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A quantum-mechanical analysis is made of the experimental accuracy to be expected for particle-counting
and intensity-correlation experiments. The mean-square fluctuation for an ensemble, consisting of a large
number of experiments each conducted over a time interval T, is calculated.

I. INTRODUCTION

CRUCIAL element in the design of experiments
~

~

is a careful estimate of the fluctuations to be ex-
pected in observed counting rates. These fluctuations,
which determine a limitation on the accuracy of particle
flux measurements, are conventionally and ordinarily
quite correctly discussed in terms of purely classical
concepts involving random arrival times. Recent inter-
est in coherent and partially coherent beams and in
rather elaborate correlation experiments suggests that
a quantum theory of fluctuations may be useful.

The present paper is a sequel to an earlier one' in
which the theoretical basis for observing fluctuations
and particle correlations was analyzed. %'e are con-
cerned here with the accuracy of such measurements,
namely, the counting times required to measure fluctua-
tions and correlations to within specified limits.

We begin by considering a conventional experiment
with a single detector which counts, say, V particles
during the course of an experiment. One ordinarily
says that this observation is subject to fluctuations of
order E'~'. We study the quantum corrections to this
estimate in Sec. III.

Our principal concern in this paper is with a study of
the accuracy of experiments designed to observe fluctua-
tions and correlations in particle beams. We have in
mind such techniques as that of Hanbury-Brown and
Twiss' to study photon correlations, that of Goldberger,
Lewis, and Watson' to measure the phase of scattering
amplitudes, those to measure spectral line shapes, 4 ' etc.

In order to make this paper reasonably self contained,
we summarize the relevant results of I.
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(2.1)

where S is the appropriate symmetrization operator for
Bose-Einstein or Fermi-Dirac statistics. We continue
to suppose, as discussed in I, that the beam is incoherent
in the sense that the 4; have random phases. '

The flux of beam particles, averaged over an ensemble
of many experiments, is assumed to be constant through-
out the interval T. At a distance y from some con-
veniently chosen reference point 0 in the source (or
target, if a scattering experiment is being considered)
the flux is (see Fig. 1)

F(y) =Ra/4~y', (2 2)

where R~ is the equivalent isotropic source intensity
(expressed in particles emitted per second) in the direc-
tion of y. The flux of particles having an energy Aced in
the interval hdco is written as

d~ =~()')g(~)d~, (2 3)

FIG. 1. A simple particle
counting experiment illus-
trated.

Source

7 A detailed analysis of this and of the beam wave function
+{0)has been made by S. K. Ma (to be published}.
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II. NOTATION AND GENERAL DESCRIPTION

We shall follow the notation introduced in I.During a
time interval T, long compared with transients, par-
ticles in a beam are counted. These may be radiated from
a source (like a hot gas or radioactive sample), a par-
ticle accelerator, or particles scattered by a target. In a
given experiment there will be n such particles, having
individual wave functions C;(x;,t) (t'= 1, 2, rt) Here.
x; is the coordinate of the ith particle and t is the time.
The wave function describing the beam is then, at
time t=0,
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where the spectral function g(co) is normalized to unity As in I, we represent the counting rate of detector
"1"by the counting-rate operator, at time TI,

g(ce)des= 1.

The "beam width" dao~ is de6ned as

——1

dcoI g(cd)j'

(2.4)

(2.5)

diiL1(T1 $1) d $1Y(3 i)
OO

n

&& p ecxcccb(y —x,)e ixc" (2 10)
/=1

gy—:Yy+ lip . (2 g)

It will be convenient, but not essential to the argu-
ment, to assume in this paper that the source and de-
tectors are small in the following sense: We shall sup-
pose that the magnitude of the vector D=u~+Yj —s
may be written as

(2.9a)

except when D appears in an oscillating exponential. In
the latter case, we write'

D—Fl+ Fl. (nl —s)+(2F1) '

&&((» —s)' —I.F (n —s)j') (2 9b)

We shall assume that the mean beam Aux is uniform
over the face of the detector' so that

F(yi)=P(Yi) .

The approximations (2.9) provide convenient algebraic simpli-
Gcations for many of our expressions. The reader is cautioned,
however, to verify these approximations for speci6c applications
before using them. g Eqs. (2.9) are not valid, the general expres-
sions may be easily written down, but may lead to cumbersome
integrals to evaluate.

9 This approximation is not made in developing our general
theory, but just in obtaining speci6c illustrations.

The mean speed and momentum are written as

V =mean speed of beam particles, (2.6)

p= mean momentum of beam particles. (2.7)

We shall assume that the beam width her~ is narra
in the sense that we can neglect the dispersion in par-
ticle velocities while they are crossing the counter, or
counters. By the same token wave-packet spreading
may be neglected during the detection process. LThe re-
striction to a narrow beam spectrum may be removed
from our analysis with only trivial modification of our
expressions as long as the detection process limits the
frequency interval of coherent interference eHects. An
illustration of this point is provided by Eqs. (5.7) and
(5.8) of I.)

Let us suppose that the beam Aux is measured by a
detector "1,"as illustrated in Fig. 1. For simplicity, we
assume that this has a uniform thickness m~ and sur-
face area Z~ normal to the beam direction. A convenient
point in the detector will be labeled as Y~. A vector from
the chosen reference point 0 in the source to an arbi-
trary source point is written as s. Similarly, a vector
from the point 7~ to a point in the detector is u~. We
de6ne

Here A. & is the kinetic-energy operator for the 1th beam
particle, so expLiItctijxc expI cEcri—] is its position
vector in the Heisenberg representation. The function

yi(yi) is introduced to take account of the detector
calibration. The integration over yi in (2.10) extends
over the active volume of the detector. The function
Li(r) is introduced to represent the detector's transient
response characteristics.

For a uniform detector having 100% efficiency and
calibrated to measure the total beam Aux striking the
area Z&, we evidently have

'Yi= 1/ro&. (2.11)

Since the gain setting on the electronics is irrelevant, as
long as the detector has been calibrated, we shall assume
(without loss of generality) the calibration (2.11).We
shall then take account of the actual detector efficiency
by supposing that the cruxes of particles appearing in our
expressions represent measured, rather than actual
cruxes. That is, we shall formally treat our detectors as
having unit e%ciency and later correct for limited
e%ciency by a reinterpretation of our calculated Quxes.

Continuing to follow the notation of I, we give the
transient response function Li(r) the Fourier integral
representation

dQ
Li(r) = —Bi(Q)e

—'"'
2g

(2.12)

A transient response time hr„ for the detector is defined
by the equation

dQ—
I Bi(fl) I'Ar„2x (2.13)

The mean counting rate during the experiment is

(G )=((+(0)G (T )+(0))) (2.14)

(Gi) =Bi(0)xiF(Yi) . (2.15)

"Recalling the remarks made in connection with Kq. (2.11),
we shall eventually insert a numerical factor into the right side of
Kq. (2.15) to take account of the detector efBciency.

Here the symbol "( . )" on the right represents an
ensemble average over many observations. By hy-
pothesis, (Gi) is independent of the time 2'i in the
interval T.

For the "calibrated detector" defined by Eq. (2.11)
we have'o
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or
Bg(0)= 1,

Bg(0)=0,

(2.16a)

(2.16b)

To be consistent with Eq. (2.11)we shall always assume
either that

Detector

C,
Delay line

( Correlator

FzG. 3.A measure-
ment of the autocor-
relation function.

x(1)= (C'y*(yx, 4)@;(yi,4))
=h's/ny P. (2.19)

Here iV& is a constant, seen from Eqs. (2.2) and (2.15)
to be

rV~ =Rs/kr V (2.20a)

To take account of the actual eKciency g of the de-
tectors we shall replace Eq. (2.20a) by

1V~= g(R~/4n. V) . (2.20b)

The detector thickness ze1 must be dehned a little
carefully. If the particles are stopped in a distance small
compared to the actual physical thickness, we should
interpret m1 as the mean range of the stopped particles.
The principal significance of wq is that wq/V represents
a spread. in arrival times. If machining accuracy and de-
tector alignment errors lead to an effective wq/V larger
than that associated with the stopping distance, we
determine m1 from these.

To describe a particle correlation experiment we in-
troduce a second detector, "2,"as in Fig. 2, located at
V2. The outputs of the two detectors are multiplied to-
gether in a correlator, after passing one of them through
a delay line having a delay time 7. The output of the
correlator is represented by the operator

Ger(T2, Tg) = Gm(T2)Gg(Tg), (2.21)

where T2= T1+v and 62 is described by an expression
like Eq. (2.10) for Gz but with subscript 1 replaced by 2.
%e are tacitly assuming that the situations of interest

corresponding to a dc blocking 6lter being placed in the
detector output. The flux corresponding to B~(0)=1
will be denoted as (Gq)0, that is,

(G &o—= (G )/B (0). (2.17)

An explicit evaluation of (G~), Kq. (2.14), was given
in I in terms of the beam wave function, Kq. (2.1),
where we found

(G~)=B~(0)»w»»&(1) ~

where n= (n) is the mean number of particles emitted
in the interval T, and

are such that G& and 62 e6ectively commute; otherwise,
as discussed in I, the operator (2.21) is not the appro-
priate one. For example, it is not generally Hermitian.
For our subsequent estimates, it will be convenient to
suppose that the two detectors have similar characteris-
tics, setting

(2.22)

etc.
The ensemble average of the correlator output over

the interval T is

(Gu) = ((+(0),Giu+(0))) (2.23)

This in general depends on the time delay v = T2—T1
and not on T1 or T2 individually.

An experiment designed to study correlations with a
single counter is illustrated in Fig. 3. The direct output
and the output passed through the delay line are again
mixed in the correlator. The correlator output here is
also described by Eq. (2.23) if we imagine letting the
two detectors of Fig. 2 coalesce into a single counter
at 71.

In this paper we consider only the case for which the
two counters are "not in line, "so a single particle can-
not give a count in both of them. This condition is
automatically satis6ed if the detected particles are
stopped or absorbed in the detectors or if, in fact, there
is only a single detector. Then, the evaluation of (2.23)
given in I leads to the result (the + and —signs refer
to the cases of Bose-Einstein and Fermi-Dirac statistics,
respectively)

(Ggs) = (Gg)(G&)~n'g (1) (2)
~
x(12)

~

' (2.24)

where g is the spin-average factor Lsee Eq. (2.38)
of If. Here we have introduced the abbreviations

(1) = d41.g(Tg —4) d'y»g(yg) (2.25)
1

Delo

Detector etc. , and t see Eq. (3.17) of Ij
x(12)=X„(12)Q(12), (2.26a)

Fxc. 2. An inten-
sity correlation ex-
periment.

where

x„(12)=
ny1y2

des g((o)

XexpfiLq(ys —y,)—~(t,—4)j}, (2.26b)
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d s
Q(12)= exp[iP(gg —go) sj. (2.26c)

The quantity q in Eq. (2.26b) is the momentum (wave
number) of a beam particle having energy her. In Eq.
(2.26c), 'U, is the source volume and the integral ex-
tends over all source points s; also, the wave number has
been set equal to the central value p.

We note that for a suKciently small source Q(12)—1

and X may be replaced by X„.We also note that if the
beam Aux is not the same at the two detectors we must
write Xs(1), Rs(1), &V~(2), Es(2), etc., to describe the
respective intensities at "1"and "2."

It is the quantity

&~G-&-=&G-&-&G.&«.& (2.2/)

which is of physical interest for fluctuation and correla-
tion experiments. It is possible to measure (AG»&
directly by placing dc blocking filters in the outputs of
the two detectors, so (G~)=(Go&=0 [see Eqs. (2.15)
and (2.16b)j.Then

by Purcell" and by Twiss and Little" may be con-
venient at this point. They discuss the number of co-
incidences A", between pairs of particles during the time
T. This may be done most easily when the expected
number of particle arrivals in the resolving-time inter-
val hr„ is much less than unity. Then (with a little more
attention given to the definition of hr, )

(E,)=hr„T(G»&. (2.32)

The term &r„T&G~)(Go) has been described" as due to
"random coincidences" and Dr„T(AG») as due to
particle "clumping. " This kind of description is pic-
turesque, but of limited applicability (as, for example, to
the case of electron beams or to the case in which many
particles are counted during one resolving time hr„&.

Our results may be applied to a scattering experiment,
as explained in I. Such an experiment is illustrated in
Fig. 4. It is necessary only to include appropriate scat-
tering amplitudes and cruxes incident on the target
in the normalization constants X~(1) and X~(2). In
this case the target plays the role of the "source" in the
discussion given above.

&&G»&= (G») (2.28) III. ACCURACY OF A SINGLE COUNTING
EXPERIMENT

For a small point source for which X(12)—X~(12), we

find for (B,G»& [see Eq. (3.9) of Ij, usmg Eq. (2.24),

&AG12& = (&G»&y= ~&%&o&Go&og

We begin our study of measurement accuracy by con-
sidering a simple counting experiment, as is illustrated
in Fig. 1. The total number of counts in the interval
T is, on the average,

d p
X doojee'g(oo)g(oo')Bx(~' ~)Bo(~ ~')— —

1 ~11 2 ~2~2 (IV,)—=( dr,o,)= r(G, ), (3.1)

Xexp(i[(q —q')(yo —y~) —(co—a&')(To—Ti))) . (2.29)

-2
dT'1G1&+G12& (~G12&ois y

where

where &G&& is given by Eq. (2.15) and we now assume
For a finite source we must keep Q(12) in Eq. (2.26a). If that B~(0)= 1.The fluctuations in the number of counts
the detectors are well enough aligned with respect to may be expressed in terms (1''), where
the beam we may evaluate (2.24) in the form

d'v1 d$2
IQ(12) I'. (2.31a)

T T

dT1 d T2G12
0 0

Here v1 is the projection of u1—=y1—Y1 on a plane per-
pendicular to Y1, etc., I8 is a function of the dimen-
sionless quantity

a = V9'/Z, Zo,

In the last step here we think of the two detectors as
being coalesced into one, as described in connection with
Eq. (2.21).

From the explicit form of the counting operator G1,

where Z, and Z~ are, respectively, the source and de-
tector areas, F F1 F2 is the distance from the source
to the detectors, and X=2s/p is the particle de Broglie
wavelength. An evaluation of Ia gives

F1G. 4. A scatter-
ing experiment using
two detectors.

Detector I"

I8= j. , for 0&)i,
= F9,'/Z. Zn, for ~&&1.

(2.31b) Detector 2"

A comparison with such descriptions as those given
D K. M. Purcell, Nature 178, 1449 {1956).I' R.Q. Twiss and A. G. Little, Australian J.Phys. 12, 77 (1959).
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1'o(1)=K{b(yg'—yg+rgVgg')&(%(0), Q exp[i(Kttg'+Koto+K, to')]
lyAge

Xb(xi—yi')b(xo —yo)b(x, —yo') expL —i(Kgb'+Koto+K. to')]+(0)))}, (4.14)
etc.

A straightforward but tedious calculation using the wave function (2.1) gives, finally, "
I'o ——n'K{b(y&' —yi+ Vr&1}i')b(yo' —y2+ Vrogo )I x(1')x(2')+ Ix(1'2') I']}, (4.15)
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I
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+x(2'1)x(2)x(11')x(1'2')&x(2'1)x(2)x(1')x(12')+x(1'1)x(2)x(2'1')x(12')+x(1'1)x(12)x(21')x(2')
&x(2'1)x(12)x(21')x(1'2')+x(2'1)x(12)x(1')x(22')&x(1'1)x(12)x(2'1')x(22')+x(1'1)x(2'2)x(11')x(22')

a(1'1)x(2'2)x(21')x(12')~x(2'1X(1'2)x(11')x(22')+x(2'1)x(1'2)x(21')x(12')}. (4.18)

The x's in these equations are defined by Eqs. (2.19)
and (2.26). The notation is such that x(1') is a
function of (y~', t~'), etc. , and x(1',2), is a function
of (yp', ti', yo, to), etc.

Final evaluation of the I"s is eGected by performing
the integrations implied by Eq. (4.5). Since these are
cumbersome to do exactly, we shall restrict ourselves
here to a description of certain limiting cases.

V. THE CASE OF A MACROSCOPIC SOURCE
AND DETECTORS

%'e consider 6rst the case of a "large" source. In this
case the average over source points, leading to the
quantity Q, Kq. (2.26a), must be taken into account.
On evaluation of the 1"s

I Eqs. (4.15) to (4.18)]it turns
out that with each two-point x Las in Eq. (2.26a)]
there is associated a factor /Is]'Io, while there is no
such factor for the one-point x's LKq. (2.19)].Since Is
is a very small quantity for a macroscopic source and
detectors, we may to a good approximation keep only
terms not involving the two-point y's. There are three
such terms: the first term in each of I'o, Fo(1), and 1'o(2).

analogous equation, and M is given by

V2

d'y& d'y&' d3y2 day2'
~1 ~2 ~1~2 1 1 2

dQ
X dry dr; IBg(Q) I'IBo(Q) I'

2'
Xe'"' "'b(yx' —yz+ Vrigg')b(yo' —yo+ Vrogo') . (5.2)

When both counters have a uniform thickness
m~m2 ——m, this becomes

sin(Qw/2 V)- 4—
I &~(Q)I'I I~o(Q)I' . (5.3)

2s Qw/2 V

We recall that zo is to be interpreted as a mean stopping
distance if the particles are stopped in the detectors
unless the alignment errors are larger than this. In this
case, we interpret m as being the alignment error, since
w/ V appears in our equations as a measure of the spread
in arrival times for particles starting at the same time
from the same point.

%'hen
On evaluating these terms we obtain

&&-'&—L&G-&] =T&G~&o&Go&~ Lsee Kq. (2.13)]we anticipate that
+&Gi&o&Go&oLT&Gi&o+ 2'&Go&o] M= 1/ar„.

X I:It~(0)fl.(0)]' (5 1) In the other extreme limit when

(5.4)

Here &Gq&o is defined by Eq. (2.17) and &Go&o by an

' We recall that the C; are considered to be an orthornomal set
when evaluating ((4'(0), ~ .4'(0))).

w/V))hr„
the good counters are wasted and we may expect

3E= V/w. (5.5)
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(5.6)«- &-[&G,&7
= T&G.).&G.&~.

When dc blocking filters are placed in the outputs of tortuous and we distinguish several limiting cases. [In
the detectors, so Bi(0)=Bi(0)=0 [see Eq. (2.16a)], the spirit of an approximate description we now set

Eq. (5.1) becomes the spin weighting factor g of Kq. (2.29) equal to unity. ]
Case I [see Eqs. (2.6) and (2.13)7:

The "signal-to-noise ratio" in this case is
V«u Ace~, V67 „&&m, (6.1)

S/&—=
I &G-&I/(&G-') —[&G-)]')'"

= [T/~&Gi&0&G2&07' 1&~G»& l Is, (5 7)

where we have used Kqs. (4.2) and (2.30). We note in
passing that in the case where M=(b, r,) ', Eq. (5.6)
may be given a simple interpretation: %e have com-
mented that the number of coincidences X. is related
to (G») by &X,)=»,T&G»)=», (G, ) [Eq. (2.32)];
the quantity», T&Gi)(G2) has been called "the num-
ber of random coincidences. " Thus multiplying Eq.
(5.6) by (h7,)' and using the above definitions, we find,
roughly,

(5.8)

Case II:
U«mhco~, U67 „))m, (6.3)

the case of "broad-beam spectrum" and "fast elec-
tronics. " In this case we may take Bi(0)=B2(0)=1,
as in Eq. (2.16a), without serious loss of counting accu-
racy. Then, we obtain from Eqs. (4.7) and (4.15) to
(4.18)

«-'&-[«-&]'=—«.&«.&&TV/ )+«&&G.&

«.)- — (G.)-
X T(Gi) 1&2 +T&G2) 1&2 . (6.2)

the case of a broad beam spectrum and slow electronics.
To illustrate Eq. 5.7 we set see Eqs. 2.20 and In this case it is convenient to replace several func-

~ ~

tions having similar properties by a qualitatively dined(Gi)0= &Gg) 0=Zn(Rs/4r V )it, quantity &,(r), having no more precise definition than
and write

&~G &.=&G &o(G)o, for»„6&vs=1, (5.10a)
«,(7)=1 for

~

Vr (Vm —Vi)—~&&Uhr,
(6 4)=0 for

~
Vr —(Vq —Vi) ~)&VER, .

(&G»)v=2s &Gi)o&GI)0/hr„h&vs, for Ar„h&vs»1.
For case II we obtain

[These estimates may be deduced from Eq. (2.29) by
considering the appropriate limits. ] Then for a large
source we use Kq. (2.31b) and assume Eq. (5.4) to ob-
tain [here it is the counter efficiency as introduced in
Eq. (2.20b)]

[(G,')—[&G..)]']=&Gi&o(G2)0(T/», )

+(G &o&G &o[T&G &o+T&G ).7
Bi(0)Bg(0)

X Bi2(0)B22(0)&2 e„(r)W
Ar„Ace~

s ~s~—=
(

—
f

—=g (T»„)'t'rt,
km'. 4~x,

(5.11a)
+DG ) &G.&.7'

Aco~
+4Bi'(0)Bi'(0)

S /Sy ts—=
I

—
I
—=[~,&

&xi,
(5.11b) Bi(0)82(0) 1+e„(r)

t+8 e,(~)+ . (6.5)~.,~ .f

for cases (5.10a) and (5.10b), respectively. For photons
for example, emitted by a black-body source at a tem-
perature 8 through a 6lter passing a narrow frequency
interval bv at a frequency pp we have

(5) bv(The„)'t'

(ter), exp(kvo/8) —1
(5.12)

VL THE CASE OP A POINT SOURCE

When [see Eq. (2.31)]
Z.Z~&&Y9,2,

we may set X(12)= X„(12) in Eq. (2.26a) and in Eqs.
(4.15) to (4.18). In this case a general evaluation is

Case III:
V))rsho)s, V»,((w, Ar, Aces(&1, (6.6)

the case of a narrow beam spectrum and fast elec-
tronics. In this case we again take Bi(0)=Bq(0) = 1 and
introduce the "function" ss(7) [analogous to the ex-
pression (6.4)]:

gs(T)= 1 for
~

Vr (Vi—Vi) ~&&V/hc—os,
=0 for

~

V r (V,—I'i) ~))B/A~—s. (6.7)

Then for case III,
&G-'&—L(G-&]'—=&Gi) &G2&(VT/~)[1+ ~s(~)7

+(Gi)&Gi&LT(Gi)+ T(G2)](1~1)L1+2~s( )]
+[&G.)&G.&7 [1~4+(9~6&"()](T/~-.). (68)
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VII. SCATTEMNG EXPERIMENTS

We now consider a scattering experiment, as illus-
trated in Fig. 5. The scattered-beam particles are
counted in two detectors whose outputs are mixed,
with a relative time delay r, in a correlator. It was
shown in I that the one-point x [Kq. (2.19)) in this case
has the form"

Detector

Xg
x(1)= (2rr) '— dfd g(-)(I~;(q,",l.) I ), , (7.1)

Correlotor
output

Source

Fzo. 5. Intensity correlations for a scattering experiment.

Here "( )1"denotes an average over the target wave
functions go and then a statistical ensemble average
over target states. The additional subscript "S" on
"( )"represents an additional average over the source
volume:

~ ~ ~ (7.2)

Making use of (7.3), we obtain

Egg
x(1)=

Syg
dro g(to)

as in Kq. (2.26c). The quantity re, (q, yA is the wave
function for a scattered particle. It is, at large dis-
tances from the target,

y, (q,y, t) = ((21r) 'I'/y)—

Xexp fi[q(y+d, )—sotj}S(j,d;), (7.3)

where F is the scattering amplitude and d; is a vector
from a reference point in the target to the source point
of particle j in the source i6

The two-point x [Eq. (2.26)j now has the form,
derived in I,

A'g

X(12)= (21r)' da) g(ru)

X Q;*(q y1 lr)4 (q ye, 1'1))1,s (7 4)

using Eq. (2.11).We see that

Fz = VEg (7.S)

(G1)e(&r)o d'y1
(+612)

d'y

q Zqmq Egg&

X do&de'g((a)g(o1')Bt( '
o1)Br((u —1o')—

xexp(i[(q —q') (yr —y1)—(1o—~') (&1—&1)j}
X(S'(q,g„8)S(q,g„d)), .(S(q',g, ,d )S (q', y„rt ))„,

(7.9)

whe~e a different source point average [Eq. (7.2)j is
implied for the vectors 1 and

Let us consider now a specilc case to illustrate Kq.
(7.9). We suppose the target to be homogeneous and
composed of a large number E of identical scatterers.
We shall write f for the scattering amplitude of any one
of these and, as in I, write

is to be interpreted as the beam Aux incident on the
target. [To account for detector e%ciency, a factor ti,
Eq. (2.20b), should be included on the right-hand side
of Eq. (7.7).j

From Kq. (2.24) and (2.27) we see that

and
X (I S(q,171,~ I

'&, , s=- (&B/rty '), (7.&)
s(q, t7,d) =f 2 expL —'q(8+~) Z-j, (7.10)

Egg
x(12)=

Rygym

d~ g(~) exp(i[q(y& y1) ~(l& t1))}

X(S*(q,n,a)S(q, yr, d))1,s (7 6)

where we have de6ned the average cross section 8~ in
the second writing of Eq. (7.5).

From Eq. (2.18) we obtain the mean counting rate
for a single detector as P&s'"5l.((& PZs'~'6l ((F (7.11)

where Z is the coordinate of a given scatterer. %'e shall
suppose that, as is the case for a gas or liquid, the scat-
ters are uncorrelated when separated by a distance large
compared to (R„ the "range of correlation" in the target.
We shall also suppose that we may set q= p in S.

When R, satisfies the conditions that

(G1) B1(0)((~lrs171)/Vt )~B&1'
=By(0)&1(ot/ Vt') (VSB), (7.7) where E is the distance from target to source, we may

neglect the Gnite size of the source and write
» We now depart slightly from the notation used in I. The x(12)= x~(12)($*(l)$(2))ggr(12) . (7.12)

The scattering amplitude F gras evaluated at the retarded
time 1 (y/V) in I. We shall not—include this correction here. Here Xa(12) is defmed by Eq. (2.26b) and [see I for
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further discussion of the notation]

&~*(1)~(2)&=au.)fV.)

where Is is defmed by Eqs. (2.31), but with Q(12) re-
placed by Qr(12) and thus Zs replaced by the target
area Zr in (2.31b), and

&( d'dd'r(n(x+-', r, tg)e(x —~2r, tm)& (Gg&0(G2)0 d'yi d'y~
(~G„)„=~ dacha

Xexp{ip[-,'()~+$2) A—] r), (7.13) 0'10 2 ~1~1 2 ~22

Qr(12) = exp[iP(k —6) Z] (7 14)

integrated over the volume of the target.
The quantity (7.9) now becomes

(~G„)= (~G„),l„ (7.15)

where I is a vector from the fixed reference point in the
target to a 6xed point in the source and (n(x', fq)e(x, tp))
is the Van Hove correlation function for the target.
The quantity Qr(12) in Eq. (7.12) is

d Z

&&g(~)g(~') &~(~'—~)&2(~—~') exp{i[(q—q') (ym
—yi)

—(~—~')(7'~—2'~)])
I (&*(1)&(2)&I' (7 16)

Fluctuations in

(G &= 2'[&G~&(G2)+(~G~2)] (7.16)

may be evaluated from the general analysis of Sec. IV.
%'hen the target is large enough that I~(j., we may use
Eq. (5.1) to evaluate these. The detector eSciency may
be taken into account by including in (Gq&0 and (Gm)0
an eKciency factor (or factors) g, as in Eq. (2.20b).
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Position Operators in Relativistic Single-Particle Theories*

A. SANKARANARAYANAN AND R. H. GOOD, JR.
Institute for Atomic Research and Department of Physics, Inca State University, Ames, Ioua

{Received 21 May 1965)

This paper gives formulas for position operators that apply uniformly for all spins of particle. The three
vector X, of the Newton-Wigner and Foldy type, is treated lrst. Then it is shown that, although X has
complicated Lorentz transformation properties, it is linearly related to a certain four-vector p'„which is
built up from the Poincarh group generators. The four-vector is the generalization of the classical no«on of
the component of the position four-vector in the direction perpendicular to the world line of the particle.

I. INTRODUCTION

ECKNTLY a formulation of the theory of a free
particle with mass and arbitrary spin was given'

in which there is such a complete parallel with Dirac's
theory for an electron-positron that all the known dis-
cussions for a spin-$ particle can be extended to particles
with higher spins. The purpose of the present paper is to
make this extension for the study of position and to
develop formulas for three-vector and four-vector posi-
tion operators that apply uniformly for all spins.

The special features of the description of free particles
developed in Ref. 1 are that there are no auxiliary condi-
tions on the wave function and that the wave-function
components are spinors, so that the value of the wave
function at a point in space-time in one Lorentz frame
determines the value in aO Lorentz frames. It is closely

~ This research was done in the Ames Laboratory of the U. S.
Atomic Energy Comrr14sion.

~ D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.
Rev. 135, 3241 (1964).

[x,,x;]=0,
[x',~;]='~';,

~ S. Weinberg, Phys. Rev. 133, B1318 (1964).' L. L. Foldy, Phys. Rev. 102, 568 {1956).

(1)

(2)

related to steinberg's' formulation and Foldy's. ' In fact
there is an operator, which is a generalization of the
notion of the rest-to-lab Lorentz transformation, which
carries Foldy's wave function into the wave function of
Ref. i. Consequently properties of operators in Foldy's
theory can be similarity transformed into the present
formulation.

For many of the observable quantities, such as
momentum, energy, and angular momentum, the corre-
sponding operators are simply the inhomogeneous
Lorentz group generators. The situation is not so
straightforward since position and other considerations
have to be made. Desirable properties for a position
operator X are that (i) it should be Hermitian with
respect to the appropriate Lorentz-invariant inner
product for each spin; (ii) it should fu161 the commuta-
tion rules


