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Forward Scattering hsstplitude and Univalent Functions
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Starting with the relativistic crossing-symmetric forward scattering amplitude, we constructed previously
a function g (E) of energy E which is both analytic and univalent (schljcht) in the upper-half energy plane.
In this paper we exploit the univalence of g(E) to obtain information on the analytic properties of the
forward-scattering amplitude. Various inequalities satisfied by g(E} are derived, making use of powerful
theorems on univalent functions. In particular, we have established several theorems which relate the
asymptotic behavior of the phase of g(Z) to that of ( g(E) ( itself. We have also obtained several inequalities
for g(E) which may be useful in an experimental test of the consequences of local field theory. %'e start with
only those properties of the forward scattering amplitude that have already been proved in axiomatic local
field theory. The only extra assumption used that has not yet been proved in field theory is the physical
assumption that the forward scattering amplitude does not become relatively real in the high-energy limit.

I. INTRODUCTION
'~ URING the last decade many efforts in high-

energy physics have been devoted to the study
of the analytic properties of scattering amplitudes and
to the related problems of their asymptotic behavior at
high energies. These analytic properties are usually
expressed in terms of dispersion relations and, in some
cases such as pion-nucleon scattering at Axed scattering
angle inside the Lehmann ellipse, they were shown to
follow from the formalism of Lehmann, Symanzik, and
Zimmermann. More recently, Hepp' has shown that
these relations also follow rigorously from the %ight-
man axioms of local 6eld theory. Thus, the validity of
dispersion relations seems to be deeply rooted in any
reasonable local 6eld theory. Therefore, any disagree-
ment between experiment and the relations implied by
these analytic properties would be extremely serious for
local 6eld theory.

Even though the dispersion relations in principle
contain all information that has been established, they
are neither the only tool nor necessarily the best tool
available to test analyticity or to study the possible
asymptotic behavior of scattering amplitudes. In a
recent paper~ we have pointed out how certain theorems
of geometric function theory do provide alternative and.
in some cases more powerful techniques.

In the course of this and subsequent works, it has
become clear that the most powerful theorems of
geometric function theory apply to functions that are
not only analytic but also univalent (or schlscht) in a
certain domain (the upper-half energy plane in our
case). In general there is no guarantee from field theory
that the forward, scattering amplitude is a regular
univalent function of the energy variable. However, as
was pointed out by the present authors, such univalent

*Work supported in part by the U. S. Once of Naval Research.' K. Hepp, Helv. Phys. Acta 37, 639 {1964).' N. N. Khuri and T. Kinoshita, Phys. Rev. 137, 3720 (1965).
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functions can be constructed easily from the scattering
amplitude. '

In Sec. II we construct, starting from the crossing-
symmetric forward scattering amplitude, a function
g(E) [see (13)) which is univalent in the upper-half
energy plane. Ke also establish that only two sub-
tractions are needed in writing down the forward dis-
persion relation. This is a consequence of local 6eld
theory and the additional physical assumption that the
forward-scattering amplitude does not become rela-
tively real as the energy goes to in6nity. A similar result
was 6rst obtained in Ref. 2, but under more restrictive
assumptions. In Sec. III, theorems on univalent func-
tions are used to obtain several useful inequalities
satisfied by g(E).

The relation between the asymptotic behavior of
Reg(E)/Img(E) and that of ig(E) ~

is studied in detail
in Sec. IV. The main tool used there is the theorem of
Ahlfors on the mapping of strips by univalent functions.
Several theorems are proved which give upper and lower
bounds for

~ g(E) ~
as E~+ eo under specified assump-

tions about the asymptotic behavior of Reg(E)/Img(E)
or Reg(E).

In Sec. V we assume the validity of the Froissart
bound and study the implications of the theorems of
Sec. IV on the asymptotic behavior of the forward
scattering amplitude f(E) We show, f.or example, that
if

Ref�(E)

&0 (i.e., repulsive amplitude) for E&Es, then
the total cross section is bounded by a constant as
E—++~. It also turns out that the Froissart bound
restricts severely the possible asymptotic behavior of
Reg(E)/Im(E), namely, Reg(E)/Img(E) is essentially
bounded by C/lnE which goes to zero as E~+~.

Finally we show in Sec. VI how the theorem of
Ahlfors can be used to derive two inequalities for the
function g(E) which may be useful for an experimental

g N. N. Khuri and T. Kinoshita, Phys. Rev. Letters 14, 84
(1965).
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test of analyticity. Only those quantities that can be
determined from the experimental data obtained over a
finite energy range appear in these inequalities. In the
absence of accurate data it seems hard to decide which
of these inequalities, or others proposed earlier, is the
best for the purpose of testing analyticity and local
6eld theory. Ke discuss brieQy the kind of behavior of
data on Ref(E) and Imf(E) that will favor the use of
each inequality. Actual analysis will have to wait for
the full data.

Appendix A contains a more detailed discussion of the
theorems of Meiman given in Ref. 2. It is essentially an
expanded version of footnote 23 of that paper. In
Appendix 8, considerations of Sec. II on the Greenberg-
Low bound are repeated making use of the techniques
of univalent functions developed in Sec. IV. Several
lemmas on g(E) are proved in Appendix C.

II. CONSTRUCTION OF UNIVALENT FUNC-
TIONS FROM THE FORWARD

SCATTERING AMPLITUDE

Ke shall show in this section how one can construct
from the forward scattering amplitude a function which
is regular and univalent in the upper-half energy plane.
For the sake of concreteness we limit ourselves to pion-
nucleon scattering. Ke shall denote by E the total
energy of the incident pion in the laboratory system,
and by f~(E) the forward scattering amplitudes for
~+p scattering, respectively. We shall be concerned
exclusively with the symmetric amplitude f(E) defined
as follows:

f(E)=$[f+(E)+f (E)]—nucleon pole terms. (1)

As is well known from axiomatic field theory, f(E)
has the following properties: (i) f(E) is analytic in E
and regular in the cut E plane with cuts running
from —~ to —p and from p to +~; (ii) f(E i0)—
=f (E+i0); (iii) f( E i0) =f(—E+—i0); (iv) unitarity
requires, besides other properties, that Imf(E+i0)
should be positive on the cut E&p, and negative on the
cut E& p. In general t—he discontinuity Imf(E+i0)
will be a tempered distribution. Thus it is necessary to
regularize it over a small interval of values of E. %'e
shall assume that this averaging is already done and
Imf (E+i0) is continuous on the real E axis.

It has been customary to assume that the scattering
amplitude f(E,cos8), where 8 is the scattering angle in
the center-of-mass system, is subject to the condition
(v) l f(Ecos8) l &ClEl» for E~oa for any cos8 inside
the Lehmann elbpse. Recently, Hepp' has shown that
this property can be proved within the framework of
Wightman axioms of local Geld theory. It follows from
the unitarity condition and (v) that

was derived for real E by Greenberg and Low. 4 It is
generalized to the case lEl ~~ making use of the
Phragmen-Lindelof theorem. '

The conditions (i)—(v) and (2) are enough to insure
the validity of the dispersion relation for f(E) with at
most three subtractions. However, if one adds to these
conditions the physical requirement that Imf/Ref
should not tend to zero as E—++ ~, we can show, as in
theorem 1 given below, that only two subtractions are
needed. We wish to stress that the requirement Imf/
Ref-I+0 as E—&+ ~ has not yet been proved to be a
consequence of axiomatic field theory. Nevertheless, it
seems to be a reasonable feature of a theory which has
an infinite number of open inelastic channels as
E~+~. %'e shall now prove the following theorem:

Theorem l. If f(E) satisfies the conditions (i)—(v),
and if there is a positive number n such that

l Imf(E)/Ref(E) l
& tangos, 0«&x, , (3)

holds for suQiciently large real E, then the limit

' f(E')
lim dE'g~

does not diverge.
Proof. We consider the function p(E) defined by

(4)

where the path of integration is taken in the upper-half
E plane. As is easily seen, the function p(E) has the
following properties: (a) p(E) is analytic in the upper-
half E plane; (b) Imp(E) increases monotonically for
real E&p; (c) from the Greenberg-Low bound (2) we
have lg(E) l &C(lnlEl)' for large lEl; (d) qh(E) has no
zero in the upper-half E plane outside some fixed semi-
circle; and, finally, (e) for real positive E

R&(—E+i0)=R&(E+i0),
Imp( —E+i0)= —Imp(E+i0)+$x f"(0) .

(~)

Now, since Imp(E) is positive and monotonically
increasing for E&p, lim»~„ Imp(E) is either finite and
well defined or infinite. Ke shall show that the second
possibility leads to a contradiction with the Greenberg-
Low bound (2).

We assume that lim»~ 1m'(E) = ~. If we form the
function

G(E) = -1/~(E), (6)

we find that G(E) is analytic outside some semicircle in
the upper half E plane as is seen from (d). Also we have

lim G(E) =0
If(E) I &ClEI2(lnlEI)2 (2)

as E —+~ in all directions in the E plane. This property
~ O. W. Greenberg and F. E.Low, Phys. Rev. 124, 2047 (1951).' See Ref. 2.
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FIG. 1. (a) represents a domain in the L; plane whose boundary
consists of semicircles of radius LO and E and line segments (EO,B)
and (—EO, —E). (b) represents a domain in the G plane which is
obtained from the domain {a) by the mapping G{E).

by our assumption on g(E). For large enough real E,
we obtain from (3) and (4) the inequality

I ImG(E)/ReG(E) I
)tantra. (8)

This holds regardless of whether J„"IRef(E')/E" IdE,
'

converges or diverges, as long as Imd(E)~+~ as
Ii' —+ pr„

Let us now consider the mapping of the region shown
in Fig. 1(a), where E»EO»u, into the G plane by
G(E). The image would look something like the picture
shown in Fig. 1(b). The images of the segments (EO,E)
and (—Eo, E) will lie, r—espectively, above and below
the two straight lines through the origin making angles
&no. with the real t" axis. The point u~ is the farthest
intersection of the image of the large semicircle with the
real G axis and No is the nearest intersection of the image
of the smaller semicircle with the real 6 axis. The
inequality of Nevanlinna, ' or the more precise formula
(A6) due to Hersch, ' now gives

where p(u) is the shortest distance from the point u on
the real G axis to the image of the segment (EO,E). It is
clear from (3) and our assumption that Imp(E)~~ as
E~~ that the images of the segments (EO,E) and

(—Eo, —E) will be approximately symmetrical with
respect to the real G axis. We now have

p(u))u slnirQ uu(u(uo.
Using this and (9) we obtain

I (clEI—$ linea

Since us=G(IEle'i') for some y(0&y(ir), and since
G= —1/d, we finally arrive at

For large enough E this contradicts the bound (c) on g
obtained from the Greenberg-Low bound. %'e have
therefore to conclude that lims „ Imd (E) cannot be
infinite. It then follows that J„'"

I
Ref(E')

I
I' 'dE' must

also converge since
I Imf!Ref I

& tantra for large real E.
Q.E.D.

6 See Ref. 2, Appendix.
J.Hersch, Commentarii Mathematici Helvetici 29, 301 {1955).

(12)

has the properties: (n) h(E) is regular for ImE) 0 and
continuous for ImE&0; (P) Imh(E)&0 for ImE&0
I namely h(E) is a Herglotz functionj; (y) h(iX), X real
and positive, is purely imaginary; (11) Reh( —E+iO)
= —Reh(E+i0) and Imh( E+iO—)=Imh(E+i0) for
real E. Thus, if we consider the mapping of the upper-
half E plane by the function h(E), the image will lie in
the upper-half h plane as is seen from (P). On the other
hand, the conditions (i)—(v) do not guarantee that such
a mapping is one-to-one. Fortunately, however, it is not
diflicult to construct functions from h(E) that have such
a property. One such function is g(E), defined by

z h(E')
g(E) = dE', ImE&0,

{}

(13)

where the path of integration is taken to lie entirely ia
the upper-half E plane. The integral in (13) is converg-
ent at E'=0 since f'(0)=0 and f(E) is regular near
E=0.

To show the univalence of g(E) we first note the
following properties: (1) g(E) is regular in ImE&0 and
continuous in ImE) 0; (2) Img(E))0 if ImE&0; (3)
g'(E)&0 everywhere in ImE)0; (4) Reg( E+iO)—
= —Reg(E+i0), Img( E+i0)= Img(E—+i0) for all
real E; (5) for real E)p, Img(E+i0) is non-negative
and increases monotonically along the positive real
axis; (6) Reg(E) is nonnegative and increases monoton-
ically in the interval 0&E&p; (7) g(iX), for real positive
X, is purely imaginary and increases monotonically
with X.

s Y. S.Jin and S. W. MacDowell, Phys. Rev. 138,B1279 (1965).
Note that footnote 3 of this reference was written without recog-
nition of footnote 23 of Ref. 2. Note also that part of the footnote 3
of this reference which goes beyond footnote 23 of Ref. 2 and
Appendix A of this paper is in our opinion not correct.

The theorem just proved is weaker than the similar
theorem stated in Ref. 2, where we showed that

I f(E) I
&CEi 1 ~'1 for large enough E. However, to

obtain this strong improvement of Greenberg-Low
bound, we had to make the extra assumption that f(E)
does not have violent oscillation as E—+~. Such an
assumption is not needed in theorem j. here. The result
of theorem j. is equivalent to a theorem recently ob-
tained by Jin and MacDowell. ' Somewhat more refined
version of theorem 1 will be given in Appendix B.

From the assumptions (i)-(v) and theorem 1 it
follows that f(E) satisfies the twice subtracted dis-

persion relation
Imf(E')

dE'
E'(E" E')—

Making use of this representation we can easily show
that the function h(E) defined by
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FIG. 2. Schematic drawings of the domain G. (a) represents the
case g(~) = co, (b) represents the case g(~)=6nite. (c) is an
example of an impossible case.

The property (2) follows from (P) as is seen by choos-
ing the straight line connecting 0 and E as the path of
integration in (13).The property (3) also follows from

(P) if we note that g'(E)=h(E)/E. Finally, (6) is
proved using the dispersion relation (11).

As is seen from the property (2), the function g(J')
maps the upper-half E plane into a domain G located in
the upper-half g plane. We know from (3) that this
mapping is locally one-to-one everywhere in the upper-
half E plane. The mapping will therefore be globally
univalent and conformal if the boundary curve of 6 has
no double points. ' To examine this, let us denote by I'~

and I'2 the images of the negative and positive real E
axis, respectively. Because of (4), I's and I'i are sym-
metric with respect to the imaginary g axis. Ke know
from (6) that the part of I'~ corresponding to 0&E(y
does not intersect with itself and lies on the positive real

g axis. For E)II,, g(E) becomes complex and the cor-
responding part of I'g rises monotonically from the real
g axis according to (5). Thus I'~ cannot have a double
point. The same holds for I'&. Hence the only remaining
possibility is that I'& and F& have some common points.
Because of the monotonicity and symmetry of F& and
F2 such a common point could be found only on the
imaginary g axis, see Fig. 2(c).However, a configuration
like this cannot take place since the mapping is every-
where locally conformal, g'(E) WO, and since I'i and I'.
cannot turn back towards the real g axis because of (5).
Thus I'~ and F2 have either no point in common as in
Fig. 2(a) Lg(~)= ~$, or only one common point
g(~)(& ~) on the imaginary g axis as in Fig. 2(b).
Thus, the boundary curve of G has no double point,
which proves the univalence of g(E) in the upper-half
E plane. It is clear from Figs. 2(a), 2(b) that, for all
finite real positive E, we have the inequality

Reg(E+f0) &0. (14)

' E. C. Titchmarsh, The Theory of Functions (Oxford University
Press, New York, 1939), 2nd ed. , p. 201.

One can check this inequality directly from the dis-
persion relation (11).If we divide both sides of (11)by
E'-, integrate along the radial direction from 0 to E, and
take the real part, we obtain

1
" Imf(E') E'+E

Reg (E)=— dE' ln
jV 2 jV

for 0&argE&7r. We note that ln~ (E'+E)/(E' E)—
~
&0

for any E in the first quadrant and that Imf (E,') & 0 for
real E'&p. Thus, Reg(E) is positive for all E such that
0&argE&ir/2. In other words, g(E) maps the first.

quadrant of the E plane into a domain in the first
quadrant of the g plane. In particular, we obtain (14)
for positive real E.

Furthermore, in the same manner, one can show that
Reg(~ E

~
e@) decreases monotonically to zero as 8 varies

from 0 to ~/2 for any fixed ~E~. Thus the image of a
large semicircle in the upper-half E plane centered at
the origin will have no double point. One can further
show that it does not intersect F& or F2. The theorem of
Ref. 9 thus guarantees again that g(E) is univalent
inside any semicircle centered at the origin and lying in
the upper-half E plane.

Although the function g(E) defined by (13) is perhaps
the most useful for our purpose, it is by no means the
only univalent function that can be constructed from
the scattering amplitude. Another useful function will be

gi(E) = h(E, ')dE', ImE&0, (16)

which is regular and univalent in the half-plane IrnE& 0.
Although Imgi(E) is not positive definite in the upper-
half E plane, it does not give rise to any particular
difhculty. As a rnatter of fact, if necessary, we could
also introduce functions of the form

E'" 'h(E')dE', e= 2)3, , (17)

which are no longer univalent but rather multivalent,
with a definite multiplicity, in the upper-half E plane.
Since Ing„(E) is univalent in ImE)0, we will have no
difhculty in treating g„(E) under most circumstances.

) &0.
E+9,

This function maps the upper-half E plane into a unit
circular disk, ~s~ &1, in the s plane with the point
E=zk going into the origin a=0. We also define, for

III. SOME INEQUALITIES SATISFIED BY g(E)

Ke have seen in the last section that the function
g(E) defined by (13) is regular, Herglotz, and univalent
in the upper-half E plane and also symmetric with re-
spect to the ImE axis. These properties impose some
restrictions on the possible behavior of g(E). In par-
ticular, univalent functions are known to satisfy various
sharp inequalities. In this section we shall write down
some of the inequalities satisfied by g(E).

For this purpose it is convenient to introduce the new
variable s defined by
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Ia.I&n, v=2, 3, " . (21)

This puts upper bounds on all derivatives of g(E) at
E= iX which depend only on X and g'(@).Although it is
unlikely that the bounds (21) are of direct practical
use, except for the case n=2, they might be useful in
some theoretical considerations.

In the following we shall concentrate on the proper-
ties of g(E) that follow from the inequality

I anal & 2. One
of the direct consequences of this property is Koebe's
theorem. "This theorem states that, if y(z) is regular
and univalent for lzl &1 and has the normalized form
(20), then the image of the disk lzl &1 must cover at
least a disk of radius ~~ in the q plane. In other words,

6xed ), the function

g(E)—g(»)
q (z)=-

2kg'(iX)

Here g'(iX) =dg(E)/dE I z,~ and is not zero for X&0 as
was shown in Sec. II.Thus z (z) is regular and univalent
in the unit disk

I
s

I & 1 and its power series expansion at
a=0 has the normalized form

z (z) =z+~~'+~A+ (20)

Since g(~X) is purely imaginary while g'(A) is purely
real, z (z) is real if and only if z is real,

I
z I & 1, and has

the symmetry property z (z)= z(z ) inside the disk

I zl &1.For such univalent functions the coeKcients of
the power series in (20) satisfy the inequalities@

theorem and (19), we obtain the inequality

Reg(E,+~0)& (1/2X) I f(@)—f(0) I. (24)

Since (22) is valid for all univalent functions nor-
malized. by (20), it is quite likely that (24) is not the
best possible inequality that applies to the specific
function g(E). In fact, just taking account of the
symmetry property of g(E), we can easily improve
(24) by a factor of 2 and obtain

Reg(Eq+Zo) & (1/X) I f(iA) f(0—) I
. (25)

This follows from a theorem of Szego."Applied to the
function z (z), this theorem asserts that of two points
lying on the same straight line in the q plane going
through q =0 and on opposite sides of q =0, neither of
which belonging to the map of the unit disk I z I &1 by
z = rp(z), one at least must be at a distance not less than
$ from the origin zr=o. For the function g(E) this
means that either Reg(Eq+io) or —Reg(—Eq+io)
must be larger than

I f(z&.)—f(0) I/X. Since Reg(E&,+io)
=—Reg(—Eq+io) because of the syro~etry, we must
have (25).~

The inequality (25) might be useful in an experi-
mental test of the analytic properties of j(E), as was
discussed in Ref. 3.

Another consequence of the univalence of z(z) is
given by the following theorem": If q (z) is univalent in

I zl &1 and has the form (20), we have for Izl =r,
0(v&1, the inequalities

I z(z~) I
&x 0&a&2 . (22)

This result can be translated for the function g(E) as
follows: we draw in the g plane a straight line parallel to
the Reg axis through the point g(iX) on the Img axis.
As is shown in Appendix C, this line will intersect with
the boundary curve I'& of the domain G at one point
which we denote by g(Eq) (see Fig. 3). Here Eq is real,
positive, and determined uniquely by the equality

&
I z (z) I

&
(1+r)' (1—r)'

1+r
&lz'(z)l&

(1+r)' (1—r)'

z'(z)

r(1+r) y(s) r(1—r)

(26)

y:
Ir

pq " ~IFz

r i&ii rurlra

FG. 3. De6nition of g(E&). g(X) on the
Img axis should read g{iX}

Img(E, +~o)= Ig(a) I (23)

for any given positive real X. For this choice of Eq,
g(E&,)—g(A) is purely real. Thus, using Koebe's

»m lf'(z) I (I—lzl)"*=o (27)

for all points e of the circumference lzl =1 with the

This theorem gives upper and lower bounds for g(E)
and g'(E) for all E such that ImE&0. These bounds of
course depend on g(iX) and g'(9,). They are useful in
obts, ining estimates of g(E) for complex E.

Finally we should like to quote a theorem due to
Seidel and Walsh": If P(z) is regular and univalent in
I zl &1, the first derivative f'(z) satiates the relation

' W. K. Hayman, Multieuleet FNectiorgs (Cambridge University
Press, Cambridge, 1958), p. 14.

"See, for instance, G. M. Golusin, Interior I'robkems of the
Theory of SchIicht Functions, translated by T. C. Doyle, A. C.
Schae6er, and D. C. Spencer (U. S. OS,ce of Naval Research,
Washington, 1947), p. 9.

~ The formula (25) may be improved further if more detailed
information on g(E) is available. For this purpose a generalization
of Szego's theorem (Ref. 11, p. 9) will be useful. See also G. M.
Golusin, Geometrische Funktioeentheorie (VEB Deutscher Verlag
der Wissenschaften, Berlin, 1957), p. 143."See, for instance, Ref. 10, p. 4.

"W. Seidel and J. L. Walsh, Trans. Am. Math. Soc. 52, 128
(1942).
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exception of at most a set of measure zero, where the
limit is taken in any angle less than x with vertex in e'

and bisected by the radius joining z=0 with z=e .
Furthermore, in any such angle the above limit is
uniform. This theorem shows that, almost everywhere
on the unit circle

I
z

I
= 1, I

P'(z)
I

is substantially smaller
than the upper bound given by (26). It will be obvious
that there is a close relation between this theorem and
lemma 3 given in Appendix C.

eve yrerr~r«
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Fzo. 4. The domain D of the z plane in (a} is mapped by m ('z} onto
the strip S of the m plane in {b).

"R. ¹vanlinna, Eindnctige Analytische I'eektioeen (Springer-
Verlag, Berlin, j.953), 2nd ed. , p. 93.

IV. THEOREMS 0Ã THE ASYMPTOTIC
BEHAVIOR OF g(E) FOR LARGE E

In this section we shall study the asymptotic be-
havior of g(E) with particular emphasis on the relation
between the asymptotic behavior of Reg(E)/Img(E)
and that of

I g(E) I. The theorems proved below will be
used in the next section to study the asymptotic be-
havior of f(E).

One can study the asymptotic properties of g(E)
making use of the theorems of Meiman which were
discussed in detail in Ref. 2. However, since g(E) is
univalent in the upper-half E plane, we have available
to us more powerful tools such as the theorem of
Ahlfors discussed below. In this approach there is an
additional advantage in that some of the assumptions
made in Ref. 2 can be eliminated or simpli6ed.

If we impose no restriction on the behavior of
Reg(E)/Img(E), all we know about the asymptotic
behavior of g(E) is that

I g(E) I &C IE I (lnlE

which follows from the Greenberg-Low bound (2).
Throughout this section, however, we shall assume as
in the last sections that the condition (3) of theorem 1
is satisfied by f(E). Then the integral J'zf(E')E' 'dE'
is convergent as E —++ oo. From this it follows that

I g(E)/El &constant
as IEI~~.

Let us start by a short discussion of Ahlfors' theorem"
We consider a simple (schlicht) domain D in the z plane
(z=x+iy) which is simply connected and symmetric
with respect to the x axis. I.et Z~=X~+iI ~ and
Z2= X&+i Y& be the points on the boundary curve of D
with the smallest and largest real part, respectively.
For any x, X&&x&X&, the vertical line Rez= x will have

one or more intersections with D, each of which is
bisecting D into two disconnected parts. Under our
assumption on D, there is one intersection which crosses
the x axis. This line segment we denote by 8 and its
length by 8(x); see Fig. 4(a). The line segment 8,
divides D into two disconnected parts in such a way
that X~ and Xg belong to different parts. Ke require
that 8(x) is a continuous function of x for Xt&x&Xs
except at some isolated points.

Let w=N+io=to(z) be a function which is regular
and univalent in D and maps D conformally onto a
strip S defined by I el &-',u (a&0) in such a way that
N(Zq) = —~ and u(Zs) =+~. In this mapping the line
segment 8 will be mapped onto a continuous curve L,
which connects the two boundary curves v= +~a. The
largest and smallest values of u on L are denoted by
Nm(x) and uq(x), respectively. [See Fig. 4(b).j The
theorem of Ahlfors now states that

Ng(x2) —N2(xg) & a —4a., 8(x)
(28)

or

Reg(E)
&tanwa, 0&a&(,

Irng(E)

Reg(E)
&tanya', 0&a'&$,

Img(E)

(29)

(30)

which holds for all real E greater than some positive Eo.
%'e then obtain the following two theorems:

Theorem Z. If the function g(E) satisfies (29) for
E&Eo, g(E) has the lower bound

lg(E) I &C(EIEo)", 0«k, (31)

for all E suKciently larger than Eo.
Proof We define z a.nd to(z) by

z= ln(E/C) i7r/2, w (z) = ln—g(E)—kr/2, (32)
C&0,

and apply Ahlfors' theorem to the mapping s-+ m. The
lines Reg(E)/Img(E) = stanza correspond to the two
straight lines in the m plane which are parallel to the I
axis (to= u+io) and separated by the distance a= 2nz.
Ke then choose D to be the domain whose boundary
curve consists of two vertical line segments with
Rez=x~ ——ln(EQC) and Rez=xz=in(Ez/C) and two

holds for any pair of points x&, x& such that

J',"dx/8(x) &2.

We shall now use (28) to prove several theorems on
the asymptotic behavior of g(E). We recall that, for
real positive E, g(E) lies in the first quadrant of the g
plane. Thus, insofar as Reg(E)/Img(E) does not tend
tO ZerO aS E—++ oo, We may CharaCteriZe the aSymp-
totic behavior of g(E) by the inequality



B 712 N. N. KH4: Rl AN D T. KI NOSH I TA

«r«r~ yWW«reppg

~20%
ll

u&t/~J Iri r/siriiiruig 4

by two Jordan curves which are the images of the lines
v= &x/2 and by two vertical line segments Res= xi and
Re2:=x2. The images of the vertical line segments
Res = x~ and Res= x2 are now curves in the m plane
connecting the lines v=+x/2, see Fig. 6. Applying
Ahlfors' theorem to this case, we obtain

FIG. 5. Mapping of the domain D in (a) onto the strip S in (b).

Jordan curves which are maps of the two parallel lines
in the m plane, mentioned above, by the inverse trans-
formation e=s(w); see Fig. 5. Obviously the length
e(x) is by definition less than m.. Thus we obtain the
inequality

$2 XgI (x )—e (x,))2 —
4)

= 2n In(E2/Ei) —gm. . (33)

0 Xf

f4%
0

e«
Pp

x
%2

0
$

ulJlrVrzrrir/rriJlr/ir g
2

FIG. 6. Mapping of the domain D in (a) onto the strip S in (b).

This follows directly from (28). From the definition of
ui(xg) we know that

lilI g(I E2I e' ) I
& ui(x2), e& q &x—e, (34)

where e depends on IERI and is determined by the
condition argg(IE2I e")=ir/2 —nor. In particular, if we
choose p=ir/2, we obtain from (33) a,nd (34) the
inequality

I g(iIE2I) I
&C'(E2'Ei)" (35)

for E2))E~, where C' does not depend on E2. This is not
yet a lower bound of

I g(E) I
for real positive E. How-

ever, from (C8) we can easily obtain

I g(E) I
& (I/~2) Ilmg(iE) I (36)

for real positive E. Formulas (35) and (36) lead us
immediately to (31).Q.E.D.

Theorem 3. If the regular univalent function g(E)
satisfies (30) for E&Ev, g(E) has the upper bound

I g(E) I
&C'(E/E. )"" (37)

for all E suAiciently larger than Eo.
Proof. In this proof we still use Ahlfors' theorem but

we now reverse the definition of s and ro(z). Ke put

s= lng(E) iver/2, w(s) =—ln(E/C) —iver/2, (38)

and consider the mapping s~m. The domain 5 of
Ahlfors' theorem in the w plane is now taken to be the
strip I

v
I
&v./2. The domain D in the s plane is bounded

X2 X]
ui(xg) —u2(x, )& —4ir.

2Q

Ke de6ne real and positive Ej and E2, E&&Ej, by

lnIg(E )I =x , lnIg(E )I = x .

By definition of N~ and n~ we also have

(39)

(40)

ui(xa) & ln(E2/C), um(xi) & ln(Ei /C) . (41)

Substituting (40) and (41) in (39) we obtain (37).
Q.E.D.

It would be useful to compare the results obtained so
far with those that could have been obtained by using
Neiman's theorem of Ref. 2. Qne should note that it is
not necessary here to assume that the boundary curves
I'j and I'~ do not intersect, since this is already guaran-
teed by univalence. Also we do not need here any
regularity assumption on the boundary curves I'& and
I'& beyond the very general ones needed for Ahlfors'
theorem. Furthermore, the above theorems hold for all
E greater than some fixed energy ())Ev) whereas
lieiman s theorem gives under similar assumptions a
result like (31) which is valid only for sombre E,. It is also
important to note that the power of E in (31) is better
by a factor of 4 than what one would have obtained by
applying Meiman's theorem to the function —1/g(E).
It is not possible to improve this power further. "

As is obvious from (31) and (37), the lower and upper
bounds for Ig(E) I

have similar energy dependence. If
Reg/Irng tauon and n=n', and if one makes certain
specilc assumptions on the smoothness of the boundary
curves, then the two bounds approach each other as
E~+~ and (31) or (37) gives the actual asymptotic
expression for g (E)."

Theorem 2 is useful if Reg(E) and Img(E) both tend
to infinity as E~+~ in such a way that (29) is
satisfied. If Reg(E) grows less rapidly or is bounded as
E~+m, the condition (29) is no longer convenient
since we cannot choose a positive o.. In such cases it is
better to give difI'erent characterization of the asymp-
totic behavior of Reg(E)/Img(E). For instance, one
could still get a useful result if Reg/Img satisfies an
inequality like (29) in which the constant n is replaced
by a function n(E) which decreases monotouiealty to
zero as E~+~.Then the argument of theorem 2 still
applies and we obtain, for suSciently large E, the
inequality

Ig(E) I
&C «pI 2 (E)»(E/E, )~.

"S. E. YVarschawski, Trans. Am. Math. Soc. 51, 280 (1942).
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Reg(E) C
u&1, E&Ep,

Img (E) (lnE)
(45)

we shall make use of Koebe's theorem. WVe first note
that, if we choose ) =E, E being real and positive, in
(19) and (22), we obtain

In particular we have the following corollary to
theorem 2:

Corollary. If g(E) satisfies the inequality

Reg(E)/Img(E)) C/(lnE)', 0(a(1, (43)

for E&Ep, then

I g(E) I
&C'[»(Ei Eo)]' (44)

for large enough E. Here p is greater than any positive
number.

If a) 1 in (43), the methods discussed so far do not
give any useful information. The case a=1 will be
treated by a different method in Sec. V.

To handle the situation where

z= ln(E/C) iz./2—, io(z) = ig(E)—. (53)

By an argument very similar to that of theorem 2, we
obtain

Img (iE)& (2b/x) ln(E/Ep)+ const

for all E suKciently larger than Ep. Using (CS), we
therefore obtain:

Theorem 5. If Reg(E) satisfies (52), then
I g(E) I

has
the lower bound

For the case a= 1 we have from (49) the upper bound

Ig(E) I
&C"(1nE)o', (51)

where C' is defined in (48).
Another way of characterizing the asymptotic

behavior for the case a=0 is to consider the situation
where for all E&Ep

Reg (E)& b

b is some positive constant. In this case we can apply
Ahlfors' theorem to the mapping s ~ m where we now
set

I g(E) —g(iE) I
& zE I g'(iE)

I
.

Combining this with (CS), we find

Reg(E)) (1/2&2)E
I
g'(pE)

I
.

On the other hand, from (CS) and (45) we derive

(
C

1— Img(E) (Img(iE) .
(im).

(46)

(47)

I g (E) I
& (2b/pr)ln(E/Ep)+ const

for all E sufficiently larger than Ep.
Similarly, as an analog to theorem 3, we have

Theorem 6. If Reg (E) satisfies the inequality
0&Reg(E) &b' for all E&Ep, then for suKciently large
E we have

I g(E) I
& (2b'/pr)ln(E/Ep)+const. (56)

g(iE)
&exp

g(iEo)

For c& 1 this gives

gp E(lnE)'

Inequalities (46) and (47) lead us to

g'(iE) 2V2 1 Reg(E)

g(iE) 1—C(lnE) ' E Img(E)

2v2C
(48)

E((lnE) —C) E(lnE)

for suKciently large E, where C' is a suitably chosen
finite constant. Integrating both sides of (48) from Ep
to E, we therefore obtain

Reg (E)
&b, E&E,.

v[Img(E)]' "" (59)

Fin.ally, we consider the case where Reg (E) /

Img(E)~0 as E~+pp but Reg(E) diverges at the
same time. %'e can now choose the variables as

z= ln(E/C) iz/2, io(z)—=[—ig(E)]"", v) 1. (57)

Here io(z) is defined by that branch in which [Img (E)]""
is real and positive. For large enough E we have

i Reg(E)
w(z) [Img(E)]ii"——

v [Img(E)]i—ii~

Since to(z) is univalent in ImE)0, we can apply
Ahlfors' theorem to this case. Suppose we found a v such
that v) 1 and

g(iE) C'(exp [(lnE)i—a (lnE )i—a] (50) Then theorem 5 gives us for E))Ep
g(iEp) 1—a

[Img (E)]""&(2b/p-) ln (E/Ep)+ const
Now we know from (47) that Img(E) is bounded as
E —++ pp if Img(iE) is bounded. Using (45) and (50),
we therefore obtain:

Theorem 4. If g(E) satisfies (45) for E)Ep, a& 1, then
I g(E) I

is bounded as E~+~ and Reg(E)~ 0 in that
limit,

Img (E)&C[ln(E/Ep) ]'.
Conversely, if we can find a v&1 such that

Reg(E)
&O', E&Ep,

v[Img (E)]'-'i"

(60)

(61)
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FIG. 7. Schematic dravring of
the image of the upper half 8
plane by the mapping g1(E).

then, for ~&EO, we have

Img(E) &O'Dn(E/Eo) j". (62)

Most results obtained so far in this section are useful
when g(E) diverges as E goes to in6nity. This would be
the case for example when the total cross section tends
to a constant as E~+~. To obtain some information
about f(E) in the case where g(E) tends to a constant
as E~+~ D.e. , o«, (E) approaches zero faster than
(lnE), a) 1j, it is more advantageous to look at the
function gi(E) de6ned by

gi(E) = h(E')dE'=

If g(~) is bounded, we need only one subtraction in
writing down the dispersion relation for f(E). Never-
theless, this dispersion relation has the same form as
(11), and h(E) de6ned by (12) is still a Herglotz func-
tion. It is then easy to show that gi(E) is regular and
univalent in the upper-half E plane. The function gi(E)
is real and monotonically increasing for 0&E&p,, and
Imgi(E) increases monotonically as E increases from

p to +~. Thus, if we map the upper-half E plane into
the g~ plane, the image Fm of the positive real E axis will
lie in the upper-half g~ plane and that of the negative
real E axis will lie symmetrically below the real g& axis
(see Fig. 7). We have no specific restriction on the sign
of Regi(E). It may take both positive and negative
values for E)IJ,.

Kith the help of Ahlfors' theorem we can easily
obtain the following theorems:

Theorem 7. If gi(E) satis6es for all E)EO the in-
equality

Regi(E)/Imgi(E) & tanzn, ——',(n( —,', (64)

we have

For n, 0,') 0, these theorems have essentially the same
content as theorems 2 and 3. However, for o., Q.'40 they
give new information. Note also that

n') —-', 1+ E&)EO,
ln(E/ii)

according to (C16).

V. FROISSART BOUND AND THE ASYMPTOTIC
PROPERTIES OF g(E) AND f(E)

In order to discuss physical implications of the results
obtained in Sec. IV, we shall assume now that the
scattering amplitude f(E) satisfies the Froissart bound

If(E) I &CIEI (lnlEI)- (69)

for all energy E greater than some 6xed Ei. Then g(E)
is subject to the condition

I g(E) I
«(» IEI)' (7o)

First we note that, if (70) is valid, the theorems of
Sec. IV put severe restrictions on the possible asymp-
totic behavior of the ratio Reg (E)/Img (E). For
example, one immediately sees from theorem 2 and its
corollary (44) that, if Reg(E)/Img(E) )C(lnE) ',
0(a(1, for all E&EO, then g(E) grows more rapidly
than the right-hand side of (70). Thus such an asymp-
totic behavior for Reg(E)/Img(E) must be excluded if
(70) is valid.

This result can be improved further by noting that, if

Reg(E) 3ir ln(lnE)

Img (E) 2 lnE

holds for E)EO, we are already in contradiction with
the Froissart bound. This is easily shown using (42). In
fact even better results might be obtained if we can
estimate the integral of (28) more accurately than we
did in Sec. IV. Instead of pursuing this line further,
however, we shall give here a result obtained by
utilizing the univalence of g(E) in a somewhat different
manner:

Theorem &. If g(E) satis6es the inequality
Igi(E)& (C/E)E'o'+ (65)

Reg (E)/Img (E)& C/1nE (71)
for all E suSciently larger than Eo. This theorem can be
proved by the same method as that of theorem 2 except
that we have to use (C18) instead of (C8) in the last
step.

Theorem 8. If gi(E) satis6es for all E)E0 the in-
equality

Regi(E)/Imgi(E) &

tannin',

', (n'&-,'—, —(66)
we have

I g (E) I &C(E/E.)'+"' (67)

for J,ll E sufhciently larger than Eo.

for all E)X;0, then we have

I g(E) I
&C'(lm)"", (72)

where C~ is a sufFiciently large 6xed constant.
Proof. According to lemma 3 of Appendix C,

IReg(E)l is bounded from above by Ci(E) IEg'(E) I,
where Ci(E) is finite for all E except possibly for those
corresponding to very high and narrow peaks of
Im f(E)/E"-. For any 6xed positive constant Ci, consider
the set R(Ci) of all points of the real E axis satisfying
Ci(E)((.'i. Obviously R(Ci) consists of a, finite or
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in%~ite number of open intervals of the real E axis,
grows monotonically as C& increases, and covers the
whole real E axis in the limit Cq= ~ except possibly for
a set of measure zero. Thus, if we choose a sufficiently
large Ct, E(Ct) covers most of the real E axis. On such
a set R(Ct), we obtain from (71), (C8), and (C19) the
inequality

g'(iE) C 1

g(iE) Ct E(C+lnE)
(73)

If we integrate both sides of (73) over the intersection
of the interval (Ep,E) and the set R(Ct), the result will
not be substantially diferent from that of integration
over the interval (Ep,E) insofar as Ct is suKciently
large. Thus we obtain

Ig(sE) I
&C"(1~)"".

Making use of (36) we arrive at (72). Q.E.D.
Obviously this theorem is rather weak if we have to

choose a large Ct. Of course, if Im f(E)/E' is a slowly
varying function of E almost everywhere, we can choose
a small C~ as is seen from the considerations in Appendix
C. In any case, theorem 9 makes it clear that the condi-
tion (71) is already inconsistent with (70) if the con-
stant C is larger than 3C~. To be consistent with the
Froissart bound, there must therefore be at least an
infinite sequence of points (E;),E;~+~ as s +~, -or

an infinite sequence of intervals on the positive real E
axis for which

"When g(E) tends to a f'nite limit as E ~+~, one can gain
more detailed information on the scattering amplitude by studying
gI(E) de6ned by (63) rather than g(E) itself. According to
theorem 8, if Reg1(E)/Img1(E) &tanya', which for negative a'
means ~Reg&(E) [/Img, (E) &

( tanva'[, then g&(E) (
is bounded

by C~E ~'~~~'~. This result is equivalent to the one obtained by
theorem 1 of Ref. 2. Theorem 2 of Ref. 2 can be reproduced in the
same manner.

Reg(E')/I g(E') «/) E' (74)

holds for an appropriately chosen finite constant C.
This is as far as we can go without making any specific
assumption on possible oscillations of Reg (E) as
p~+ oo.

As is seen from theorem 3 and others, the smaller is
the upper bound on Reg(E)/Img(E), the slower is the
growth of Ig(E) I

as E~ro. Thus, for instance, if (74)
holds for all E&Ep, g(E) is bounded by (lnE) o' accord-
ing to (51), where C'=2VZC. If g(E) satisfies an even
stronger condition such as Reg(E)/Img(E) &C(lnE) s,
p, &1, for all E&Ep, then Ig(E)I is bounded by a
constant in the limit E —++ 00, according to theorem 4.
This would correspond to a total cross section that
vanishes faster than 1/lnE as E —++ po."Thus& if the
total cross section should approach a finite constant
value at very large energy as is strongly indicated by the
experimental data, Reg(E)/Img(E) must tend to zero
as E—++~ not much faster or much slower than
C/lnE.

The theorems of the previous section lead us to other
interesting results if we make the physical assumption
that

Ref�

(E) has a definite sign beyond some energy Er.
For example, if Ref(E) &0 for all real E&Et, Reg(E)
is monotonically decreasing for E&E&. Hence

Reg (E)&Reg(Et), E&Et.

According to theorem 6 we thus have the upper bound

I g(E) I
& (2/s. )Reg(Et)lnE+const (75)

for all E&&E~. This means that the total cross section
must be bounded by some constant for almost all E in
the sense that JJr,xylo (E')/E' jdE'& C lnE as E~+ po.

This result is valid irrespective of whether Ref(E)
oscillates or not as far as it is negative for E&EI. Ob-
viously we do not have to assume the Froissart bound
in this consideration.

On the other hand, if Ref(E))0 for E&Et, then
Reg(E) is monotonically increasing and thus

Reg(E) &const, E&Et.

Following theorem 5 we have

I g(E) I
& (2/s)Reg (Et)lnE+ const. (76)

Thus, in this case, the total cross section cannot go to
zero smoothly as E—++~. Conversely, if the total
cross section diverges in such a way that Img(E)
&C(lnE)', v&1, it is impossible to find a finite constant
C' such that Reg(E)&C' holds for all large E (see
theorem 6). This means that Reg(E) must tend to
infinity. In such a case

Ref�

(E) cannot stay negative for
all large E.

These results show that there is a strong correlation
between the sign of Ref(E) and the boundedness of the
total cross section at high energies. LNote, however,
that f(E) differs from the actual forward scattering
amplitude by nucleon pole terms which tend to a
constant as E~+ oo.]

VI. POSSIBLE EXPERIMENTAL TEST OP
ANALYTICITY AND CROSSING

One of the main purposes of the present series of
investigations is to find out devices by means of which
we can test experimentally theoretical predictions of
local field theory. In Refs. 2 and 3 we proposed several
inequalities which may be used for this purpose. Besides
some quantities that are not sensitive to high-energy
data, these inequalities contain only those quantities
that can be determined from the experimental data of
forward scattering amplitude at finite energies. In this
section we shall give two more inequalities of this kind
which are byproducts of Ahlfors' theorem.

We recall that the function g(E) for real E&is is fully
determined by a measurement of Ref(E) and Imf(E)
over physically accessible energy range, if the constants
g(is) and f(0) are found by some means. These con-
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stants can be estimated using the dispersion relations.
For E(p the dispersion relation is known to work well
and not sensitive to the actual value of the total cross
section at very high energies.

We shall assume in the following that Reg(E) and

Img(E) have been measured for all energies in the range
Ei&E&E2, where E2))Ei, and that the function g(E)
for real E, plotted in the m plane, looks like the curve
in Fig. 8(b), where we put

z= ln(E/p) —i~/2, tr (s) = ig (E—) . (77)

In drawing this curve we have assumed that Reg(E) is
nonincreasing Li.e., Ref (E)& 0$ for large E, although it
is not absolutely necessary for our purpose. The data
available at present is not qualitatively di6erent from
this 6gure. "

Let us now consider the mapping by w(s) of the
domain D in the s plane Lsee Fig. 8(a)j onto the strip
of width 2 Reg(Es) in the w plane shown in Fig. 8(b).
The domain D is bounded by two vertical line segments
with Res= ln(Ei/p) and Res= in(E2/p) and two Jordan
curves which are maps of the boundary lines Imw(s)
= &Reg(E&) of the strip by the inverse transformation
s=s(w). The images of the lines Res=in(Ei/p) and
Res=in(E2/p) are represented by the curves in the w

plane connecting —ig(Ei) with ig( Ei) a—nd ——ig(E2)
with ig( Em). —We m—ay now apply Ahlfors inequality
(28) to this mapping by putting a= 2 Reg(E2),
xi ——ln(Ei/1i), x~= In(E2/p), and 8(x) &n.. Thus we
obtain

+a(x2) —u2(xi)) 2 Reg(E~)$(1!~)ln(E2/Ei) —47, (78)

where Ni, u2 are defined in the same manner as in (28).
By definition

ui(xg) & Img(E2) . (79)

We are thus left with the job of estimating us(xi). In the
case considered here, namely that of Fig. 8(b), it will be
advantageous to take E~ as small as possible. For
instance, we may choose Ej which corresponds to the
intersection of the line Imw(s) = Reg(EI) with the low-
energy data curve. If E~ is small enough, we obtain
u2(xt) =

~
g(iEt)

~
which can be easily estimated. From

Nl(x2) Q2(xl) )8
~' dx 4——ln2., e(x)

1 2 dx
+—ln 1—Sexp ., 0(x)

(Sl)

due to Teichmiiller. " In the case where E~/Ei))1 this
formula gives us the inequality

1 E2—SEy 4
Imp(E~) )2 Reg (E2) —In ——ln2, (82)

where Nm(xi) is ignored.
We also note that, if Reg(E) is not monotonic, we

have only to replace in the above argument the quantity
Reg(E2) by the smallest value of Reg(E) in the interval
jv~( jv( jv2

%'e can obtain another useful inequality by switching
the definition of z and tent in (77). Namely we put

s= ig(E), w(s) =—In(E/p) iver/2. —(83)

The domain D is now of the form indicated in Fig. 9(a).
The function w(s) maps D into a strip 5 of width tr in
the w plane, shown in Fig. 9(b). In applying (28) we
note that x2=Img(E2), xt=Img(Et), and a=~. Thus
we obtain

&mg (E2) dg
ui(x2) —e2(xt) & tr —4

i g(z, 1 tl(x)
(84)

If we choose Ei(&1i) close enough to 1i, we find that
um(xi) = ln(Ei/1i). We also have

ui(xg) &in(Eg/1i) .

Thus, choosing Ei——p, we obtain from (84) and (85) the

(78) and (79) we therefore obtain

Img(EI) & 2 Reg(Eg)((I/7r)ln(Ep/Ei) —4]+un(xt), (80)

where Ns(xt) may be ignored for large Em. This in-
equality would be most useful if the data are such that
Ref(E) is negative but approaches zero at high energies.
Then beyond certain energy Reg(E) does not decrease
rapidly.

The inequality (80) can be somewhat improved if we
use instead of (28) the more accurate formula

lf/2---

/2 ——

ix2

-iy(-E2)
rrr~rrr v.rrrrrrrrrrrrr

1I

&2Rey

Res

j/jrri/) f//Jr/err'J//x-

iy(E2) O rxi

8(X)

tmw

+/ - ~rr«rrrrrrrr~gprggg2
II

g Roes
-r, PgrJAN'Jg/lA'g jigjAjq I

/2

FIG. 8. The curve in (b) is a schematic drawing of the experi-
mental data of m(s) = —i g(E). The domain D in (a) is mapped
onto the strip S in (b) by m (s).

'8 Preliminary calculation of Reg(E) and Img(E) based on the
available experimental data has been carried out by E. Paschos.

FIG. 9. The curve in (a) is the same as the curve in Fig. 8(b). The
domain D in (a) is mapped onto the strip S in (b) by m(s).

"See Ref. 15, p. 100.
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inequality

ln(E2/p) &s.
Imp(Ep}

0

(86)

bounded by a polynomial of E in the region Ill F.&0 of
the complex E plane. On the real axis it is assumed to
be continuous and have the symmetry property

Here 8(a) is given by the data and is equal to 2 Reg(E,).
Again Teichmuller's inequality (81) improves (86) by
allowing us to replace 4 inside the bracket of (86) by
(4/s )ln2.

It is clear that (86) can be violated if the total cross
section at high energies behaves roughly like a constant
and if at the same time Ref(E) remains negative and
large For.in such a case Img(E~) will grow as lnEa and
e(x) will be a decreasing function of x.

As was mentioned in the Introduction, it is not easy
to decide at present which one of the inequalities (80),
(86), or others proposed earlier'~ is the most useful
since it will depend on the detailed features of the data
over the energy range E~&E&E2.Here we shall simply
point out that (80) and (86) are complementary in the
sense that while (80) gives an upper bound for Reg(E)
Lassuming that Img(E) is known j, (86) gives essentially
a lower bound for Reg(E).
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APPENDIX A: REMARKS ON NEIMAN'S
THEOREM 8

In Ref. 2 we studied the high-energy behavior of the
forward scattering amplitude making use of the
theorems derived by Meiman. 2' In the proofs of these
theorems given by him and also in the Appendix of
Ref. 2, a strong, though not unreasonable, assumption
was made concerning the absence of violent oscillations
in the amplitude at large energies. (See, for example,
footnote 23 of Ref. 2.) As one can see from theorem 1
of the present paper, however, such an assumption is
actually not necessary to prove that only two sub-
tractions are needed in the forward dispersion relation.
Other results of this paper also show that major con-
clusions of Ref. 2 can be derived without using this
assumption.

To see how much of these results can in fact be ob-
tained within the framework of Ref. 2, it is sufhcient to
replace Meiman's theorem by theorem A given below.
This theorem is weaker than Meiman's theorem but
holds even if the scattering amplitude has violent
oscillations. Ke shall first discuss theorem A and then
state more precisely what we mean by "violent
oscillation. "

We consider a function p(E) which is regular and

~ A. Martin, Phys. Letters 15, 76 {1965)."N.
¹ Neiman, Zh. Eksperim. i Teor. Fiz. 43, 2277 (1962}

/English transl. :Soviet Phys. —JETP 16, 1609 (1963)j.

p(—E+f0)=&~(E+i0).

Furthermore we assume

(A1)

lim p(E+i0) =0. (A2)

(A6)

In order to make (A4) hold for all E&EO as in
Meiman's theorem, it is necessary to impose some
restrictions on the boundary curves F& and F2, or, in
other words, to exclude certain types of violent oscil-

Thus p(E) maps ImE&0 into a domain of the g plane,
a neighborhood of E= 00 being mapped into a neighbor-
hood of /=0, which is perhaps many-sheeted. The
upper edges of the semireal axes (0, —~) and (0, +~)
are mapped onto the curves F& and F& symmetrically
located with respect to the real p axis. Ke shall assume
that there exists some real large Eo such that, for
E&Ep Fg and F& have no common point except the
point &=0. Ke further assume that for all E&EO

I Imp(E)/Rey(E) I
& tan~a, 0&&&—'. (A3)

Then, without any further restrictions on F& and F2, we
obtain:

Theorem A. If the function qh(E) has the properties
described above, we can find a sequence of real intervals
Ii, I~, ~ ., I„, ~ such that

I4 (E.) I &c(EO/E-) (A4)

holds for E„QI„,m= 1, 2, , where C is independent
of E„and E„—+00 as e~~.

The proof of this theorem follows closely that of
theorem I in the Appendix of Ref. 2. It shows that,
given any real interval (EO,E), there is an E', ED&E'&E
such that the inequality

I
e(E')1&C'(Eo/E') {AS)

holds. Obviously we can choose as E' the point at which
Ip(x) I

takes its least value in the interval Eo&x&E.
E' thus defined is a (discontinuous) function of E which
increases indefinitely to ~ as E—+~ because of the
property (A2) of the function p(E). Since p(E) is
continuous in E for real E, the inequality (AS) can be
satisfied in a small neighborhood of E' if we choose a
somewhat larger C'. This completes the proof of
theorem A.

We note that the power of Ep/E„ in (A4) is improved
by a factor of 2 compared with Ref. 2. This is obtained
by using a better estimate of the harmonic measure due
to Hersch' according to which the formula (A6) of
Ref. 2 can be replaced by the stronger inequality
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lations of p(E) for large E. For instance we may require
that, for a sufnciently large constant C', p(E) satis6es
the "smoothness" condition

We now consider the function

Gg(E) = B(E')dE'. (83)
ma s.&s s.„le(E)/4(E~ ) I

&C' (A7)

for any n&no&0, vrhere E&, E&, ~ ~, E„, ~ is the
sequence for which (A4) holds. Then we obtain from
(A4) and (A7) the relation

ip(E)i&CC'(Eo/E ) &CC'(Eo/E) . (AS)

This shows that Meiman's theorem is valid even if the
boundary curves F~ and Fg oscillate as far as the oscil-
lation is mild in the sense of (A7).

If the oscillation is not so mild, we may no longer
assume (A7). However, we may still obtain a useful
upper bound on p(E) if we can replace C' in (A7) by
some knovrn function of E. For example, if

max'„&s&s„+,
~
P(E)/4(Es+$) ~

&C'(lnE.);p&0, (A9)

holds for all n& no, vre obtain

14(E) I
&CC'(E./E)-(1 E) . (A10)

APPENDIX B: REMAINS ON THE
GREENBERG-LOW BOUND

We should like to give here an alternative proof of
theorem 1 on the improvement of the Greenberg-Lovr
bound making use of the techniques of univalent func-
tions. We assume that f(E) satis6es conditions (i)—(v)
of Sec. II. We also assume for the moment that the
dispersion relation for f(E) does actually require three
subtractions and that it diverges with two subtractions.
We thus write

A condition like (A9) may be a reasonable one to make
in the case where the Froissart bound is assumed to hold
as in Sec. II of Ref. 2. However, for Sec. III of Ref. 2
vrhere only the Greenberg-Low bound vras assumed,
(A9) may have to be replaced by an even weaker one.
Of course, theorem 1 of the present paper does not make
use of any extra assumptions like (A7) and (A9).

It is worthwhile to emphasize again that some of the
results of Sec. II of Ref. 2 follovr from theorem A and
the inequality (A4) alone. This is because they are
proved essentially by producing contradictions, and
having (A4) on a sequence of points is enough to pro-
duce such contradictions.

APPENDIX C: LEMMAS ON g(E) AND ga(E)

We shall 6rst prove several lemmas on g(E) making
use of the formulas

Imf(E') E'+E
dE' ln

E/2

tO

Reg(E) =— (C 1)

This function has a property very similar to that of
g~(E) defined by (63). It is univalent in the upper-half
E plane and theorems 7 and 8 apply to it just as well
as to gz(E). Under our assumption about the necessity
for three subtractions J's Imf(E')E'~dE' diverges as
E~ ~. If vre novr make the assumption made in
theorem 1, namely, that for real E&EO

~Imf(E) /Ref(E) ~) tanya, 0&n&g, (84)

then we get a contradiction as in theorem 1. In order
to see hovr this contradiction comes about, vre first note
that if J's

Imf (E')E' 'dE' diverges as E~+ ~, (84)
leads us to

tans. (n——,') & ReGx(E)/ImGx(E) & «n~(2 —~) (83)

for E&&EO. We can now apply theorem 7 and obtain for
large enough E

IG, (E) I &C(E/E, )~+ ~-' =C(E/E, )~. (86)

This will contradict the Greenberg-Lovr bound if n&0,
since the latter requires that

~
Gg(E)

~

&C(lnE)'. (87)

Thus J's Imf(E')E' ~dE' cannot diverge as F —+ + ~
if a) 0. We then 6nd from (84) that

J's( Rey(E') (E'-idE

cannot diverge too. This proves theorem 1.
By an argument similar to that of theorem 9, it may

be possible to show further that the Greenberg-Low
bound can be satisfied only if

ImGg(E)/( —ReGg(E))&C/lnE (BS)

for almost all real E greater than some E~, vrhere C is a
certain positive number.

2E' "dE'Imf (E')
f(E) f(0) kf" (o)E—'=—

, , (»)E"(E"—E')
Imf (E')

Img(E) = dE'
EI2

(C2)

It is easily seen from (81) that the function H(E)
defined by

2 " Imf(E') E
Img(iE) =- dE' tan —' —, (C3)

1P ls
Elg El

2f (E)=U(E) —f(0)—kf"(0)E'7/E'

is a Herglotz function.

(82)
for real positive E, which can be derived easily from
the formulas (11) and (13).
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Similarly, we hav

p 719

eal ositive X, there existsu I. For any given rea posi i
th ta real positive E~ such

Img(Eg) = Img(k) = (1/i)g(il}
holds.

ralI'rooy. on
'

y'. C nsider the integr

I f(E') 2
dE -tan '—Img(ik) =

E'~ E'i

(C4)

ositive and (2/s)s tan —'(X/E')
less than one for a11 E' in the intervais positive and less t an

we obtainpp, 00+ ),

Imf(E')I f(Z }*2 '(I
)

dE' —tan '—
ElmE" ~ E'

Since the function

Imf (E')
dE'

E12

at p(

Im f(E')Imf(E'} 2

(X)dE' —taIl '—
E x E

monotonically increasingositive, an mono oni
E suchfor p (E g+~, we can n a

th E (+~ and.

1
" Imf E'

Regs(E) =— dE ln

Imf (E')
Imgg(E) = dE'

E'2

(C13)

l El21 " Imf(E') E'+E
gg(iE) =—— dE' -ln

is ositive and monotonically in-

g
as E increases. romdecreasing as

1 s Imf(E') E' E
dE' 1nReg}(E))— d

Reg(E)+Img (E)—Img (iE)

Imf (E') 2 E
E"

Imf(E') E'+E E
+— dE' —2 tan

1I

a
' a' '

because ofain ositive
'

ht-hand side is aga' pwhere the rig - a

) ( )For the function g~ E e
positive real E

we obtain

Noting that
CS)

CS, and (C7). Q. E. D.We obtain (C4) from (C a
It follows from Lemma 1 that,

X~+~) IIIlg }, m
' '

e E we have the. F r any real positive E, we aLemma Z. For any

(E)l & Reg(E).I Img(iE) —Img

2 s Imf E'
dE' lnz

R g —nI —Ilmg&(E). (C16)

U ed on the inequalityProof. Our proof is ase on

n 'I — for x&y&0,
r'3'

Exg y

obtained by expanding both sides
in power series in y/x. Now, from
we obtain

Reg (E)+g (iE)

1 " Imf(E )dE'
El

vre can a sol derive the inequality

El4

(C17)

E
,(iE) I (C18)Reg (E)+—lnI —Img~(E)) Ig~ i

Reg (E)+Img(iE) —Img(E)

Im E') E+E' similar to (C15).

Lemmu3. For anyerr}, . F y real positive E, Reg ss
from above as follows:

19

dE' ln +

Reg E g
' C )

E' l E—E'

R.eg E)&C,(E)EIg'(zE) I,
(E) is fjnjte for ar all E except possibly for those

1n — a

h h

dE — a

corresponding to very
to (C9). Im f(E)/E . }is ositive according towhere the last term is p
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Proof. For 0(8&tr, Reg (Eea) can be expressed as

1
" Imf (E') E'+Ee+

Reg (Ee@)=— dE' ln, (C20)
E'2 E'—E.'~

as is seen from (15). Using the expansion

E'+Ee" ~ 1 2EE' cos8) '"+'
ln , (c21)

E' Ee" — p 2n+1 E'+E" )

which is convergent for 0&8&tr, we may put (C20) in
the form

1
Reg(Ee@)=P a»+&(E) (cos8)'"+' (C22)

=p 2n+1
where

1 " Imf(E') 2EE'
a (E)=— dE' (C23)E" E2+E"

Since Imf(E ) is positive, a (E) are all positive and
decrease monotonically as m increases. Thus the series
(C22) converges for all values of cos8 in the range
—1& cosg&1. Furthermore, even at cos8=&1, the
series may converge if a (E) decreases sufficiently
rapidly as tn increases. To find out how rapidly a (E)
decreases, let us examine the difference

1 " Imf(E')
ap +g (E) ap +3 (E)— dE

1r E/2 C~
a»+p(E) &a»+~(E) 1—

I (c30)

smaller than the first one by a proper choice of k. For
this purpose we note that, if k'=2/(2n+3), the factor
$2EE'/(EP+E")].""+' in the second integral of (C26)
varies gradually from 1 at E=E' to

( 2EE )2++1 ) -(pa+1) ip

= 1+
)

=.-' (c»)
kE'+E~~) 2n+ 1)

at E'=E+. More generally, for k'= 1/(qn) where q is a
positive constant, e ' in (C28) is replaced by e '~p.

From (C27) we also obtain

E+—E 1
(C29)

2E gn

Suppose that we have chosen E that does not corre-
spond to the maxima of Imf(E)/E' The.n, for fixed
q(&1), we can always find a finite positive integer
np ——np(E) such that the average value of Imf(E)/E "in-
the interval (E E/—qnp, E+E/qnp) is of the same order
of magnitude as the average value of Imf(E)/E' in the
interval (E E/np, E+—E/np). For such a choice of np,
we find that the second integral of (C26) for n&np is
smaller than the first one by a factor of order 1/q.
Even when E is at the maximum of Imf(E)/E', we
can 6nd a 6nite no insofar as the width of this peak is
not ininitesimally small. In all these cases we can obtain
from (C24) and (C26) the inequality

2n+1 2EE 2e+3-

X
E2+E~2

Making use of the obvious inequality

xm ~m+'& k'„m for k'& 1

0 for 0& 1—x2& k2
(C25)

ap +~(E)
n=np np+1 ' ' ' (C31)

ap p+g(E)

(C24)
for n&no, where C is a positive constant independent
of n(0&C&q-'& 1).This leads us to

where k is a positive constant less than 1, we see that
the integral in (C24) is bounded from below by

where C' is another positive constant. From (C22),
(C31), and the fact that at~~(E) decreases mono-
tonically for increasing n, we obtain

k' " Imf(E') 2EE' y'"+'
dE'

E" A~+E")
k' e+ Imf (E') 2EE' '"+'

dE' (C26)
E'2 E +E'2

where

lim
~
Reg(ze@)

~ &Cg(E)ay(E),

o-& 1 1 C'
Cr(E)= Z + Z

~-0 2e+1 ~-~0 2n+1 n~

(C32)

(C33)

where Obviously C~(E) is finite if np is finite. According to the
above argument this means that C~(E) is finite for all

1~k E except possibly for those corresponding to very high
peaks of Imf(E)/E' with infinitesimally narrow widths.

Thus, we obtain a positive lower bound for at~&(E) Noting that aq(E)=E~g (iE) ~, we obtain (C19).—a&~p(E) if we can make the second integral definitely Q. E. D.


