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The role of the spin-$ baryon exchanges in generating the 0 is examined in the framework of the N/D
method. The resulting integral equations are solved numerically to show that the baryon exchanges lead to
an extremely overbound state. A comparison is also made between this and a determinantal-approximation
calculation to show that an earlier calculation indicating a resonating 0 state is due to a de6ciency in the
determinantal approximation.

I. INTRODUCTION consideration of the coupled channels. A "clean" case,
on the other hand, is presented by the 0— channel
which is strongly coupled to only one baryon —pseudo-
scalar-meson system, the M' one. The result of a single-
channel calculation in the 0 case, is in a certain sense
therefore equivalent to considerations of all coupled
baryon-pseudoscalar channels for the resonances lV*,
Yi*, *.In this note, we wish to re-examine the conclu-
sions drawn in Ref. 4, by considering the KK scattering
in T=O, I'3~2 state. The exchanges considered will be
the ~+ baryons and we will solve the resulting integral
equations numerically. Our calculations will be SL 3-

syrnrnetric, except of course for kinematical factors.

'HE dynamical relationship between the nucleon-
exchange Born diagram in pion-nucleon scatter-

ing and the well-known 33 resonance (iV*, 1238 MeV)
has been a subject of study for a long time. One of the
earliest approaches was the Chew-Low model' which
has been put on a relativistic dispersion-theoretic
footing by I'rautschi and %alecka. ' The essential
result of these calculations is that the simple nucleon-
exchange Born diagram is primarily responsible for the
generation of the E* resonance. In the context of SUI
symmetry, however, one has to extend this dynamical
relationship between the exchange of the nucleon and
the generation of E*, and consider the relationship
between the baryon octet exchange and the generation
of the baryon decuplet in an SUB-symmetric model.
It is clear that in such approaches one is faced with the
problem of considering many coupled channels and so
is forced to make some simple approximation scheme for
the dynamics. This was first done by Martin and
%'ali, ' who worked in the first-order determinantal
approximation and showed in particular that the
baryon-exchange force was too weak to produce the
0 resonance at the correct position. This result was,
however, re-examined by Martin and Uretsky, 4 who
gave up the first-order determinantal approximation
and showed, by completely solving the dispersion
equations, that the nucleon-exchange force in m-X
single-channel scattering lead. s to an enormous over-
binding in the 33 state. The nucleon force had to be
cut ofI' at a very low value for generating the X* at
the correct position. The only Qaw in this calculation is
that it is not faithful to the unitary symmetry scheme,
for in an SU3-symmetric model one does not have
much reason for neglecting the coupled ZE channel a
priori, as has been pointed out earlier. ' One ma feel

II. THE METHOD

The kinematics of ~ scattering is very similar to
that of x-E scattering which has been discussed in
detail by a number of authors. In the following, we
follow the work of Martin and Uretsky' and modify
their equations so as to suit a bound-state problem.
Ke reproduce here some of the essential steps. The
partial-wave amplitude,

f(W) = e*s sin8/q,

in the T=O, I'3~2 state is related to the partial-wave
projections of the invariant functions A (s,t) and
B(s,t) by

f(W) = (&6s'W') '( [(W+M)' —p'][A t+ (W—M)Bt]
+[(W—M)' —p'][—A a+ (W+M)Ba]}, (2)

where,
q'= [(Ws M' ts')' 4M ts'—]/4W—' —(3)

(4)[At,Bt]=p Ch P((x)[A(s,t), B(s,t)],

then that their conclusions are liable to change on IV is the total c.m. energy, M is the mass of the, p,

is the kaon mass, and A, 8 are defined by the T-matrix,
' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). (3)'S. C. Frautschi and I. D. %'alecka, Phys. Rev. 120, 1486

(1960).' A. W. Martin and K. C. WaH, phys. Rev. 130 2455 (1963) qq and q2 are the initial and final meson momenta. The
'A. W. Martin and j'. L. Uretsky, Phys. Rev. 13$, 3803 (1964l. amplitude f(W) does not have the proper behavior
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X* Fro. 1.The $+ baryon-
exchange forces.

where 8'p is the subtraction point and the integral
over the physical cuts is dined as

K

p.o ~

~ - -dF'= ~ . .did'+ dW', (13)

8'—lVp
D(lV) =1— dW'q(W') X(W')

v.. (w' —w)(w' —wo)p(w')

' S. Rai Choudhury and L. K. Pande, Phys. Rev. 135, B1027
(1964).' G. L. Kane, Phys. Rev. 135, 8843 {1964).

required for a function for which an sV/D representation
can be written down. From considerations of the
behavior of the function at W=&(M+p) and at
8' —+ ~ we consider the amplitude,

h (W) =p(W) f(W), (~)

in an,V/D form. The kinematic factor p(w) is given by

p(W) =W'/(W+M+q)LW' —(M+q)'i. (7)

The baryon-exchange contribution to the functions A
and 8 can be worked out by the usual rules. The
result has been given by Choudhury and Pande' and
by Kane. ' The contribution to the amplitude h(W) is
given by

ha' (W) = (W/8(w+3E+ p)'(W M p)q'—)—
XD (W+W)' —'}(ga(W—3f,)Q, ( .)
+g"(W-~.)Q (")}+«W-3f)-"}
X fg z(W +M )zQs(az)

+a~'(W+3f ~)Q~(«) }3, (8)

where the coupling constants gq~ and gq' can be worked
out by invoking SUB symmetry as

gz'= 3g N'
~

g-~'= 3(1 4f)'g.—~' (9)

in terms of the pion-nucleon coupling constant and Ii-D
mixing ratio. The Q~ functions are the usual Legendre
functions of the second kind with the arguments

«,z ——1+(23P+2p' —W' —M g, )z/ q'2. (10)

M~, M~ are the masses of the A and the Z particles
exchanged in the Born diagram (Fig. 1). We write the
amplitude in the form,

h(W) =N(W)/D(W), (11)

with D having the unitarity cut and S having all the
other cuts of h(W). Using the analytic properties of
h(W) and unitarity, one gets the integral equations

1 dW'q W' X W'
X(w) =hs(w)+-

(W' —W)p(W')

W—TVo
X h (W') — h (W) (12)

'o

with

III. RESULTS AND DISCUSSION

The integral equation for the function X(w) was
inverted numerically on the IBM 1620 computer. The
results are independent of the subtraction point as they
should be. Once the X function was known, the integra-
tion for the D function was carried out numerically
and a zero was looked for in the D function in the real
r:gion corresponding to the 0 pole. As expected, the
0 comes out to be enormously overbound. To estimate
the amount of overbinding, we cut off the baryon-
exchange forces and studied the position of the 0
pole as a function of the cutoff. As the cutoff was
varied from 20 pion masses to about 34 pion masses,
the 0 changed from a resonating state to a strongly
overbound state, the correct 0 mass being reproduced
for a cutoff of about 26 pion masses as shown in Table I.
Ke thus conclude that the inference drawn by Martin

Tmx, E I. The W position as a function of the cutoff.

Cutoff
(pion mass)

20.0
23.5
27.0
30.5
34.0

Exact
calculation

(MeV)

1850
1785
1625
1425
1225

Determinantal
approximation

(Mey)

~ ~ ~

1832
1817
1795

' A. W. Martin and K. C. Kali, Nuovo Cimento 31, 1324 (1964);
J. M. Cornball and V. Singh, Phys. Rev. Letters 10, 551 (1963).

If one solves the integral equation for the X function
numerically, the D function can be evaluated through
integration. Since the experimental mass of the 0 is
1685 MeV, one looks for a bound-state condition in
the ~ scattering, i.e., D(W) =0 for W(3I+p.

In the T=O state, the dependence of hs(W) on the
mixing parameter f is very weak. The plausible values' '
of f lie within the range of 0.25&f(0.4. To get a
feeling for the dependence on f, let us consider the
degenerate case (iVq=Mz), whence the over-all cou-

pling constant is proportional to

g'-3 s(1 4—f)'—
and this varies from 3 to 2.88 as f is varied from 0.25
to 0.4. We therefore 6x the value of f at 0.35.
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and Uretsky that the nucleon-exchange force leads to
strong overbinding holds even when all SU3-coupled
channels are taken into account.

It is interesting to 6nd out the reasons why, in the
previous SU3 symmetric calculations of Martin and
Wali, the 0 turns out to be a resonating state rather
than the overbound state that we are obtaining. We
present also in Table I, the results of a 6rst-order
determinantal calculation with our amplitude side by
side with our exact results for some of the cutoB values.
It is clear from an examination of the table that the
determinantal approximation (which was used in Ref.
4) grossly underestimates the attraction caused by the

baryon exchange. The diGerence between our results
and those of Ref. 3 can thus be ascribed to the de6-
ciencies of the determinantal approximation.

In any complete analysis, one has to consider the

exchanges of other resonating states like p, S~ etc., in

addition to the baryons considered. Any such calcula-

tion however, necessarily brings in extra parameters

and it is dificult then to make any precise statement

about the position of the resonance unlike in the

present calculation where only the exchange of spin-~

baryons is considered.
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The distributions of several kinematical quantities are presented for the polarized A. hyperon undergoing

P decay. The basic couplings are assumed to be vector and axial-vector, and all the "induced" couplings are

neglected. Special emphasis is placed on the kinematically invariant quantities and their asymmetries with

respect to the polarization of the A hyperon.

'HE A-hyperon P decay (A. -+ p+e +v) has been

experimentally studied in hydrogen" and heavy-
liquid'4 bubble chambers. At least two counter experi-
ments are currently in progress. ~ The low branching
ratio, h.~ pe vjail h.=10 ', makes the spark-chamber
counter experiment very attractive, yet it has the
drawback that the kinematical reconstruction of the
neutral A. is usually ambiguous or has large experimental
errors. The 6rst disadvantage can be overcome by
studying the distributions of the transverse components
of momenta of the decay particles relative to the
A direction. Such quantities are kinematically invariant
and can be analyzed directly in the laboratory system. '

In this note, we present distributions of other

*Supported in part by the U. S. Atomic Energy Commission.
' F. S. Crawford, Jr., M. Cresti, M. L. Good, G. R. Kalb6eish,

M. L. Stevenson, and H. K. Ticho, Phys. Rev. Letters 1, 377
(1958).' V. G. Lind, T. 0. Binford, M. L. Good, and D. Stern, Phys.
Rev. 135, B1483 (1964).

'C. Baglin, V. Brisson, A. Rousset, J. Six, H. H. Bingham,
M. Nikolic, K. Schultze, C. Henderson, D. J. Miller, F. R.
Stannard, R. T. Elliot, L. K. Rangan, A. Haatuft, and K. Mykle-
bost, Nuovo Cimento 35, 977 (1965).

'R. P. Ely, G. Gidal, G. E. Kalmus, %. M. Powell, W. J.
Singleton, C. Henderson, D. J. Miller, and F. R. Stannard, Phys.
Rev. 137, B1302 (1965).' S. Frankel and %'. %'ales; C. Rubbia and H. Seas, quoted in
Ref. 3.

kinematically invariant quantities, i.e., the momentum

components of decay particles along the spin of the h.

hyperon. The polarization of the A hyperons produced

by associated production, a +p-+A+It', near the
ZE threshold is known to be large, i.e., I'g= —0.91
&0.10. Therefore, in practice, these invariant quanti-
ties are the momentum components of the decay
particles perpendicular to the h. production plane, i.e.,
parallel to (p;n„a„&Xpq). To determine these invariant
quantities, one needs to know only the A. production
plane. On the other hand, the determination of the
transverse components of momenta of the decay
particles requires the knowledge of the direction of the
A momentum. In a typical experimental arrangement,
one could measure the A. production plane more ac-
curately than the direction of the A momentum by
almost one order of magnitude. We de6ne the momen-
tum components of decay particles along the spin of the
A. hyperon as p, =p aq, t,=l aq, and v, =v.aq, where

y, I, and v are the mornenta of proton, electron, and
neutrino (either in the A center-of-mass system or in the
laboratory system), respectively. az is the unit vector
for the polarization of A, and is normal to the A pro-
duction plane.

6 Average value used in Ref. 2.


