COUNTING AND INTENSITY-CORRELATION EXPERIMENTS

further discussion of the notation]

(F*(1)F(2)e= *91) /(@)

X f P (n(x-+ir, n(x—3r, )
Xexpliplh(Git9—R] 1), (113)

where R is a vector from the fixed reference point in the
target to a fixed point in the source and (n(x’,t1)n(x,t2))
is the Van Hove correlation function for the target.
The quantity Qr(12) in Eq. (7.12) is

a3z
0r(12)= / —explip@e-00-2], (114
T

integrated over the volume of the target.
The quantity (7.9) now becomes

(AG12)=(AG12),l s, (7.15)
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where I g is defined by Egs. (2.31), but with Q(12) re-
placed by Qr(12) and thus T replaced by the target
area Tp in (2.31b), and

(G)o(Ga)o [ @y [ diy
(AGa) = A0 f . / : / dede
1 2

G162 21wy J 2 Zows

X g(w)g(w) By(w'—w) By(w—w’) exp{i[(g—¢')(y2— 1)

— (0= )(T2—T) ]} [(F*(1)F(2)):| 2. (7.16)
Fluctuations in
(Gav)=T[{G1){(G2)+(AG12)] (7.16)

may be evaluated from the general analysis of Sec. IV.
When the target is large enough that 771, we may use
Eq. (5.1) to evaluate these. The detector efficiency may
be taken into account by including in (Gi), and (Gs)o
an efficiency factor (or factors) #, as in Eq. (2.20b).
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This paper gives formulas for position operators that apply uniformly for all spins of particle. The three-
vector X, of the Newton-Wigner and Foldy type, is treated first. Then it is shown that, although X has
complicated Lorentz transformation properties, it is linearly related to a certain four-vector ¥, which is
built up from the Poincaré group generators. The four-vector is the generalization of the classical notion of
the component of the position four-vector in the direction perpendicular to the world line of the particle.

I. INTRODUCTION

ECENTLY a formulation of the theory of a free
particle with mass and arbitrary spin was given!
in which there is such a complete parallel with Dirac’s
theory for an electron-positron that all the known dis-
cussions for a spin-} particle can be extended to particles
with higher spins. The purpose of the present paper is to
make this extension for the study of position and to
develop formulas for three-vector and four-vector posi-
tion operators that apply uniformly for all spins.

The special features of the description of free particles
developed in Ref. 1 are that there are no auxiliary condi-
tions on the wave function and that the wave-function
components are spinors, so that the value of the wave
function at a point in space-time in one Lorentz frame
determines the value in all Lorentz frames. It is closely

* This research was done in the Ames Laboratory of the U. S.
Atomic Energy Commission.

!D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.
Rev. 135, B241 (1964).

related to Weinberg’s? formulation and Foldy’s.® In fact
there is an operator, which is a generalization of the
notion of the rest-to-lab Lorentz transformation, which
carries Foldy’s wave function into the wave function of
Ref. 1. Consequently properties of operators in Foldy’s
theory can be similarity transformed into the present
formulation.

For many of the observable quantities, such as
momentum, energy, and angular momentum, the corre-
sponding operators are simply the inhomogeneous
Lorentz group generators. The situation is not so
straightforward since position and other considerations
have to be made. Desirable properties for a position
operator X are that (i) it should be Hermitian with
respect to the appropriate Lorentz-invariant inner
product for each spin; (ii) it should fulfil the commuta-

tion rules
[X,X;]=0, (1)
[Xupil=1s;, (2)

*S. Weinberg, Phys. Rev. 133, B1318 (1964).
3L. L. Foldy, Phys. Rev. 102, 568 (1956).
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where p is —iV; (iii) it should be charge-conjugation
invariant; (iv) the time derivative should be the
relativistic velocity, the ratio of the physical mo-
mentum to the energy; (v) it should be a polar vector
with respect to rotations and space reflections and
should be invariant under time reflections; (vi) the
operator should be defined separately on the particle
and antiparticle states; and (vii) it should be well
defined in the rest system of the particle.

Newton and Wigner* have shown that, for given finite
mass and spin of the particle, such a position operator
exists. Physically speaking there is just one operator of
this type since, as shown by Bargmann and Wigner,®
there is just one theory of such a particle, the complete
set of states in one formulation being related to the
complete set in any other formulation by a unitary
transformation. Nevertheless it is of interest to find
explicit formulas for the operators and this is the
problem considered in this paper. The operators given
below are to some extent more general than those of
Newton and Wigner since they apply to a system which
includes both particle and antiparticle.

The operator satisfying all the requirements is given
in the next section. It is produced by making the
similarity transformation of Foldy’s position operator,
the coordinate x in his representation. For spin % the
operator is the Foldy-Wouthuysen® mean position.

In Sec. III a four-vector operator ¥, is defined in
such a way as to permit separating the generators of
the homogeneous Lorentz group into an orbital part
and a spin part that are each conserved tensors. The
operator is closely related to Finkelstein’s” position
operator. It does not have many of the desirable
properties of the three-vector operator. In Sec. IV it is
shown that Y, is to be interpreted as the component of
the position four-vector perpendicular to the world line
of the particle.

As well as the authors mentioned above, Pryce® did
much of the original work on position operators.
Recently Berg? has discussed the three-vector for posi-
tion in terms of Poincaré group generators. Jordan and
Mukunda®® have exhibited three-vector position opera-
tors for particles of arbitrary spin which satisfy many
of the requirements listed above. They construct the
operators by making a certain unitary transformation
of the Foldy position operator. Their operators are
different from those defined in this paper since they are
designed to act on a different wave function. Fleming!

(1;‘;1‘9.) D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
5V. Bargmann and E. P. Wigner, Proc. Natl. Acad Sci U. S.
34, 211 (1948).
¢L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
7R. J. Finkelstein, Phys. Rev. 75, 1079 (1949).
8 M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 62 (1948).
9 R. A. Berg, J. Math. Phys. 6, 34 (1965).
T, F. Jordan and N. Mukunda, Phys. Rev. 132, 1842 (1963).
11 G. N. Fleming, Phys. Rev. 137, B188 (1965).
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recently has defined four-vector position operators
starting from different considerations from those used
here.

II. THREE-VECTOR POSITION OPERATOR

The notation used below is the same as in Ref. 1.
Especially the 2(2s+1) spinor components of the wave
function ¢ are related to the Foldy wave function ¢ by

Y (x)=mE3S¢(x,1), ©)

where E is the positive square root of (m?+#?) and the
operator .S is defined and discussed in Ref. 1. There is
a corresponding connection between an operator Oy
that acts on the functions y and an operator Oy that
acts on the functions ¢,

Oy=E3504S-1E2, 4
The equation of motion is
Hyp=id/0t, ®)
where
Hy=BE. (6)
The Hamiltonian for y is then found from Eq. (4) to be
H=SBES™; ©)

formulas for it are given in Ref. 1 for spins up to §. The
inner product is defined by

O )= / dx 610 (£)6 (3 | ®)

and it is known to be Lorentz invariant. Operators O,
that are Hermitian in the usual sense are related by
Eq. (4) to operators Oy that are Hermitian in the sense

that
O Py m)=®,00™). )
The three-vector operator for position is defined by
X=E-1SxS1E?, (10)

since then the desirable properties listed in the Introduc-
tion are satisfied. Since x is Hermitian in the usual sense,
Xis Hermitian in the sense of Eq. (9). Also for x it is true

that
[x:iy2;]=0, (11)
[xi,p;]=18:;, (12)
i[BEx]= (p/E)B, (13)
[8,x]=0. (14)

Equations (11) and (12) yield the commutation rules
[Egs. (1) and (2)] correctly. Equation (13) corresponds

to
ilH,X]=(p/E)(H/E). (15)

Since p(H/E) is to be identified as the physical mo-
mentum and E as the physical energy, this equation
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implies that the velocity dX/d¢ is the momentum divided
by the energy. Equation (14) implies that

[H/EX]=0, (16)

so that the operator is defined separately on the positive
and negative frequency states. Without this property it
would be impossible to assign the position of a state at
the same time as its particle-antiparticle character.

A general formula for X, applying for all spins, can be
derived from some previously established properties
of the Lorentz group operators. For infinitesimal pure
Lorentz transformations the generators are known to be?

Gy=xH—tp—ise, a7
Gy =xEB—3i(p/E)B—tp+ (m+E)7'pxsB. (18)
These results may be substituted into Eq. (4) and Eq.
(10) used to introduce X on the right. Also the quantity

SBsS—! that occurs on the right is the polarization
operator O for which the formula

O=m"(isa xp+sH)—[mE(E+m)'s-pHp (19)

applies for all spins.2 One can therefore solve for X,
obtaining

X=x+[m(E+m)'s xp— (isaH/mE)
+i[mE*(E+m) I 'se-pHp+ (ip/2E%). (20)

This is closely related to a result of Berg’s.? From this
form one sees that the operator is well-defined in the
rest frame in the sense that it has a definite limit at
p=0. It is clear that X is a three-space vector and, since
@ is polar and s axial, that X is regular under space
reflection. The invariance under time reflections and
the charge-conjugation invariance follow from the

facts that
v:8XBys=X, (21)
cX*C=X, (22)

which are easily verified using the detailed properties
of the matrices given in Ref. 1. It is necessary for a
physical operator O to be charge-conjugation-invariant
in the sense that

Cclo0*C=0 (23)

in order that the identification of physically observable
quantities with operators be independent of whether
the particle or antiparticle is preferred. This does hold
for the energy E, momentum (H/E)p, and angular
momentum (H/E)(x xp+s).

In terms of the position X of Eq. (20) and the
polarization O of Eq. (19), the total angular momentum
can be written as

(#/E)(x xp+s)=Xxp(H/E)+O0. (29

The two terms on the right separately commute with H.
For spin zero Eq. (20) specializes to

X=x+(ip/2E?). (25)

2 A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento
36, 1303 (1965).
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This operator is defined for all states, both positive
and negative frequency. It is closely related to the
Newton-Wigner operator, which they defined for
positive-frequency states alone. Their operator is
defined by

anw=1V,— (ip/2E?), (26)
operating on positive-frequency momentum-space func-
tions ®(p). The functions are related by

1
- (2.”)3/2

dp
bro=— [ Za@eoero, @)

to coordinate-space wave functions ¢ that are Lorentz
scalars satisfying the Klein-Gordon equation. Apply-
ing gqnw to the momentum space function ®(p) is
equivalent to applying the coordinate-space operator

Xxw=x+(ip/2E?) (28)

to ¢rg. The operator X acts on the two-component
functions!

1 xG
y=— . (29)
V2\iE13¢rg/0t
If the discussion is restricted to the positive-frequency
states, so that ¢E19/9¢ is unity, then X and Xyw
are identical.
For spin 3, Eq. (20) leads to

X=x+ (iBe/2E)
—[2E*(E4m) ' [:Be-pp+o X pE].

This operator was first studied by Pryced and it is the
Foldy-Wouthuysen® mean position operator. Also
the positive-frequency projection of this operator
coincides with the Newton-Wigner spin-} position
operator when their operator is converted into a co-
ordinate-space operator by replacing (iV,—ip/E?) by x.

For higher spins the explicit formulas become more
complicated, for example for spin 1

X=x+(ip/2E*)+ (iBa/m)—[mE(E+m) 2E—m2) ]
X[(2E*+2Em~+m?)iBa-pp— 2iE(a-p)*p]
+[m(E+m)]s x p—[m(2E2—m?) ]

X2[iEee-p+B(axp)s-p]. (31)

Since X, (H/E), and O, all commute one can find
functions that are simultaneously eigenstates of all of
them. To get explicit formulas for such states, one can
start from the states

(30)

=17¢,:5(X—Xo),

which are eigenstates of 8, 8s,, and x with eigenvalues ¢,
k, and xo. Then the functions

Y=m*E-1Sy, 15 (x—X,) (32)
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are eigenfunctions of H/E, O,, and X with the same
eigenvalues. Here S for any spin can be found by the
procedure given in Ref. 1.

III. FOUR-VECTOR OPERATOR

The operator X has complicated Lorentz transforma-
tion properties. However it is linearly related to the
four-vector operator ¥, which, as shown in Sec. IV,
is the generalization of the classical notion of the com-
ponent of the position four-vector normal to the world
line of the particle.

In Eq. (24) X was used to decompose the total
angular-momentum operator into orbital and spin parts
that are separately conserved. The operator ¥, is found
when a similar decomposition of the Lorentz angular-
momentum tensor is made, separating it into an orbital
part and a spin part that are separately conserved.

The generators of the Poincaré group for the wave
function y are

pu=—10/0%,, (33)
Mu=2,p— %pu+Nw, (34)
where N, is defined by
Nij= €ixSk,
Niy=—Ny=sai, (35)

N“:O.

The matrices N, can be expressed in terms of the
covariantly defined matrices of the type introduced by
Barut, Muzinich, and Williams.’* For spin zero N,
is zero; for spin % it is

Nuw=—3 V= v74). (36)

For spins 1 and 4 the matrices are
Nuw=—3YusYor—VrsYon) (37)
No=—3%5VupsYor—YroeYoou) » (38)

where the #,, are defined in Ref. 12 and the 1v,,, are
defined by Shay, Song, and Good.!*
The commutation rules for the generators are

[pu0r1=0, (39)
[MI")MPW] = i(5,.,M,,+ a:prv

- 6rpMﬂl_ 5.,M,,,.) ’ (40)

[M nw?p] = i(snp?v_ 5.,?,.) . (41)

Here p.p. commutes with everything and may be
replaced by —m?2
The decomposition of the angular-momentum tensor

13 A, Q. Barut, I. Muzinich, and D. N. Williams, Phys. Rev.
130, 442 (1963).
1 D. J. Shay, H. S. Song, and R. H. Good, Jr. (unpublished).
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is
M= Y#P'_ Y'?M+Rﬂn (42)
where the four-vector operator is defined by
V=~ 1/2m)[Myp0,]+, (43)

and R,, is a polarization tensor given in terms of the
generators by

R,.,= —m2 (Mper+Mpu?V+M'ppn)Pp .

Here Y, satisfies

(44)

Yﬂ?n'*'?uyn =0,

and it is related to a type of position operator first
discussed by Finkelstein? (it lacks his proper time
term). A similar decomposition of the angular-momen-
tum tensor was discussed by Bacry,'s although the
components of his position operator commute with
each other. Equation (42) does not specify ¥, uniquely
and would still hold if a term proportional to p, were
included in the definition of Y ,. Shirokov’s'® operator
— (/m*>M ,,p, differs from ¥, by such a term. How-
ever such an additional term would give the Y, un-
desirable Hermitian or time-reversal properties, as
discussed further below. The polarization tensor R,, is
antisymmetric and R,,p, is zero. The tensor in brackets
on the right in Eq. (44) was discussed by Bargmann and
Wigner.5 Its components are the generators of the
little group, and they lead to the Pauli-Lubénski!?
invariant. They are independent of x, and in fact, if
Eq. (34) is used, then Eq. (44) simplifies to

Ry=—m"? (N whe TN pn?'+vaPu)Pp .

Some properties of the polarization tensor for arbitrary
spin of the particle were derived recently by San-
karanarayanan and Good? and by Hilgevoord and
deKerf.1®

The commutation rules for ¥, are found to be

(45)

(46)

LYY, ]=imM,,, (47)
EYmPv] = i(auv'*' mp u?v) , (48)
[MI‘” YP]= - isvpyp+'i5npyr- (49)

From Egs. (40), (47), and (49) it is seen that M, and
Y, satisfy the commutation rules for the generators of
the deSitter group.!®

For some purposes it is appropriate to introduce the

15 H. Bacry, J. Math. Phys. 5, 109 (1964).

!¢ Ju. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 21, 748 (1951)
[English transl.: Soviet Phys.—JETP 6, 664 (1958)7].

1 J. K. Lubénski, Physica 9, 310 (1942).

18 J. Hilgevoord and E. A. deKerf., University of Amsterdam
report (unpublished).

¥ See, for example, F. Giirsey, in Group Theoretical Concepts
and Methods in Elementary Particle Physics, edited by F. Giirsey
(Ggg(slon and Breach Science Publishers, Inc., New York, 1964),
p- 365.
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operators p, and M,,

Du= (p)iH) ) (50)
M= Mij=x:pi—xipit €iinse, (51)
M54= -—]l_l4,-=iG.;,j=ixjH—itp,-+sa,-. (52)

These are produced when i9/d¢, as it occurs in the
generators, is moved to the right and replaced by H.
Consequently, when acting on solutions ¢ with the
correct time dependence the barred operators are
equivalent to the unbarred. Carrying on this idea, one
defines

(53)
(54)

Yu= - (1/2m2)[ﬂup7ﬁﬂ]+ ’
an': —m2 (Muvpp"'ﬂpuﬁv'l'ﬂwﬁu)ﬁp .
The barred quantities satisfy relations similar to those
of the unbarred; especially Egs. (39) to (42) and (45)
to (49) apply to the barred operators as well as to the
unbarred. The R,, above coincides with (H/E)R,,
of Ref. 12. _
The generators M, and P, are integrals of the motion
in the sense that

de/dt= {Hﬂn-]'i' (a/at)Mm= 0,
dp,/dt=0.

(55)

Consequently any operator built from 7, and M,
also is conserved, expecially

d¥,/di=0. (56)

This result emphasizes that ¥, should not itself be
interpreted as the operator for the position of a particle.

It is known that the operators p, H, J, Gy are Her-
mitian in the sense of Eq. (9). Consequently ¥; is
Hermitian and ¥, is anti-Hermitian. The operators ¥,
have the same time-reversal properties as a position
four-vector:

Y,.(0)=BysC T *(—)CvsB.

One can see now that, if an extra term ap, were in-
cluded in the definition of ¥, [Eq. (43)] the Hermitian
property of ¥, would be destroyed if @ were imaginary
and the time-reversal property would be destroyed if ¢
were real.

The relation between ¥, and X; is

Yi=Xot @m?) ' [(X;pi— tH) pitpi(p;X,— 1H) ]

—[m(E+m)]1(H/E)e:xp;Or, (57)
Vi=it+ @m®) [ (X,;p;—tH)iH
+iH (p;X;—tH)]. (58)

One can verify this result by expressing ¥, in terms of
Gy, X, H, and O, using Egs. (53), (51), (52), and (24),
and then operating from the left with S—1E} from the
right with E-3S. The similarity transformation converts
the four operators above into Gy, x, BE, and 8s. Actually
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¥, depends on X and ¢ only by way of the time-
independent operator

X°=X— (p/E)(H/E)t;
in detail one finds that

V=X 04 2m) [ X pipit pipiX 1]
—[m(E+m)]7 (H/E)€ijupOr,
V= Qm) [ X piH+iHp; X ].

Thus the value of ¥, depends on the starting value of X.

IV. DISCUSSION

The interpretations of the operators X and ¥, are
clarified by considering the properties of a free spin-
less particle in classical (nonquantum) relativistic
mechanics.

Let X, be the four-vector (Xa,it) where Xq(f)
is the position of the particle as a function of time.
The motion satisfies

dX./dt=q/E, (59)

where q and E are the physical momentum and energy
constants of the motion. Here q and 7E are components
of a four-vector g, with

Qugu=—m?*. (60)
The vector Y, defined by
YVou= clu+m.'2(XclrQr)q» (61)
is orthogonal to g,,
Yoq,=0, (62)

and is to be interpreted as the component of X,
normal to the world line of the particle’s motion. Since
the world line is straight it is clear geometrically that

dy ,/dt=0. (63)

In the quantum theory X has all the properties
described in Sec. I and is identified as the operator cor-
responding to X... The velocity as given in Eq. (15)
agrees with Eq. (59) since p(H/E) is the operator for the
physical momentum gq. However, unlike (X,,i),
(X,it) is not a Lorentz four-vector. The operator Y,
defined by Eq. (43) in terms of the Poincaré generators,
corresponds to the classical concept Ve,. They are
each four-vectors, they each have orthogonality condi-
tions with g,, Egs. (45) and (62), and they are each
constant in time, Egs. (56) and (63). Also the relation
between ¥, and X, [Egs. (57) and (58)7, coincides with
the relation between Vo, and X., Eq. (61), except for
commutators and a contribution from the spin.
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