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It is shown that the infrared divergences arising in the quantum theory of gravitation can be removed by
the fami1iar methods used in quantum electrodynamics. An additional divergence appears when infrared
photons or gravitons are emitted from noninfrared external lines of zero mass, but it is proved that for
infrared gravitons this divergence cancels in the sum of all such diagrams. (The cancellation does not occur
in massless electrodynamics. ) The formula derived for graviton bremsstrahlung is then used to estimate the
gravitational radiation emitted during thermal collisions in the sun, and we Gnd this to be a stronger source
of gravitational radiation (though still very weak) than classical sources such as planetary motion. %e
also verify the conjecture of Dalitz that divergences in the Coulomb-scattering Born series may be
summed to an innocuous phase factor, and we show how this result may be extended to processes in-
volving arbitrary numbers of relativistic or nonrelativistic particles with arbitrary spin.

I. INTRODUCTION

'HE chief purpose of this article is to show that
the infrared divergences in the quantum theory

of gravitation can be treated in the same manner as in
quantum electrodynamics. However, this treatment
apparently does not work in other non-Abelian gauge
theories, like that of Yang and Mills. The divergent
phases encountered in Coulomb scattering mill inci-
dentally be explained and generalized.

It would be dif5cult to pretend that the gravitational
infrared divergence problem is very urgent. My reasons
for now attacking this question are:

(i) Because I can. There still does not exist any
satisfactory quantum theory of gravitation, and in
lieu of such a theory it would seem well to gain what
experience we can by solving any problems that can
be solved with the limited formal apparatus already at
our disposal. The infrared divergences are an ideal case
of this sort, because we already know all about the
coupling of a very soft graviton to any other particle, '

and about the external graviton line wave functions'
and internal graviton line propagators. '

(2) Because something might go wrong, and that
would be interesting. Unfortunately, nothing does go

~ Research supported in part by the Air Force OfEce of Scientific
Research, Grant No. AF-AFOSR-232-65.

f Alfred P. Sloan Foundation Fellow.' S. steinberg, Phys. Rev. 1%, 31049 (1965).
'See, e.g., S. %einberg, Phys. Rev. 13S, 8988 (1965). The

graviton propagator given in Eq. {2.20) of the present article is
not just the vacuum expectation value of a time-ordered product,
but includes the effects of instantaneous "Newton" interactions
that must be added to the interaction to maintain Lorentz in-
variance, and further, it does not include certain non-Lorentz-
invariant gradient terms which disappear because the gravitational
6eld is coupled to a conserved source. This disappearance has so
far only been proved for graviton lines linkinq particles on their
mass shells, and in fact this is the one impechment which keeps
us from claiming that we possess a completely satisfactory
quantum theory of gravitation. In using (2.20} we are to some
extent relying on an act of faith, but this faith seems particularly
weQ-founded in our present context because we use {2.20) here to&» particle lines with momenta only in6nitesimally far from their
mass shells. See also S. steinberg, in Brandeis 1064 Suesmer
Lectures on Theoretica/ Physics (Prentice-Hall, Inc. , New York,
1965}.
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wrong. In Ser. II we see that the dependence on the
infrared cutoQ's of real and virtual gravitons cancels
just as in electrodynamics.

However, there is a more subtle difhculty that might
have been expected. Ordinary quantum electrodynamics
would contain unremovable logarithmic divergences if
the electron mass were zero, due to diagrams in which
a soft photon is emitted from an external electron line
with momentum parallel to the electron's. ' There are
no charged massless particles in the real world, but
hard neutrinos, photons, and gravitons do carry a
gravitational "charge, " in that they can emit soft
gravitons. In Sec. III we show that diagrams in which
a soft graviton is emitted from some other hard mass-
less particle line do contain divergences like the inn,
terms in massless electrodynaInics, but that these
divergences cancel when we sum all such diagrams. '
However, this cancellation is de6nitely due to the
details of gravitational coupling, and does not save
theories (like Yang and Mills's) in which massless
particles can emit soft massless particles of spin one.

(3) Because in solving the infrared divergence prob-
lem we obtain a formula for the emission rate and
spectrum of soft gravitons in arbitrary collision proc-
esses, which may (if our experience in electrodynamics
is a guide) be numerically the most important gravi-
tational radiative correction. In Sec. IV this formula
is used to calculate the soft gravitational inner brems-
strahlung in an arbitrary nonrelativistic collision, and
the result is then used to estimate the thermal gravi-
tational radiation from the sun. The answer is several

'The extra divergences in massless quantum electrodynamics
have long been known to many theorists. Recently, it has been
noted by T. D. Lee and M. Nauenberg, Phys. Rev. 133, 31549
(1964), that these divergences cancel if transition rates are com-
&uted only between suitable ensembles of 6nal amE initial states.
See also T. Kinoshita, J. Math. Phys. 3, 650 (1962)j.However,

these ensembles include not only inde6nite numbers of very soft
quanta but also hard massless particles with indelnite energies,
and I remain unconvinced that transition rates between such
ensembles are the only ones that can be measured and need be
6nite.

4 I understand that this cancellation has also been found by
R. P. Feynman.
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orders of magnitude greater than from more usually
considered sources, like planetary motion.

The formalism derived in Sec. II is used in Sec. V to
calculate the divergent 6nal- and initial-state inter-
action phases in arbitrary scattering processes.

G. REAL AND VIRTUAL INFRARED
DIVERGENCES

This section shows how to treat the infrared di-
vergences arising from very soft real and virtual
gravitons. In order to keep the discussion as perspicuous
as possible, I repeat the conventional treatment'6 of
infrared divergences in electrodynamics (correcting a
mistake in Ref. 5), with explanations at each step of
how the same arguments apply to gravitation. It is not
really quite correct to treat gravitation and electro-
magnetism as mutually exclusive phenomena, but it
will be made obvious that in a combined theory the
infrared photons and gravitons simply supply inde-
pendent correction factors to transition rates.

1. One Soft Photon or Graviton

If we attach a soft-photon line with momentum q to
an outgoing charged-particle line in a Feynman dia-
gram, we must supply one extra charged-particle
propagator with momentum p+q and one extra vertex
for the transition p+q-+ p. If the soft-photon line is
attached to an incoming charged-particle line, the extra
propagator is for momentum p—

q and the transition is
p ~ p—q. For instance, if the charged particle has zero
spin, these factors are~

i(2~)"(2p"+W")[—i(2~) ']
X [(p+gq)2+m' —ie]-", (2.1)

where q =+1 or —1 for an outgoing or incoming charged
particle. In the limit q

—+ 0 Eq. (2.1) becomes (because
p'+ m=2)0:

the sum running over all external lines in the original
diagram.

If we attach a soft-graviton line to an external spin-
zero line, the extra factors are'

k~( ~)'(S~)"'( p"+nq") ( p "+nq")
y [—i(2s)—'][(p+qq)'+eP —ie]—', (2.4)

where p, , v are the graviton polarization indices. For
q~0 this gives

(SzG)'"qpI'p"/[p q
—ice]. (2.5)

The limiting form (2.5) is actually valid whatever the
spin of the external line to which we attach the
graviton. For example, if this line is outgoing and has
spin -'„ then we have instead of Eq. (2 4) the factor

—-'(2~)'(S~)"'((2p"+q")v"+ (2p"+q")v"}

i (p"+—q")y),+m
X[—i(2~)- ] . (2.6)

(p+ q)'+ nP ie—
But (2.6) appears multiplied on the left with a Dirac
spinor 6 such that

u,[ip"yg+m] 0=
Thus, moving the propagator numerator to the left
of the vertex function, we are left with an anticom-
mutator equal to (2.5) in the limit q

—+ 0. For general
spin the same conclusion can be reached on grounds of
I.orentz invariance, ' without embroiling oneself in
higher spin formalisms. The normalization factor
(SW)'Ia is chosen so that an arbitrary nonrelativistic
two-particle scattering amplitude will have a one-
graviton-exchange pole with the correct residue to
correspond to a potential 6m~m~//r.

The dominance of the 1/(p q) pole in (2.5) implies
that the effect of attaching one soft-graviton line to an
arbitrary diagram is to supply a factor equal to the
sum of (2.5) over all external lines in the dia, gram

egpI'/[p q ice]— (2.2) (~)'I'P q p ~p."/[p q iq„e]—(2.7)

+e& p "/[p 'q (2.3)

~ J. M. Jauch and F. Rohrlich, Theory of Photons end Elecfrons
{Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1955), Chap. 16.

ID. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.(¹Y.) D, 379 (1961).
7 The notation used is that of Ref. 5. In particular, A=c=1,

and p q —y-q —P'q.
11 For j=$ see Ref. 5 or 6. For general spin see Ref. 1.

Although (2.1) applies only for zero spin, the limiting
form (2.2) is well known' to hold for any spin.

Diagrams with the soft-photon line attached to an
internal charged-particle line lack the denominator p q,
and therefore are negligible for q

—+ Q. Hence the e6ect
of attaching one soft-photon line to an arbitrary dia-
gram is simply to supply an extra factor,

2. Many Soft Photons or Gravitons

It is well known that the eGect of attaching several
soft-photon lines to an arbitrary diagram is to supply a
product of factors of the form (2.3), one for each soft
photon. For we note that if X soft photons are emitted
from an outgoing (incoming) charged-particle line with
photon r last (first), photon s next-to-last (second),
etc., then the charged particle propagators will con-
tribute a multiple pole factor

[p.q.—in ] [p. (q+q) —i~ ]-'",
but this must be summed over the Ã~ permutations
12. S—+rs ., and the sum is just

[p a ~re] [p q2.
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For example, for g=2 where

[p qi ~qe] '[p (qi+qi) »—e] '

+[p qm ~qe] '[p (q~+. qi) »e—] '

=[p qi —ice] '[p qu
—ice] '.

The result may be proved for general X by an easy
mathematical induction. The same factorization occurs
trivially when soft photons are emitted from different
legs.

The pole structure created by inserting the soft-
graviton factors (2.7) is the same as for the soft-photon
factors (2.3), so by precisely the same reasoning the
efkct of attaching E soft-graviton lines to an arbitrary
Feynman diagram is just to multiply the matrix element
by X factors (2.7). It is this factorizability that will

allow us to obtain the sum of an unlimited number of
very complicated Feynman diagrams.

3. Virtual Infrared, Divergences

Ke will dedne an infrared virtual photon or graviton
as one which connects two external lines and carries
energy less than A, where A is some convenient dividing
point chosen low enough to justify the approximations
made above in subsections (1) and (2). By "connecting
external lines" we mean that the infrared line may join
onto a line that has already emitted soft real quanta or
virtual infrared quanta, but not onto one which, by
real or virtual emission, has acquired a momentum far
off its mass shell. In addition to the cutoff ~q~ KA
which just de6nes the infrared lines, we wiH also impose
a cutoff ~q~ WX in order to display the logarithmic
divergences as powers of in'. We take X very small (in
particular, X((A) so this cutoff only affects the infrared
lines because it is only these that give infrared di-
vergences for ) =0.

The e6'ect of adding X virtual infrared-photon lines
to a diagram that does not already involve any infrared
lines is to multiply the matrix element by E pairs of
the factors (23), each pair connected by a photon
propagator

Cf~

(2qr)' q' —ie
(2 g)

and then sum over polarization indices and integrate
over q's. In addition we must divide by 2~X!, because
we saw in Subsec. 2 that the external-line poles factor
only if we sum over all places to which we may attach
the two ends of each infrared virtual-photon line, and
this includes spurious sums over the E ~ permutations
of the lines and over the two directions that each line
might be thought to Bow. The result is then

Se.=Se.' e p — *q'q A (q)),
X

(2.11)

where Sp is the S matrix without infrared virtual
photons.

The rate for a —p P is given by the absolute square
of (2.11),

Pe.=qe.'eep(Ref A'qA(q) (2.12)

The real part of the integral arises wholly from the
iqr5(q') term in the photon propagator [for details, see
Sec. V], so

Re d'q A(q)=—
1

d'q ~(q')
2(2s)'

eqeeeqe'gqe'geee(pqe
'

peee) = —A ln(s/Z), (2.13)
(p- q)(p- q)

where A is the positive dimensionless constant

A=— d'0 A (2.14)

e„e„q„q„(p„p„)A(C)-=, Z . (2.15)
2(2~)'- [Z„—p„y][Z„—p„y]

The integral in (2.14) is elementary, and yields

1 1+(Ii
P pl„pl e„e+„'ln

~
e (2.16)

where P is the relative velocity of particles n and m
in the rest frame of either:

2~ 2 -1/2

a~=—|-
(p-. p-)'-

(2.17)

A(q)=
(2~)'[q' —ie]

eeeeeeeqrqeqleee(pee
' pie)

(2.10)""Lp- q ». --e][ p- -q »--e]

The limits on the integral in (2.9) refer to
~ q~. Note

that we have changed the sign of p„q in the second
denominator in (2.10), because if we define q as the
momentum emitted by line e then q must be absorbed
by line m. Summing over E, we conclude that the 5
matrix for an arbitrary process may be expressed as

-N
(E'q A (q)E! 2

(2.9)
Using (2.13) in (2.12), we find

I,.=r,.'(~/~)A. (2.18)



I NF RA RED P HOTONS AND GRA VI TONS

The same combinatorics apply to gravitons, and
yield an expression for the infrared virtual-graviton
corrections to any process a —+ P

~a
Sp ——Sp 0 exp j — d4q B(q), (2.19)

1

Since 8)0 this shows that al/ processes have zero rate
in the limit ) —+ 0, just as all charged-particle processes
have zero rate for X~O in electrodynamics. The
paradox is resolved in both cases by taking into account
the infrared divergences attributable to emission of real
soft photons and gravitons.

where S is the S matrix without virtual infrared
gravitons, and B(q) is the result of joining a pair of
factors (2.7) with a graviton propagator. The effective
graviton propagator joining a (pp) vertex with a (pp)
vertex is known' to be

2(2»)4

{gvng~r+gs~g~a gvvgi o}
(2.20)

Therefore we find

rp =rp 'exp Re d4q B(q) (2.22)

The real part of the integral comes only from the
+i»g(q~) term in the graviton propagator, so

B(q) =
(2»)4)q' ipg—

«„«{(P„P)' qm„—'m„'}
xg . (2.21)

""LP- q i«"3L P- q ~«--pj

The rate for n-+ p is the absolute square of (2.19)

4. Real Infrared Divergences

The S-matrix element for emitting Ã real soft
photons in a process n ~ P is given by multiplying the
nonradiative S matrix by S factors of form (2.3), and
then contracting each of these factors with the appro-
priate "wave function"

(2») "'(2lql) "'p *(q h) (2.28)

where q is the photon momentum, h= ~1 is its helicity,
and ~„ is the corresponding polarization vector. ' We
therefore find for the radiative transition amplitude

=S -II (2 ) '"(2lq. l) '"
f=1

«.e.$p e*(q„h,)J
X~ —. (2.29)

LP- qj
The 5-matrix element for emitting ~ real soft

gravitons in a process a —+ P is similarly obtained by
multiplying the 5 matrix for a~P by / factors of
form (2.7) and then contracting each of these factors
with the appropriate graviton "wave function'"

(2»)—~i'(2
l q l )

—'i'e„*(q, &1)e„*(q,&1), (2.30)

Re d'q B(q)=—
,f d'c&(p)

«.«{(P. P)' ',.m„2m—„-2}

Lf- qXP- ql.
where q is the graviton momentum, h= ~2 is its
helicity, and e„ is the same as in (2.28). We therefore
find the graviton emission-matrix element

Sp '"(12 V)=Sp II (2») 'i (2lq„l) 'I (8»G)'I

B ln(s/X), (—2.23)

where 8 is the positive dimensionless constant

«-Lf -'*(q.,2&.)7
XE . (2.31)

LP- q.1

B= MB(q)—

8»G «„«„{(p„p„)'—-',m„'m„'}
B(q)=—

2(2»)' —L&-—n. qjL&-—p-. qj

The solid-angle integration (2.24) yields

The rate for emitting 5' soft photons or gravitons

(2 24) with momenta near q1 q& is given by squaring (2.29)
or (2.31), summing over helicities, and dividing by X.
because photons and gravitons are bosons. This gives

(2 25) 1'p.""(q1 qx)d'q1 d'qN

= (1/.v!)rp. II e(q,)d'q„(232)

1+P. ' 1+P.B=—P ««m m ln (2.26)
2» ass p (1 p 1)llew 1 p

with p „the relative velocity (2.17). Usrng (2.23) in
(2.22), we find the cutoff dependence of the rate is

r„=rp:(~/~)p (2.27)

rp '"(q1' ' 'qN)d q1 'd&r''
= (1/-'i") r p- II a(q.)d'q„(2.33)

where rp = lSp l2, and
p p

&(q)=(2 ) '(2lql)-'Z
" "",(2.34)

(f - q) V q)
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(8(») = (2x)-'(2I»I)-'(8xG)

n ri p "p "p 'p 'II~.p. (»)xP
(p- q)(p- q)

Here II„„and II„„,.are the polarization sums

(») =Z+ «(» ~)« *(» ~) (2 36)

11....(») =Z~ «.(», ~)«.(», ~)"*(»,~)
X"*(»,a) (2 37)

%e recall that'

1
rt-(~E)=- 2 ~ ~ ~

sinEfT
6k'~ da--

Qo 0

Xexp(i~ p, o&,}rp.(~i. . .~v). (2.44)

quantitatively, it is convenient to calculate the rate
for the transition a —+ P accompanied by any number
of soft photons with total energy less than E, and with
each individual co„greater than the infrared cuto8 ).
%e use the well-known represen. tation of the step func-
tion to write this rate as

H F v ( I) gp w+ qla~ v+ q v~ la I

~"=-{-»,I»I}/2I»I'
Applying this to (2.42) and (2.43), the photon and

2.38
graviton emission rates are

The qX terms do not contribute to 8(») because charge
is conserved:

1
rs- "(&E)=- SlQE0' ~&4—«'" do, (2.45)

q, Z»~-«.p-"/(p. q) =Z.~.«.=0,
so (2.34) becomes

g„q ee (p. p, )
&(»)= (2 ) '(2I»I) ' Z

nm (p& q) (p q)

1
I'« '"(=E)=-

7r

sinEIT
exp 8

For X~ 0 the co integrals become

8 eke—«*- d . (2.46)

01

&(») = 1(0)/I»I' (2.39)
~ der ~ des—e*-—+ ln (E/X)+ —(e*"—1)+& (X) . (2.47)

where A (g) is given by (2.15). We also recall that'

11....(») =Hii. ,(»)11..(»)+11..(»)11"(»)
-11..(»)11,.(»)}. (2.40)

But again the )q terms in II do not contribute, this
time because energy and momentum are conserved:

Hence (2.45) and (2.46) give for X ~ 0

r,."(~E)= (E/z) "b(A)r,

r,."(~E)= (E/~)'b(2I) r,
where b(x) is the real function'

(2.48)

(2.49)

q. Z. n-p-"p-"/(p- q)=Z ~-p-"=0,

so II„„ in (2.40) is effectively just g„„, and (2.35)
becomes

1 SlllfT

exp
dco—(e'-—1)

(2.50)

8(») = (2 ) '(2 I » I) '(8 G)
n.s~( (p. p~)'-——,'m. 'm„'}

xP
(p- q)(p- q)

or

b(x) 1—~x'x'+

Since A and 8 are positive, the factors (E/X)" and
(E/X)s become infinite for X —+ 0.

6~(») =2I(u)/I»I', (2.41) 5. Cancellation of Divergences

where B(q) is given by (2.25).
The rates for emission of E photons or gravitons

with energies near co~ co~ are given by integrating
(2.32) and (2.33) over solid angles. Using (2.39), (2.41),
(2.14), and (2.24), we find

It now only remains to insert the formulas (2.18)
and (2.27) which display the virtual infrared diver-
gences into (2.48) and (2.49). As promised, all de-
pendence on the infrared cutofI' ) disappears, leaving
us with

Aug do)~rp.'" ((ug u&y)6g dcog = rp.E. (dy GO~

(2.42)

rp "'(~E)= (E/A)"b(A)rp ',
rp "(&E)= (E/A)sb(B)rs '.

(2.51)

(2.52)

B~ c4g do)g
I'p„"((ay (ag)dcug d(ug —— rs . . . (2.43)

X. OPy M,s«r

These formulas show that the integrated photon or
graviton emission rate will contain logarithmic infrared
divergences. In order to display these divergences

We repeat that A is given by (2.16), 8 by (2.26),
b(x) by (2.50), and rs ' is the rate for the process
a —+P without soft photon and graviton emission and
without including virtual infrared photons or gravitons.
The quantity A is an ultraviolet cutoff that has been
used to define what we mean by "infrared, "but (2.51)
and (2.52) show that a change A ~ A.

' just renormalizes
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I'e ' by a factor (A'/A)" in electrodynamics or (A'/A)s
for gravitation theory. Thus it makes no difference how

we 6x A, except that if we wish to estimate Fp ' by
ignoring all radiative corrections it will usually be a
good strategy to fix A equal to some mass typical of the
particles in the reaction a ~ P.

For reasons beyond my ken, Jauch and Rohrlich'
did not 6x A, but instead took A=E. They therefore
missed the energy-dependent factor (E/A)" in (2.51).
The factors E" in (2.51) and Es in (2.52) correctly
represent the shape of the energy spectrum for E
ranging from zero (where I' vanishes) up to some
maximum smaller (though not necessarily much
smaller) than any energy characterizing the process
~ —+ p.

6. Remark

It was crucial in the above that the infrared diver-
gences arise only from diagrams in which the soft real
or virtual photon or graviton is attached to an external
line, with "external line" not including the soft real
photons or gravitons themselves. In electrodynamics
this is true because photons are electrically neutral. In
gravitation theory it is justified because the effective
coupling constant for emission of a very soft graviton
from a graviton (or photon) line with energy E is pro-
portional to E, and the vanishing of this factor prevents
simultaneous infrared divergences from a graviton ar}d
the line to which it is attached.

But these remarks do not apply to theories involving
charged massless particles. In such theories (including
the Yang-Mills theory) a soft photon emitted from an
external line can itself emit a pair of soft charged mass-
less particles, which themselves emit soft photons, and
so on, building up a cascade of soft massless particles
each of which contributes an infrared divergence. The
elimination of such complicated interlocking infrared
divergences would certainly be a Herculean task, and
might even not be possib]e.

Ke may be thankful that the zero charge of soft
photons and the zero gravitational mass of soft
gravitons saves the real world from this mess. Perhaps
it would riot be too much to suggest that it is the
infrared divergences that prohibit the existence of
Yang-Mills quanta or other charged massless particles.
See Sec. III for further remarks in this direction.

/. Another Remark

To lowest order in G, Eq. (2.52) gives the power
spectrum of soft gravitons accompanying a reaction
n~P as

Edi'e (~E)=BI'e 'dF. . (2.53)

This formula could also have been derived in classical
weak-field gravitational radiation theory. LNote that
in cgs units (2.26) will give a dimensionless 8 only if
we divide the right-hand side by 4, But dE= AALU, so

iti does not appear in (2.53) if written as a formula for
power per unit frequency interval. ]

There is no infrared divergence in (2.53), but this is
because it gives the energy rather than the number of
gravitons emitted per second with energy between E
and E+dE. The power spectrum formula (2.53) is
both classical and quantum-mechanical, but the
infrared divergences are purely quantum mechanical,
because it is only in quantum mechanics that we count
individual gravitons as well as their total energy.

Using charge conservation, we may write the divergent
term as

g l8'l Ci

+ lnmi P it„e„=— lnmi.
nysll

(3.3)

Hence quantum electrodynamics would be in serious
trouble if any charged particle had zero mass. ' The
Yang-Mills theory is for these purposes just the
electrodynamics of charged massless vector mesons,
so it also shares this trouble. (We have already re-
marked that a complete treatment of infrared diver-
gences in massless electrodynamics would be enor-
mously more difFicult than for ordinary electrodynamics
or gravitation, but we are vow only considering proc-
esses with infrared photons and no infrared charged
particles, and for these our present formalism is
adequate. )

There are no charged massless particles, so this
divergence in A is of only academic interest. But any
massless particles can contribute to the infrared-
graviton spectral index B. When m&~0 Eq. (2.26)

III. PHOTON AND GRAVITON EMISSION
FROM MASSLESS-PARTICLE LINES

Equations (2.16) and (2.26) seem to indicate that
the soft photon and graviton emission rates become
logarithmically divergent when the mass of one of the
riotiinfrared particles in the reaction is allowed to
vanish. This divergence occurs because the denominator
factors (p q) in (2.15) and (2.25) will vanish for tI

parallel to y if p is zero. However, we will show that
there is a cancellation of these divergences for gravitons,
though not for photons. '

Suppose we let the mass mi of particle one vanish,
but hold its momentum yi fixed. Then Eq. (2.17)
becomes

pi~ ——1—mi'm~'/2(pi p.)'+8(m, '), (till) (3.1)

whe~e pi ——(yi, ~yi~}. For mr~0 Eq. (2.16) gives the
infrared-photon spectral index as

(4(pi'p )
P it„e„1n~

4P 4H i km, 'm')
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gives
giG 4(pi p )'

B=—— —P it„(p„pi) ln
n os''1 ~1 7+~

G t I+P. y——Z ~.~-(p. p.)(1+p..') l
I I (34)
&I—. )

Using energy and momentum conservation, we may
write the divergent term as

2g16 2G
+ (Inm, ) g q„(p. p,)= ——(lnoii, )pio=O. (3.5)

Since this vanishes, oioi in Eq. (3.4) may be replaced
with any convenient mass; for instance the 6rst
logarithm in (3.4) could be written

lnL4(pi p„)'/oa„'J.

I leave it to the reader to show that the same can-
cellations occur when several particles have vanishing
mass.

IV. GRAVITATIONAL RADIATION IN NON-
RELATIVISTIC COLLISIONS

and g„=+1or —1 if e is a 6,nal or initial particle; et„
is the mass of particle n, and p„ is the relative velocity
of particles e and m:

p. —=L1 o—n.'m '/(p. p )'Ji' . (4.7)

If all particles involved in the collision are nonrela-
tivistic then P may be expanded in powers of v„and
v, with v= y/E. —We find

Pnsm= vn +v~ —2vn' vm vn vnP —3(vn' vm)

+2(v.'+v ')(v. v )+ . (4.8)

Also, f(B) may be expanded in powers of p'.

f(p) = '+("/6)p'+ ("/'0)p'+"
Using (4.8) in (4.9) gives

f(P ) =1+(11/6)(v '+v '—2v„v„)
+ (63/40) (v„'+v~')' —(79/30) (v„'+v~')

X (v. v )+(4/5)(v„v„)'+ . (4.1O)

We are keeping terms up to order o' in (4.8)-(4.10),
since the lower order terms contribute only to order e'
in 8 because of the energy and momentum conser-
vation equations:

The rate of emission of energy in soft gravitational
radiation during collisions is

P „ri„m„(1+-',v '+sov„'+ )=0,
Pnq. ol.v. (1+-',vn+ )=0.

(411)

(4.12)

h

E(&A) = E dl'(&E) .
Using (4.10), (4.11), and (4.12) in (4.5), we find to

(4.1) lowest nonvanishing order in s

B= (G/~) L(«/5)Q'Qv+ (94/15) (Q'*)'j, (4 13)
Here "soft" means that the emitted energy E is less
than some cutoff A chosen smaller than the energies
characteristic of the collision process. The rate I'(&E)
for a collision with radiated energy «E was calculated
in Sec. II as

I'(&E)= (E /A) sb(B)I'o,

where
1 ~&q= z ~n gnawn&ng~q (4.14)

and repeated Latin indices are summed over 1, 2, 3.
Since (4.13) is only correct to order e', the velocities in
Eq. (4.14) must be subjected to the nonrelativistic
conservation laws

with B given by (2.26), b(B) by (2.50), and I'o equal
to the collision rate without real or virtual infrared
gravitons. Hence the power (4.1) is

P.it.m. (1+-',v„')=0,
Z n gnolnvn= 0.

(4.15)

(4.16)
&(&A)= (B/(I+B))b(B)&l'o (4 3) Hence Q;; is just the usual Q value

Since B is always very tiny (&10 ') both 1+B and
b(B) are extremely close to one, and we may write

r(gA) =BAI,. (4.4)

Also, to a very good approximation I'0 may be calcu-
lated as the collision rate ignoring gravitation
altogether.

For our present purposes it will be convenient to
write Eq. (2.26) for B as

Q,,= —P ot.ohio. . (4.17)

Also, (4.16) makes Q;; invariant under the Galilean
transformation v„—+ v„+u, so 8 may be computed in
any convenient reference frame.

As an example, consider nonrelativistic elastic two-
body scattering. W'e find here

Q;,Q,;=sip'v' sin'8„

;;=Q,

where

B=(G/~) g ~„m„& ~i„f(p„„),

1+P' 1+P '"
f(p) = ln—

2P(1—P')'" 1 P-—(4.6) B= (8G/5or)iioo sin'8, . (4.18)

(4.5) where ii is the reduced, mass, v=
~
vi —vo~ is the relative

velocity, and 8, is the scattering angle in the center-of-
mass system. Thus Eq. (4.13) gives
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The rate for such collisions per cm' per sec is
rmils(do/dQ), where ei snd N2 are the number densities
of particles 1 and 2. Hence (4.4) and (4.8) give the
total power emitted in soft gravitational radiation
attributable to 1—2 collisions as

86 do
P(KA) = p'—e'ninsVA —sin'8+0, (4.19)

5x dQ

with V the volume of the source. For practical purposes
we may generally define "soft" radiation by taking
the cutoff A at half the relative kinetic energy

A gpv (4.20)

Everything in the universe is transparent to gravitons,
so (4.19) may be used directly to compute the thermal
gravitational radiation from any hot body.

Ke will use these results to estimate the thermal
gravitational radiation from the sun. By far the most
frequent collisions are the Coulomb collisions between
electrons and protons or electrons. In this case we may
take

(4.21)

Also, the integral in Eq (419) is nothing but the
familiar diQ'usion coefFicient, and as is well known' can
be estimated as

sin'8 Q=
dQ

lnAg),
(3KT)'

(4.22)

where e is now unrationalized, and A~ is the ratio of
the Debye shielding radius (used to cutoff the integral)
to the average impact parameter. Putting together
(4.19)—(4.22), we find

Po = (32/5)G(3KT)'t'm, '"n,'Vo—e'(hc') ' ink~. (4.23)

Ke did our calculation in natural units with k=v=1,
but we have supplied a factor (hc') ' in Eq. (4.23) to
convert it to cgs units. In the sun's core the parameters
in (4.23) take the values"

T 10~ 'I
n~3X1025 cm ',

Vo—2X 10"cm',

lnAg)~4.

V. PHASE DIVERGENCES

It is well known that the Born series for the Coulomb
scattering amplitude gives divergent integrals beyond
the first order. Dalitz" has studied the scattering by a
screened potential

V (r) = (eien/4sr)e-"" (5 1)

and conjectured that the ln) term found in second
Born approximation might represent the beginning of
a series whose sum is a phase factor

zeye2
ln)exp

2' ]2
(5 2)

which would correctly represent the cutoG dependence
for X —+ 0, and would not affect the cross section. This
is very reasonable, but to my knowledge it has not been
proved. I will show here that this conjecture is correct,
and has an almost trivial extension to any process
involving any number of relativistic or nonrelativistic
particles of arbitrary spin.

The divergences in the nonrelativistic Born series
for Coulomb scattering are obviously not the same as
the ordinary infrared divergences, which depend on
retardation effects, i.e., on the iir6(q') term in the photon
propagator. However, Eq. (2.11) shows that the full
e6ect of virtual infrared photons is to contribute to the
S matrix for any process a ~ P a factor

the city of Berkeley, it nevertheless compares favorably
with the gravitational radiation from previously con-
sidered classical sources like planetary motion. A
planet of mass m moving in a circular orbit of radius R
around a star of mass M emits gravitational radiation
with power

P= (32/5)Gc 'm'R4(GM/R')' . (4.25)

For the Jupiter-Sun system this is 7.6X10" erg/sec.
Venus and the Earth radiate comparable amounts, and
the other planets considerably less, so the thermal
gravitational radiation (4.14) from the Sun appears to
be the dominant source of gravitational radiation from
the solar system. A binary star like Sirius A and B
radiates more classically —in this case Eq. (4.25) gives
SX10i4 erg/sec —but it also radiates more thermally.
Thus thermal collisions possibly may provide the most
important source of gravitational radiation in the
universe. I have no idea what it is good for.

The solar gravitational radiation power is then

Po~6X 10'4 erg/sec. (4.24)

Although this is not much more power than used by

Sp 1
= exp — d'q A (q)5p' 2

(5 3)

' See, e.g., L. Spitzer, Jr., Physics of FulLy Ionized Gases (Inter-
science Publishers, Inc., New York, 1956), Chap. 5.

~ These parameters apply to the inner ~«of the sun's volume.
The Grst two are from M. Schwarzschild, Stnccture and Evolution
of the Stars {Princeton University Press, Princeton, New Jersey,
1958), p. 259. The last is from Table 5.1 of Ref. 9.

The real part of A(q) gives the familiar infrared-
divergence factor (X/A)"" which is eventually cancelled
by real soft-photon emission processes. But A (q) also
has an imaginary part, and we shall find that it is this

"R. H. Dalitz, Proc. Roy. Soc. (London) 206, 509 {1951).
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Sp

Sp'
=exp -P e„e rt rt (p p )J, (5.4)

2(2s)' ~~

that accounts for the ink terms in the nonrelativistic
Born series.

Referring back to (2.10), we see that (5.3) may be
written as

In both (5.6) and (5.7) we find a real term which, if
we now reconverted from a photon-mass cutoff to an
energy cutoff, would contribute to (5.4) the real factor
(X/A)'~' Lsee (2.14) and (2.15)1.This X dependence is
then cancelled by real-photon emission, and does not
interest us in this section. But (5.7) shows that (5.4)
will also contain a divergent phase factor

A d4q
J =—i~

~ ~ ~
~ ~. (5.5)

V+&' ieXP—. q is-i J—LP- q+in-i j
5ea i eaem

=ii'exp lnl —+2)
Se ' ~~ 1&r p EX'

(5 g)

We are still using an ultraviolet cutoif ~q~ ~A to
separate the infrared from the noniofrared virtual
photons, but in order to facilitate the comparison with
(5.2) we are now using a photon mass X in place of the
infrared cutoff X~ ~q~.

The integrand of (5.5) is analytic in q' except at the
four poles

=GO Z6 t q = —cv+M,

~(«.—q u.)(« —q p-)

(for q„=—
rt = &1). (5.6)

On the other hand, if particles I and m are both out-
going or both incoming, then the poles at v„q—jq„~
and v q+iit e lie on opposite sides of the real q' axis,
and we cannot avoid a contribution from one of them
whichever way we close the q' contour. We now have,
after some elementary integrations,

~(«.—q. u )(« —q p-)
2ilr3 A2

+ 1n —+1
L(p„p„)'—m„'I„'$'"

(for n„=rt„=a1) . (5.7)

q =v„q—zit~e, q =v q+zit e,

where r»= (q'+X')'" and v=—p/E. Also, we may close
the q' contour with a large semicircle in either the upper
or the lower half-planes. If particle e is outgoing and
ns is incoming then q„=+j., 7' = —1, so by closing the
contour in the upper half-plane we avoid the con-
tributions from the poles q'=v„q —i'„e or q'=v q
+iq e. Similarly, if n is incoming and m is outgoing
we can avoid these two poles by closing the contour
in the lower half-plane. In these two cases it is only
the poles at q'= + (cv—ii) that contribute, and we find

purely real:

where p„ is the relative velocity

i e„e
exp — ln (X/A)

4n.
(5.10)

In two-particle elastic Coulomb scattering this factor
occurs in both the initial and 6nal states, and therefore
accounts for Dalitz's conjectured phase factor (5.2).
The phase factor (5.10) is correct coen if particles n and
rn are relativistic and/or haec spin

It hardly needs to be said that a similar result holds
for gravitation. Each di6erent particle pair in the initial
or 6nal state contributes to the S matrix a divergent
phase factor

Gni„nt (1+P„') X

P t 1 P i)1/i
(5.11)

These results might have some practical application
to the calculation of scattering by potentials with
Coulomb tails. Such potentials may be cut oB as in
(5.2), and we will then find 1nX terms in each order
beyond the 6rst. But however complicated the potential
is at small distances, these ln) terms will always sum
to phase factors (5.10), and can therefore be removed
in a systematic way.
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p-=&(p. p-)'- -' -'&'I /(- p- p.), (5.»
and the prime reminds us that the product runs over
particle pairs with g„=g, i.e., both in the initial or
both in the final state. In (5.8) the pairs nni and nin
are counted separately, so each dhgerent pair of particles
in the initial or final state contributes to the 5 matrix a
phase factor which for X((A may be written


