude, with both external pions of sero muss. The
term R2 can be calculated in terms of pion-nucleon
scattering phase shifts. Since it is dominated by the
(3,3) resonance, it can be fairly reliably calculated. The
term Ra is less well known, because a model is needed
to calculate the oG-mass-sheH partial wave amplitudes.

Ke get the following numerical results"

3. Calculation of R2

It is convenient to express E2 as a single integral
over center-of-mass energy lV, the integrand of which
is the difference of terms referring to v~=0 and to v~
= —M '/(2MN). The center-of-mass scattering angle p
is given by

y—=cos{&{)=1+M~'/I%I' at &s=O,

y=—cos4=1 at &&)= —M '/(2M&)))
(59)

A. Calculation of 8&

As stated above, E& is calculated directly from the
physical pion-proton total cross sections 0+. Values of
c+ from 0 to 110 MeV were taken from the smoothed
ht of Klepikov et al."From 110 to 4950 MeV, we used
the tabulation of Amblard er al.~ Above 4950 MeV,
we used the asymptotic formula 0. —0+=7.73 mb

XI k/(BeV/c)] "given by von Dardel ef, {Jl.k3 This
formula gives a good 6t to the experimental data up to
20 3eV/c. Use of this formula beyond 20 BeV/c repre-
sents an extrapolation from the present experimental
data, and gives

4&~2 1 " dv
() ' —M, '—)"'(~+ 0 )—= ——0.011. (58)

gr 2& 20 BeV

Thus, unless the Lk/(BeV/c) j 0.7 asymptotic behavior
is very much in error, the region above 20 BeV/c
contributes only a few percent of 1—g~ '.

(4MPP/g, ')Ek =0.254,

(4MN /g, ')Rs=0.155,

(4M+/g, k)Es= —0.061,
(55)

where
I
k

I
is the center-of-mass frame pion momentum.

Thus we get

giving
gg'" '~=1.24. (56)

R2= —16 dWA(W),

A reasonable error estimate, based upon the variations
among the several calculations of E2 and E3 discussed
below, is &0.03. The best experimental value is~

g
'* '=1.18~0.02. (57)

Thus, the sum rule agrees with experiment to within
5 ~.

' For the pion-nucleon coupling constant, vie used the value
f'=g,~M»3/(1&I Mlv ) =0.081~0.002 quoted by W. S. %'oolcock,
Proceejiogs of the Air-ee-Prmeece International Conference ms
I''lementary Part@les (Centre d'Etudes Nuclbaires de Saclay, Seine
et Oise, 1961),Vol. I, p. 459.

~ C. S. Wu (private communication).

M ' (W+M)){)'
6(H )= f& IV, 1+

{lV' Mv') —
~

k{'){W+k{z)'k{—
M ' (O' —M)){)'

+fk W, 1+
{ k

~

){lW k{N) '){{'— '—

[fk(W, 1)+fk(W, 1)j, (60)
(W' —M)){'—M ')'

"N. P. Klepikov et al. , Dubna report D-584, 1960
(unpublished).

~ 8, Amblard et al. , Ref. 18 and private communication.
~ G. von Dardel et al. , Phys. Rev. Letters 8, 1/3 (1962).
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with fz(W, y) and f&(W,y) the usual center-of-mass
pion-nucleon scattering amplitudes. Since fi and f& are
analytic functions of y in an ellipse with foci &1 and
with semimajor axis 1+2M '/~k~', s4 we can legiti-
mately use partial-wave expansions in calculating fz
and fs in both terms of Eq. (60). The integral is rapidly
convergent, since the two terms in h(W) tend to
cancel at high energies.

The number (4M+/g, ')Rs ——0.155 quoted in Eq. (55)
was obtained by using Roper's l =3 phase-shift fit, 25

truncating the integral at W=11.20M . (Beyond this
energy no phase-shift fit is available. ) The integral is
dominated by the (3,3) resonance; extending the inte-
gral only over the (3,3) resonance gave (4MN'/g, ')R&
=0.166. A third calculation, using simple Breit-%igner
forms for the (3,3) and the 600- and 900-MeV reso-
nances, and neglecting all other partial waves, gave
(4MpP/g„')R2=0. 156 when the integral was truncated
at 11.20M, and (4Miz'/g, s)R2 0 145——wh.en the integral
was extended to an upper limit of lV= 17M . The good
agreement of these numbers indicates that E2 is in-
sensitive to "controversial" features of Roper's phases,
such as whether the P~~ wave resonates.

C. Calculation of Rg

The term E3, which describes corrections arising from
taking the external pion off the mass shell, cannot be
calculated directly from experimental data. In order to
estimate this term, we must assume a model for the
off-mass-shell partial wave amplitude f is(zW, M',M z).
(Here i= orbital angular momentum, I= total angular
momentum, and I= isospin. )

Actually, in order to evaluate R3, we only need to
know the imaginary part of fizz(W, M, ',M z). Below
the inelastic threshold at W= Jj/1~+2', generalized
unitarity tells us that

Imfisz(W, M„',M~z)'
=

~
k~ fizz(W, M ',M~)fizz(W, M~z,M )* (61)

The intermediate state pion is, of course, on the mass
shell. Since only the region around the (3,3) resonance
is appreciably affected by taking the external pions o8
the mass shell, it suffices to study fizz(W, M, ',M ) and
then to use the elastic unitarity relation of Eq. (61) to
get Imfisz(W, M ',M z).

In constructing a model, we use the following in-
formation about fizz.

(i) Threshold behavior. From kinematic considera-
tions, we know that near the threshold at O'= M~+M,
fisz(W, M ',M z) will be equal to (jk'))k ()' times

~This statement assumes the validity of the Mandelstam
representation.

~~ L. D. Roper, Phys. Rev. Letters 12, 340 (1964) and private
communication.

slowly varying factors, with

)k'z) =P(k 'z)' —M ')"'
kiiz z= (W' —Mzz'+ (M ' z)'j/(2W) .

(62)

fiszs(W, 0,0)

fizz (W,M,M )
Imfisz(W, M~,M~) & (65)

while the second model gives

Imfisz(W, 0,0)= (i k [/j ki) E' (0)
)CI fmz(is,WM, M). (66)

Although Eq. (61) is valid only below the inelastic
threshold, we will use Eq. (65) and Eq. (66) above the
inelastic threshold as well as below.

Numerical evaluation of Eq. (54c) gives (4M+/g, ')R&

Here (
k'~ and j

kz
~

are the center-of-mass momenta of
the initial and final pions; when M '=0(M ), we de-
note /k'[ by /k'f(/k/).

(ii) Uziitarity Set. ting either M ' or M equal to
M in Eq. (61), we see that fisz(W, M ',M ) has the
same phase b~qz as the true pion-nucleon partial wave
amplitude fizz(W, M,M )

(iii) Left hzznd -singglzzrizzes Cha. nging the external
pion mass changes the left-hand singularities in the
partial wave amplitude fizz(W, M ',M z). The left-
hand singularities closest to the physical region come
from the partial wave projection fiszs(W, M ',M z) of
the Born approximation (the pole term) in Eq. (46).
Reference to Eq. (46) shows that fiszs(W, M ',M z)
contains afactor K~~~L—(M ')'jK~~~L —(M z)'j aris-
ing from the change in strength of the coupling of the
external pions to nucleons when the external pion mass
is changed from the physical value.

A simple model, which takes into account the con-
siderations (i)—(iii), is to take

fizz(W, M~', M~)

fiszs(W, M~', M~)
fizz(W, M~,M~) . (63)

fisz (W,M~,M~)

Equation (63) gives fizz(W, M ',M ) the same phase as
fizz(W, M,M ). Multiplying the physical fizz by the
ratio of the Born approximations gives the o6-mass-
shell fizz the correct threshold behavior and, approxi-
mately, the correct nearby left-hand singularities. A
second model is to take

fizz(W, M ',M )
=(Ik'I/IkI)'&" 'L —(M-')'jfisz(W, M-,M-) (64)

Here we have put in only a threshold correction factor
and a constant factor X~~~L—(M, ')'] to account for
the change in strength of the nearby left-hand singu-
larities. According to Eq. (61), the first model gives

Imf isr (W,0,0)
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= —0.061 when the model of Eq. (65) is used, and
(4MN'/g„2)R2 ———0.051 when we assume Eq. (66). In
both cases, Roper's phase-shift fit was used, and the in-
tegral was truncated at W = 11.20M . Using Eq. (65) in-
tegrated only over the (3,3) resonance gave (4MN'/g„') Ro
= —0.066. Evaluating the integral with only Breit-
Wigner terms for the low-lying resonances gave similar
results. Thus, the quoted value of R3, while dependent
on the model used for going off mass shell, is insensitive
to "controversial" features of the phase shifts.

D. Remarks

The terms R2 and R3, which come largely from the
(3,3) resonance region, give a combined contribution of
0.094, as compared with the contribution of 0.254
coming from Rj. It may at first seem surprising that
the eGect of R2 and R3 is so big, but it is easy to under-
stand this. From Eq. (66), we can see that the main
effect of R2 and Ro is to multiply «, 2, the (3,3) reso-
nance contribution to the integrand of R&, by a factor

Ik'I'/I &I' (67)

At the peak of the (3,3) resonance, this factor is 1.27.
Since the (3,3) contribution to R1 is 0.43, we expect
Rj to be increased by an amount of order

0.27 X0.43=0.12,

in rough agreement with the sum of R2 and R3.

IV. PIGÃ-PION SCATTERING SUM RULE

In Sec. II, we took the matrix element of Eq. (7)
between proton states and derived a sum rule relating
g~ to pion-proton scattering. Now let us take the
matrix element of Eq. (7) between 2r+ states. The same
manipulations used in the proton case lead to the sum
rule

Now let us make a quantitative analysis. According
to Eq. (57), the left-hand side of Eq. (69) is

2/g~o ——1.43. (7o)

Let us first evaluate the contributions of the two
mell-established mx resonances, the i=I=1 p and the
1=2, I=Q f'. Weparametrizeo "anda 2 oin the form"

122ry,ov2/(v+ M ')
1,1 ($)—

(s, s)2+p vv
o—

2(/v +M')

Let us express the right-hand side of Eq. (69) in terms
of the variable s= 8', giving

4M~' 1
" ds

E~o.-(2)—«.+(2)J. (71)
g,oICNN~(Q)' 22r 42r, ~ s—M.'

As in the proton case, we take account of the fact that
the external pion in Eq. (71) is of zero mass by writing

o 'r(s)=ANN (0)2(ikon/ski)21o. 1r(s),
=K N~N(0)'I (s M~')—2/s(s 4M —') j'o ~'r(s),

(72)

where I= orbital angular momentum, I= isospin, and
o 'r(s) is the on-mass-shell partial wave cross section.
Thus Eq. (71) becomes

4M~' 1 " ds

gr 21t 4~ ~ $—M»

(s—M ')'-'
X g -*, L~."(2)—~."(2)1

&=o s(s—4M ')
l even

(s—M ')'-'
+ Q o. "(s) . (73)

s(s—4M ')
l odd

2 4M~' 1 " 8'd8'

g
2

g 2+NNr(Q)2 ~ W2 M 2

202ry 2v4/(v+M ')
~ 2,0

(sr—s)'+ rf'v'/(v+M. ')
v=-'s —M '.

XL~o
—

(W) «+(W)j (69) The reduced widths y,2 and yf2 are related to the
experimental full widths at half-maximum F, and Ff by

where oo +(W) is the total cross section for scattering
of a zero mass ~+ on a physical m+, at center-of-mass
energy W. Equation (69) involves g~ ', rather than
g~ '—1, because the one-pion intermediate state con-
tribution vanishes on account of parity. The factor 2
on the left-hand side of Eq. (69) comes from the fact
that (2r+(q) ~212~2r+(g'))=2 (22r)ob(q —q').

While, of course, no direct pion-pion scattering data
is available, there is enough information on pion-pion
resonances to compare Eq. (69) with experiment. First
of all, oo +(W) comes only from I=2 scattering. While
there are resonances in the low energy I=O and I=1
pion-pion scattering, the I=2 scattering seems to be
small. Thus the right-hand side of Eq. (69) is positive,
agreeing in sign with the left-hand side.

v,+M ' vr+M '
yv —— svl'v, Yy

= sfi'r,
v, ' vr' (75')

v& f=4$& f—3f» .

p contribution= 0.42,
f' contribution= 0.11. (76)

As a check, we also calculated the p and f' contribu-
~6 L. A. P. Salh, zs, Phys. Rev. 129, 872 (1963}.
~' A. H. Rosenfeld et a/. , Rev. Mod. Phys. 36, 977 (1964}.

Using the experimental values" s,=29.73f ', F,
=0.755M, sf =80.0M ', Ff=0.7163f», we get, for the
p and f2 contributions to Eq. (73),
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tions in the narrow resonance approximation. This gave
0.35 for the p and 0.09 for the f contribution, indicating
that resonance shape corrections will not substantially
change the numbers of Eq. (76).

The contribution of 0.53 from the p and the f' is
only 37% of the total of 1.43 required by the sum rule.
Since the f' contribution is so small, and since there
seem to be no resonances with /&3 in the low-energy
region, '~ it should be reasonable to neglect the con-
tribution of terms with l&3 in Eq. (73). Rearranging
Eq. (69), we get

4M'' 1 " ds "()
g2 2g 4~ ~ s—M '

4M~' 1 " ds

g' 2m 4~'s —M '

2 -(s M2)2 2

X- o "(s)+ o "(s)
3 s(s—4M ')

+1.43—0.42 —0.11&0.9. (77)

Thus, the pion pion -sum rule can be satisf'ed only if there

is a large low-energy J=O, S-wave pion pion -scarring
cross section.

In order to get an idea of how big the I=O, S-wave
scattering cross section would have to be in ord.er to
satisfy Eq. (77), we evaluated the left-hand side of
Eq. (77) using a simple scattering-length parametriza-
tion of the I=O, S-wave phase shift '8

(v/(v+M '))'I'cot@'= 1/ao+H(v),

~( )= (2/ )(/(+M. '))'" (78)
XlnL(v/M s)~ts+(v/M s+1)~lsj,

which gives

0 0,0

ao'v+(v+M ')E1+apP(v) j'
We 6nd that Eq. (77) can be satis6ed only if ao& 1.3 or
if af)& —0.85. It is interesting that an I=O, S-wave
scattering length of the order of a pion Compton
wavelength is also suggested by studies of low-energy
pion-nucleon scattering' and, of X&4 decays. 30 Needless
to say, there is nothing unique about the parametriza-
tion of Eq. (78).

V. TESTS OF THE CURRENT ALGEBRA IN
HIGH-ENERGY NEUTRINO REACTIONS

The sum rules discussed in the preceding three sec-
tions are derived from two principal hypotheses: the

"G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).~ I. Hamilton, Strong Interactions emt High Energy Physics—
Scottish Universities' Summer School, 1963, edited by R. G. Moor-
house (Plenum Press, ¹wYork, 1964).

30 C. Facser, P. Singer, and T. Truong, Phys. Rev, 137, 81605
(1965).

P,),= Ig~, a= 1, 2, 3;
+Sx g~x y

(81)

where Iq is the isotopic spin current and Yq is the
hypercharge current. In our new notation, the currents
defined in Sec. I are

Jg"'=P,g, Jg" =P,y', a=1, 2, 3. (82)

Let us deane vector and axial-vector "charges" It;
and F according to

P; = —i d'x F;4., F = —i d'x $,4'. (83)

Gell-Mann4 has postulated that even in the presence of
the SUB symmetry-breaking interaction, the following
commutation relations hold exactly:

pF;,F;j=if;;pFk,

C"'F"j=sfekF"
P",F"j=ifpe»

(84)

The chirality commutation relation of Eq. (7) is, of
course, just a special case of Eq. (84):

PFP+iFs', FP iFs'j= 2Fg. —

From Eq. (84), we also get the following commutation
relation for the "charge" associated with the strange-
ness changing part of J),".
[F4+iFs+F4'+iFP, F4 iFs+F4' sFs'g- —

=2v3FS+2Fs+243Fs'+2Fs . (86)

Assi~ming that we can integrate by parts with respect
to the spatial variables x, we can express the time de-
rivatives of the "charges" in terms of the divergences of

"In this section, are use the notation of Ref. 4 for the currents.

axial-vector current commutation relations of Eq. (7)
and the partially conserved axial-vector current hy-
pothesis of Eq. (5). In this section, we discuss a sum

rule which follows from the axial-vector current algebra
alone, regardless of whether PCAC is true. %'e will

also derive sum rules which follow from a proposed
algebra of the strangeness-changing currents.

Let us begin by reviewing the theory of leptonic
weak interactions of the hadrons. Accord. ing to Gell-
Mann4 and to Cabibbo, ' the hadronic weak current is"

Jx = (flx+1Fsx+Flx+ZPsx )Gv cos8

+(&4k+i&sL+&4x'+i&sx')Gv»ne (80)

Here Gy is the Fermi coupling constant and 8 is the
Cabibbo angle. The vector currents F,~ and the axial
currents P,qP (j=1, ,8) each form an SUs octet.
The SUS generalization of the conserved-vector-cur-
rent (CVC) hypothesis is to assume that the vector
currents F,~ are just the unitary spin currents, with
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the corresponding currents: zero (S=O) leads to the relations, for forward lepton,

d
d'x 8),F ),

dt

d
d's 8),5,g'.

dt

d'a v+ ~ l + S=O)
=Gvs cos~8f (W)Xv+(W),

(@) d'a[v+p —+ l++(S=O)]
=Gv cos~8f(W)tv (W),

with

(91)

Let us now derive sum rules which provide tests of
the co~mutation relations of Eq. (85) and Eq. (86),
considering Grst the strangeness-conserving case, Eq.
(85). We proceed exactly as in Sec. II, taking the matrix
element of Eq. (85) between proton states. The only
difference is that we do not assume that the divergence
8),$ ),

' is proportional to the pion Geld. We thus get
the sum rulc

1 M«+-2M«E W'-—'
f(iv) =

2s' W' —M«'
(92)

Eg (M«P+ 2M——«E W')/(—2M«) . (93)

Here E is the incident-neutrino energy, E~ is the Gnal-

lepton energy, and Q~ is the lepton solid angle (all in
the laboratory frame, where the initial proton is at
rest). In terms of W and E, E~ is given by

1=g~'+

with

4kf~S'dW
[&V;(W) —&V,+(W)],

««+«- (W' —M«')'
(88)

We can apply the same method to the commutator
of the strangeness-changing currents~ [Eq. (86)], giv-
ing the two sum rules

431~8'dW
[Sv (W) —Sv+(W)] (94a)

(O'—M«')'

&jIa,sn'ala, r»'IP(q))

[S=(W)—S.+(W)] (94b)
(W' —MpP)'

Equation (94a) has discrete contributions at W=Mz,
W=Mz and a continuum from W=M +Mq to ~.
Equation (94b) has a discrete contribution at W=Mz
and a continuum from W=M, +Mq to ~. The func-
tions S~,„+ are measurable in strangeness-changing
high-energy neutrino reactions, since for forward lepton,

=((M«f qo) (M~lno))"'~~' (89)

In other words, P&+ ls thc matrix clement of thc di-
vergence of the axial-vector current; the sum rule of
Eq. (88) involves this matrix element only at zero
four-momentum transfer (q—q;)'.

The matrix element needed to evaluate the right-
hand side of Eq. (88) can be directly measured in high-
energy neutrino reactions. Consid. er the inel
reaction

d'o [v+ (p, n) —+ l +(S=+1—)]
dna'~&

v&+E-+ l+j,
with v~ a neutrino, l a lepton, E a nucleon, and g a
system of strongly interacting particles with M;WM&.
In a previous paper, ~ we showed that when the lepton
emerges parallel to the incident neutrino direction, and
when the lepton mass is neglected. , the matrix element
for Eq. (90) depends only on the divergences of the
hadronic current. Clearly, under these hypotheses the
momentum transfer (q—q;)' is zero, so we are measuring
just the matrix element needed in Eq. (88). (In the
M=O case, the divergence of the vector current
vanishes. ) Summing over fLnal states j of strangeness

=Gv' sin'8f(W)S&v, „& (W).

Thus, Eqs. (88), (91), (94), and (95) can be used to
directly test the algebra proposed by Gell-Mann for
the vector and the axial-vector currents.
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=Gv' sin'8f(W)S&v. &+(W), (95)

(90) d'o[r+ (p,m) ~ l++ (S=—1))
dE

~ S. L. Adler, Phys. Rev. 135, 3963 (1964}.

~ The nucleon matrix element of the axial-vector terms on the
right-hand side of Eq. (86} vanishes when we average over
nucleon spin.


