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A quantum-mechanical analysis is made of the experimental accuracy to be expected for particle-counting
and intensity-correlation experiments. The mean-square fluctuation for an ensemble, consisting of a large
number of experiments each conducted over a time interval T, is calculated.

I. INTRODUCTION

CRUCIAL element in the design of experiments

is a careful estimate of the fluctuations to be ex-
pected in observed counting rates. These fluctuations,
which determine a limitation on the accuracy of particle
flux measurements, are conventionally and ordinarily
quite correctly discussed in terms of purely classical
concepts involving random arrival times. Recent inter-
est in coherent and partially coherent beams and in
rather elaborate correlation experiments suggests that
a quantum theory of fluctuations may be useful.

The present paper is a sequel to an earlier one! in
which the theoretical basis for observing fluctuations
and particle correlations was analyzed. We are con-
cerned here with the accuracy of such measurements,
namely, the counting times required to measure fluctua-
tions and correlations to within specified limits.

We begin by considering a conventional experiment
with a single detector which counts, say, N particles
during the course of an experiment. One ordinarily
says that this observation is subject to fluctuations of
order N'/2, We study the quantum corrections to this
estimate in Sec. III.

Our principal concern in this paper is with a study of
the accuracy of experiments designed to observe fluctua-
tions and correlations in particle beams. We have in
mind such techniques as that of Hanbury-Brown and
Twiss? to study photon correlations, that of Goldberger,
Lewis, and Watson?® to measure the phase of scattering
amplitudes, those to measure spectral line shapes, i~ etc.

In order to make this paper reasonably self contained,
we summarize the relevant results of 1.
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II. NOTATION AND GENERAL DESCRIPTION

We shall follow the notation introduced in I. During a
time interval T, long compared with transients, par-
ticlesin a beam are counted. These may be radiated from
a source (like a hot gas or radioactive sample), a par-
ticle accelerator, or particles scattered by a target. In a
given experiment there will be # such particles, having
individual wave functions ®;(x;,t) (1=1, 2,---n). Here
x; is the coordinate of the ith particle and ¢ is the time.
The wave function describing the beam is then, at
time /=0,

¥(0)=3 [T ®:(x:0),

i=1

(2.1)

where 8 is the appropriate symmetrization operator for
Bose-Einstein or Fermi-Dirac statistics. We continue
to suppose, as discussed in I, that the beam is incokerent
in the sense that the ®; have random phases.’

The flux of beam particles, averaged over an ensemble
of many experiments, is assumed to be constant through-
out the interval 7. At a distance y from some con-
veniently chosen reference point O in the source (or
target, if a scattering experiment is being considered)
the flux is (see Fig. 1)

F(y)=Rsz/4my?, (2.2)
where Rp is the equivalent isotropic source intensity
(expressed in particles emitted per second) in the direc-
tion of y. The flux of particles having an energy # in
the interval #dw is written as

dF=F(y)g(w)dw, (2.3)

Detector k

FiG. 1. A simple particle
~— counting experiment illus-

trated.
Pomnt O

Source

" A detailed analysis of this and of the beam wave function
¥ (0) has been made by S. K. Ma (to be published).
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where the spectral function g(w) is normalized to unity

/ g(w)dw=1. (2.4)
The “beam width” Awg is defined as
1
son=| [aulg] . @25)
The mean speed and momentum are written as
V' =mean speed of beam particles, (2.6)
p=mean momentum of beam particles. (2.7)

We shall assume that the beam width Awg is narrow
in the sense that we can neglect the dispersion in par-
ticle velocities while they are crossing the counter, or
counters. By the same token wave-packet spreading
may be neglected during the detection process. [ The re-
striction to a narrow beam spectrum may be removed
from our analysis with only trivial modification of our
expressions as long as the detection process limits the
frequency interval of coherent interference effects. An
illustration of this point is provided by Egs. (5.7) and
(5.8) of 1.]

Let us suppose that the beam flux is measured by a
detector “1,” as illustrated in Fig. 1. For simplicity, we
assume that this has a uniform thickness w; and sur-
face area =; normal to the beam direction. A convenient
point in the detector will be labeled as Y. A vector from
the chosen reference point O in the source to an arbi-
trary source point is written as s. Similarly, a vector
from the point Y; to a point in the detector is u;. We
define

yi=Yi+u;.

It will be convenient, but not essential to the argu-
ment, to assume in this paper that the source and de-
tectors are small in the following sense: We shall sup-
pose that the magnitude of the vector D=u;+Y;—s
may be written as

(2.8)

DEYl, (2.98.)

except when D appears in an oscillating exponential. In
the latter case, we write?

DY+ 171' (ll],— S)+(2Y1)‘°1
X{(u1—8)2—[T1-(u;—s)J2}. (2.9b)

We shall assume that the mean beam flux is uniform
over the face of the detector? so that

F(y)=F(Y,).

8 The approximations (2.9) provide convenient algebraic simpli-
fications for many of our expressions. The reader is cautioned,
however, to verify these approximations for specific applications
before using them. If Eqgs. (2.9) are not valid, the general expres-
sions may be easily written down, but may lead to cumbersome
integrals to evaluate.

® This approximation is not made in developing our general
theory, but just in obtaining specific illustrations.
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As in I, we represent the counting rate of detector
“1” by the counting-rate operator, at time T,

+o0
GIE/ dtlLl(Tl“tl)[ yry(y1)
—c0 1

X Z eiKltl&(yl—xl)g—iK“I. (210)

=1

Here K is the kinetic-energy operator for the /th beam
particle, so exp[iK 1 ]x; exp[—iKi1] is its position
vector in the Heisenberg representation. The function
v1(y1) is introduced to take account of the detector
calibration. The integration over y; in (2.10) extends
over the active volume of the detector. The function
Ly(7) is introduced to represent the detector’s transient
response characteristics.

For a uniform detector having 1009, efficiency and
calibrated to measure the total beam flux striking the
area =, we evidently have

Y11= l'/wl. (211)

Since the gain setting on the electronics is irrelevant, as
long as the detector has been calibrated, we shall assume
(without loss of generality) the calibration (2.11). We
shall then take account of the actual detector efficiency
by supposing that the fluxes of particles appearing in our
expressions represent measured, rather than actual
fluxes. That is, we shall formally treat our detectors as
having unit efficiency and later correct for limited
efficiency by a reinterpretation of our calculated fluxes.

Continuing to follow the notation of I, we give the
transient response function L;(r) the Fourier integral
representation

aQ
L1(T)=/ Z—Bl(ﬂ)e-mf. (212)

A transient response time Ar, for the detector is defined

by the equation
1 aQ
—=[Zip@L
A 2r

Tr

(2.13)

The mean counting rate during the experiment is
(G1)={(¥(0),G\(T1)¥(0))). (2.14)

Here the symbol “(---)” on the right represents an
ensemble average over many observations. By hy-
pothesis, (G1) is independent of the time 7, in the
interval T.

For the “calibrated detector” defined by Eq. (2.11)
we have!®

(G1)= B1(0)Z:F(Y,). (2.15)

0 Recalling the remarks made in connection with Eq. (2.11),
we shall eventually insert a numerical factor into the right side of
Eq. (2.15) to take account of the detector efficiency.
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To be consistent with Eq. (2.11) we shall always assume
either that

Bi(0)=1, (2.16a)
or

By(0)=0, (2.16b)

corresponding to a dc blocking filter being placed in the
detector output. The flux corresponding to By(0)=1
will be denoted as (G1), that is,

(G1)o=(G1)/ B+(0). (2.17)

An explicit evaluation of (G1), Eq. (2.14), was given
in I in terms of the beam wave function, Eq. (2.1),
where we found

(G1)= B1(0)Z1wryrix(1), (2.18)

where 7i=(n) is the mean number of particles emitted
in the interval T, and

x(1)=(®*(y1,11)®;(y1,11))

=J\73/ﬁy12. (219)

Here Np is a constant, seen from Egs. (2.2) and (2.15)
to be
Np=Rp/4xV . (2.20a)

To take account of the actual efficiency 5 of the de-
tectors we shall replace Eq. (2.20a) by

Np=n(Rp/4xV). (2.20b)

The detector thickness w; must be defined a little
carefully. If the particles are stopped in a distance small
compared to the actual physical thickness, we should
interpret w, as the mean range of the stopped particles.
The principal significance of w; is that w,/V represents
a spread in arrival times. If machining accuracy and de-
tector alignment errors lead to an effective w;/V larger
than that associated with the stopping distance, we
determine w; from these.

To describe a particle correlation experiment we in-
troduce a second detector, “2,” as in Fig. 2, located at
Y.. The outputs of the two detectors are multiplied to-
gether in a correlator, after passing one of them through
a delay line having a delay time 7. The output of the
correlator is represented by the operator

G1a(T5,T1) = Go(T3)GA(T), (2.21)

where T2=T'1+7 and G, is described by an expression
like Eq. (2.10) for G but with subscript 1 replaced by 2.
We are tacitly assuming that the situations of interest

Detector "I"

Delay line

F16. 2. An inten-
S sity correlation ex-
ource .
o periment.

Correlator

Detector"2"
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Detector
" O F16. 3. A measure-
ment of the autocor-
Delay line relation function.
Correlator

are such that G, and G effectively commute; otherwise,
as discussed in I, the operator (2.21) is not the appro-
priate one. For example, it is not generally Hermitian.
For our subsequent estimates, it will be convenient to
suppose that the two detectors have similar characteris-
tics, setting

21=2:=2p,

WI=We=w,

BL= B2=B y

(2.22)

etc.
The ensemble average of the correlator output over
the interval T is

(Grz)=((¥(0),G1:¥(0))). (2.23)

This in general depends on the time delay 7=T,—T,
and not on T or T, individually.

An experiment designed to study correlations with a
single counter is illustrated in Fig. 3. The direct output
and the output passed through the delay line are again
mixed in the correlator. The correlator output here is
also described by Eq. (2.23) if we imagine letting the
two detectors of Fig. 2 coalesce into a single counter
at Y1.

In this paper we consider only the case for which the
two counters are ‘“not in line,” so a single particle can-
not give a count in both of them. This condition is
automatically satisfied if the detected particles are
stopped or absorbed in the detectors or if, in fact, there
is only a single detector. Then, the evaluation of (2.23)
given in I leads to the result (the 4+ and — signs refer
to the cases of Bose-Einstein and Fermi-Dirac statistics,
respectively)

(Gua)= (GaY(Ga)r%g f W / @Ix(12)]?, (2.24)

where g is the spin-average factor [see Eq. (2.38)
of I']. Here we have introduced the abbreviations

/(1)' "=/dth(Tl—f1)/ld3y171(Y1)' ©, (2.25)

etc., and [see Eq. (3.17) of I]
x(12)=x,(12)0(12),

Npg
/ dw g(w)
ny1y2

Xexp{i[g(ya—y1)—w(ta—11)]},

(2.26a)
where

X,(12)=

(2.26b)
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and

dss
02)= [ Zexplipdi=g-s]. @260

The quantity ¢ in Eq. (2.26b) is the momentum (wave
number) of a beam particle having energy Aw. In Eq.
(2.26¢), U, is the source volume and the integral ex-
tends over all source points s; also, the wave number has
been set equal to the central value p.

We note that for a sufficiently small source Q(12)=<1
and X may be replaced by X,. We also note that if the
beam flux is not the same at the two detectors we must
write Nz(1), Re(1), N5(2), Rp(2), etc., to describe the
respective intensities at ““1”” and “2.”

It is the quantity

(AG12)=(G12)— (G1)XG2)

which is of physical interest for fluctuation and correla-
tion experiments. It is possible to measure (AGiz)
directly by placing dc blocking filters in the outputs of
the two detectors, so (G1)={(Gz)=0 [see Egs. (2.15)
and (2.16b)]. Then

(AG12)={(G12).

For a small point source for which X(12)=2X,(12), we
find for (AG12) [see Eq. (3.9) of I, using Eq. (2.24),

<A612> = <AG]2>p= =+ (GI)O<G2>0g

d¥y1 [ d%s
X / ——dwdw'g(w)g(w) Bi(w' —w) Ba(w—w')
12101 J 2 Zawe

(2.27)

(2.28)

Xexp{i[(¢—q")(y2—y1)—(w—')(T2—T1)]}. (2.29)

For a finite source we must keep Q(12) in Eq. (2.26a). If
the detectors are well enough aligned with respect to
the beam we may evaluate (2.24) in the form

(AG12)=(AG2)l s, (2.30)
where
d21)1 d2112
Is= f — f —o@2)|2. (2.31a)
121 /2 22

Here v, is the projection of u;=y;— Y on a plane per-
pendicular to Yi, etc., Is is a function of the dimen-
sionless quantity

o=V2\Y/Z,3p,

where 2, and Zp are, respectively, the source and de-
tector areas, Y~ ¥~ Y, is the distance from the source
to the detectors, and A=2x/p is the particle de Broglie
wavelength. An evaluation of I s gives

Is=1,
=VA\YZ,2p,

for 1,

2.31
for o«k1. (2.31b)

A comparison with such descriptions as those given
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by Purcell! and by Twiss and Little!?> may be con-
venient at this point. They discuss the number of co-
incidences N, between pairs of particles during the time
T. This may be done most easily when the expected
number of particle arrivals in the resolving-time inter-
val Ar, is much less than unity. Then (with a little more
attention given to the definition of A7,)

(Noy=Ar, T(G). (2.32)

The term Ar,T{G1){Gz) has been described!? as due to
“random coincidences” and A7,.T(AGi2) as due to
particle “clumping.” This kind of description is pic-
turesque, but of limited applicability (as, for example, to
the case of electron beams or to the case in which many
particles are counted during one resolving time Ar,).

Our results may be applied to a scattering experiment,
as explained in I. Such an experiment is illustrated in
Fig. 4. It is necessary only to include appropriate scat-
tering amplitudes and fluxes incident on the target
in the normalization constants Nz(1) and Nz(2). In
this case the target plays the role of the “source” in the
discussion given above.

III. ACCURACY OF A SINGLE COUNTING
EXPERIMENT

We begin our study of measurement accuracy by con-
sidering a simple counting experiment, as is illustrated
in Fig. 1. The total number of counts in the interval
T is, on the average,

va=( / TdTIGl>= TGy,

where (G1) is given by Eq. (2.15) and we now assume
that By(0) =1. The fluctuations in the number of counts
may be expressed in terms (Nr?), where

(Np?)= <[ fo ’ dT1G1:|2>
= < fo ! aTy fo ' dT2G12> N EN)

In the last step here we think of the two detectors as
being coalesced into one, as described in connection with
Eq. (2.21).

From the explicit form of the counting operator G,

(3.1)

Detector "1"
F16. 4. A scatter-

ing experiment using
two detectors.

Incident
beam

Detector "2"

1 E. M. Purcell, Nature 178, 1449 (1956).
2 R.Q. Twiss and A. G. Little, Australian J. Phys. 12, 77 (1959).
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Egs. (2.10) and (2.21), we obtain

M. L. GOLDBERGER AND K. M. WATSON

T T
= [ ari[ s [ [ @), (% exmitrmxemnisinsty,—x e

Consider first the “nondiagonal terms,” corresponding
to Ik in the sum above. These are just the terms evalu-

+E 1 eing(ya—x)e K03 () FY (). (3.3)
and Eq. (3.8) reduces to the “classical” expression
(Ve)=[(N1)J*+(N7). 3.9

ated in Eq. (2.24). Thus, on comparing Egs. (2.24) and
(3.2), we have for the nondiagonal contribution (Nrz2),,

(xVT2),.=];T dTl/(’T dT2{(G1){G2)
= [ @ixa2is

=[<NT>]2i/ dTlf dT(AGr). (3.4)

[We have set {(G2)=(G1), since we are considering only a
single detector.] On using Egs. (2.29) and (2.30) here
and recalling that T is very long compared to any
transient time scales (such as 1/Awg and A7,), we find

<LVT2>,. = E(]VT):P:!: 21rg],(<Gl>/Aw3)<LVT> . (35)

To evaluate the diagonal terms in Eq. (3.3) we use
the approximate relation

eiKzra(xl_ yl)e—inré(xl__ Y2)

=8(ya—y1t+7VP2)o(xi—y2), (3.6)

valid because of our assumed narrow beam spectrum.!®
The diagonal contribution then becomes

T T
<.’VT2>4=7_I,/ dT]/ dT2
0 0

x [ W / @8(ya—yitVDx2)

=T{(G)=(Nr). (3.7)
On combining Egs. (3.5) and (3.7), we obtain
(Ng2)=[(N7) 2+ (Np)1+2rgl ((G1)/Awp). (3.8)

Under most practical experimental conditions

2mgl ,({Gr)/ Awp)K1,

13 Tn obtaining Eq. (3.6) we have used the nonrelativistic relation
exp[Kir]x; exp[ —iKir]=x;+7(a/M),

where q is the momentum operator and M is the mass of a beam
particle. Because of the assumed narrow beam spectrum, we set
o/M=V . [See Eq. (5.7) of I for a more general result.] The
result (3.6) jay also be derived for relativistic particles by writing
Ki(@=K:@+V- (a—p).

For a point source, I,~1. It can be shown that for a
degenerate beam of Fermi-Dirac particles, the maxi-
mum value of (G1) corresponds to Awp/2g, so that fora
point source

(Np2)=(Nyg)? (3.10)
and the fluctuations are significantly reduced. This
maximum value for the quantum-mechanical term in
Eq. (3.8) does not appear in a natural way since we have
not explicitly allowed for having used up all available
states in the evaluation of expectation values with the
wave function (2.1).

IV. FLUCTUATIONS IN INTENSITY
CORRELATION EXPERIMENTS

We turn now to a study of the accuracy of measure-
ments of intensity correlations of the variety implied
by the expression Eq. (2.23) for the expectation value
of the product of two counting operators. We are thus
concerned with the description of Hanbury-Brown and
Twiss particle correlations in two counters, interference
effects in a single counter,* and beam (or target) fluctua-
tions.!%6 We may reduce the latter two classes to a
special case of the Hanbury-Brown and Twiss variety
by imagining that the two counters are combined into
one.

We continue to suppose that the experimental situa-
tion is such that the two counters are not in line in the
sense that a single particle cannot give a count in each
of them. This is the same assumption that we made
previously in our discussion of correlation experiments
[see Eq. (2.24)]. Then in Eq. (2.21) we set To=T1+7
and from the “average” quantity

T
G,W(T)E/ dTlGu(Tl, T1+T)
’ T
=/ AT:G(T)G(T1+7). (4.1)
0

Evidently, by our assumption that the ensemble-
averaged beam intensity is uniform throughout the
interval T, we have

(Gav(1))={(¥(0),Gav ¥ (0)))=T{(G1o(7)).  (4.2)
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To study the fluctuations over the ensemble of the
measured values of G,v, we must evaluate the quantity

(Gav(7))={(¥(0),Gav*(7)¥(0))) . (4.3)

To evaluate this expression we first substitute the ap-
propriate expression (2.10) into Eq. (4.1) and then into
(4.3). Making use of our assumption that a given par-
ticle cannot pass on a straight line through both

AND INTENSITY-CORRELATION EXPERIMENTS
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counters, we obtain

Gu)=K(¥0), ¥ 3 slx(t)—y]

l#k=1 my<g=1

X 8[xx(ta) — y2 J8[Xm(t') — y1']

T T T T T T
K--- =/ dTl/ dTll'/- dh/ dfz/- dl{/ d[z,L1(T1—l1)L2(T1+T—'t2)
0 0 0 0 0 0
’ T T T T
=712722/ d2y1/ d3y1/ dayzf dayzlf dh/ dtl’/ dtz/ dlz’
1 1 2 2 0 0 0 0

In arriving at the second form of K we have imagined
that the interval T is very long compared with any
transient times. Thus having expressed the filter func-
tions L;(T1—¢,;) in terms of the frequency response ac-
cording to Eq. (2.12) we may carry out the integration
over Ty, T and obtain é functions. It is also a matter of
indifference whether we regard the #;, #- - -
limits to be — to « or 0 to 7.

It is important to remember that the quantities x;(¢1)
are the rather complicated Heisenberg variables

xl(’l) — eiKtuxle—-iKul .

Further, we note that the restrictions k5[, s#m in

X8[x:(t2)—y2 J¥(0))). (4.4)
Here K is the integral operator
XLl(Tll—11/)L2(T1'+T—'t2’)712’yz2/ d3y1/ dayll/ dsyzf dayz/' ..
1 1 2
daQ aq’
X/ —B;(—Q)Bz(ﬂ)em(“““")/ —By(Q)By(— Q)i =+ ... (4.5)
2r 2r
(1) =K((¥(0), > (x(t)—y)d(xi(t)—yy)
l=k=s
X 8(xi(t2) — y2)8(x:(t2) — y)¥(0))), (4.9)
T3(2)=K((¥(0), ¥ &(xi(ty)—y)d(xm(tr)—y1)
integration ek
X 8(xk(t2) — y2)0(xi(t2' — y2')¥(0))), (4.10)
and
4.6) Ta=K((¥0), > s(xitr)—y)o(xn(ty)—y1)
I=m=<k=s
X 6(xk(t2) — y2)8(x,(t2") —y2)¥(0))). (4.11)

Eq. (4.4) follow from our demand that the same par-
ticle cannot pass through both counters. In the sum-
mand in Eq. (4.4), we may have index pairings /=m
and/or k=s, but we may not have l=s or k=m; this
would again require that a particle be countable in both
detectors. This suggests grouping the terms according to
whether there are two, three, or four unequal indices.
We write then

(Gav?)=T2+T3(1)+T5(2)+ T4, (4.7)

where

Ty=K((¥(0), Ek 8(xe(tr) — y)d(xa(t1) — y1)

X 8(xx(t2) — y2)o(xi(ta") — y2)¥(0))), (4.8)

The notation here is meant to imply that in no one of
the four I'”s can two of the indices k, I, m, s be equal.
Thus, the interference of two particles is described by
T';, the interference of three particles by I'3(1) and
T'5(2), and the interference of four particles by I';. We
note that having evaluated I';(1), we can obtain I';(2)
from this by interchanging the detector labels “1” and
“2” and changing the sign of 7.

The expressions for I's and I'; may be simplified if we
make use of the previously given relation for the product
of & functions involving the same operators at different
times, Eq. (3.6), which we utilize in the form

SLyr—x(t1) J6[y) — 3 (1) ]= e F ' eiKing(y1— x;)e K113 (yy —xp)e~ K’

=6(y/'—y1+ iV gy )ei K §(yy —x;) ek’ , (4.12)

where 71=1{1—¢;" and we shall also need r9=1{;—¢,’. We find then

To=K{6(y)' —y1it+7m1V§1)o(y) —yot 72V )((¥(0), 3 exp[i(Kitr'+ Kits')]
1k

X8(xi—y1")8(xx—yy') exp[—i(Kuti' + K ita) J¥(0)))}, (4.13)
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T'3(1) = K{8(ys' —y1+71V§:"){(¥(0), z 2. exp[i(Kitt'+ Kita+ K oty')]

ks
Xo(xi—y1)d(xx—y2)8(x,—y2') exp[—i(Kit'+ Kita+ K1) J¥(0)))}, (4.14)
etc.
A straightforward but tedious calculation using the wave function (2.1) gives, finally,4
Po=n2K{3(yr' — y1t Vridt)a(ye — yot Vo Ix (1 )x(2)) = [ x(1'2) | 2]}, (4.15)

T3(1)=2K{8(yr' — y1t V! )Ix(I)x(2)x(2) 2 [ x(1'2) | 2x(2") £x(1) [ x(22) | 2
£x(2) [x(12) [*+x(1"2)x(22)x (2'1)+x(1'2)x(2'2)x(21)]}, (4.16)

T3(2) =K {8(ys' — ya+ Vrofld ) Ix(2)x(Dx (1) £ [ x(21) | 2x(1")
£x(27) | x(11) | 2x (1) [ x(2'1) 24X (2" Dx(11)x (1'2)+x(2'1)x1'1)x(12) ]}, (4.17)
and

Ty=[(Gav(r)) P+7K {£x (1)x(1"2)x(21")x(2")
Fx(Dx(22)x (21 )x (172" £=x (D (2 2)x (1)x(22") +x (1)x(1"2)x (21" )x (22") + x (21)x (12)x (11)x(2")
£x(21)x(2'2)x(11")x(172") +x(21)x (2"2)x (1)x (12") £x (21)x (1'2)x (21" )x (12") £ x (1" 1)x (2)x (11)x(2")
+x (2 Dx(2)x(11)x(12") E=x (2" 1)x(2)x (1)x(12")+x (1" 1)x(2)x(2'1")x (12") +x (1" D)x (12)x(21)x(2)
£x (2 Dx(12)x(21")x (1"2") +x (2" Dx (12)x (1" )x (22") 2= x (1" 1)x(12)x (2'1)x(22") +x (1" 1)x (2 2)x (11")x (22")
£ (1"1)x(2"2)x (21)x(12") £x (2" 1x(12)x (11 )x (22") +x (2 1)x (1"2)x (21)x(12")} .  (4.18)

The x’s in these equations are defined by Egs. (2.19)
and (2.26). The notation is such that x(1’),--- is a
function of (y1,t), etc., and x(1’,2),--- is a function
of (yllat1’7y23t2)s etc.

Final evaluation of the I's is effected by performing
the integrations implied by Eq. (4.5). Since these are
cumbersome to do exactly, we shall restrict ourselves
here to a description of certain limiting cases.

V. THE CASE OF A MACROSCOPIC SOURCE
AND DETECTORS

We consider first the case of a “large” source. In this
case the average over source points, leading to the
quantity Q, Eq. (2.26a), must be taken into account.
On evaluation of the I''s [Egs. (4.15) to (4.18)] it turns
out that with each two-point x [as in Eq. (2.26a)]
there is associated a factor [Ig]'/2, while there is no
such factor for the one-point x’s [Eq. (2.19)]. Since I's
is a very small quantity for a macroscopic source and
detectors, we may to a good approximation keep only
terms not involving the two-point x’s. There are three
such terms: the first term in each of T, T'3(1), and T'3(2).

On evaluating these terms we obtain

(Gav®) = [{Gav) P=T(G1)o(Ge)oM
F(G1)o{G2)o[ T{G1)o+ T(G2)o]
X[B:1(0)Bx(0)]. (5.1)

Here (G1)o is defined by Eq. (2.17) and (G,), by an

1 We recall that the ®; are considered to be an orthornomal set
when evaluating {(¥(0),- - -¥(0))).

analogous equation, and M is given by

&
M=—————/day1f dsyllf dayzf d3y2'
w1 we?Z1 e J 1 1 2 2

dQ
X/dn/drz——z IB)(Q)‘2|32(9)12
T

Xe =3y —yi+Vrigy)o(ys — yat Vrsfle') . (5.2)

When both counters have a uniform thickness
w1=w, = w, this becomes

aQ sin(Quw/2V )¢
M= [ —|By@)|?| Bo) || ———2| . (.
/Zrl (@ <sz>|[ e ] 53

We recall that w is to be interpreted as a mean stopping
distance if the particles are stopped in the detectors
unless the alignment errors are larger than this. In this
case, we interpret w as being the alignment error, since
w/V appears in our equations as a measure of the spread

in arrival times for particles starting at the same time
from the same point.

When
w/V<LAr,,
[see Eq. (2.13)] we anticipate that
M=1/Ar,. (5.4)
In the other extreme limit when
w/V>Ar, s
the good counters are wasted and we may expect
M=V/w. (5.5)
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When dc blocking filters are placed in the outputs of
the detectors, so Bi(0)=By(0)=0 [see Eq. (2.16a)],
Eq. (5.1) becomes

(Gav®)—[{Gav) 1= T(G1)o(G)oM .

The “signal-to-noise ratio” in this case is

S/N=|(Gav)| /((Gar®)—[(Gav) 1)
=[T/M(Go(Ga)o] 2 (AGu) | Is, (5.7)

where we have used Egs. (4.2) and (2.30). We note in
passing that in the case where M ~(Ar,)"1, Eq. (5.6)
may be given a simple interpretation: We have com-
mented that the number of coincidences N, is related
to (Gi2) by (No)=Ar,T{G12)=Ar{Gs) [Eq. (2.32)];
the quantity A7,7(G1){G2) has been called “the num-
ber of random coincidences.” Thus multiplying Eq.
(5.6) by (A7,)? and using the above definitions, we find,
roughly,

(5.6)

<N°2>_ <N¢>2= (Nc>random"-’ <A7Vc> . (58)
To illustrate Eq. (5.7) we set [see Egs. (2.20) and
(2.20b) ]
(G1)o=~(Ga)o~Zp(Rp/4wY¥?)y, (5.9)
and write

(AG12),~(G1)o{G2)o,

(AG12) p=21(G1)o{G2)o/ AT, Awp, for Ar,Awp>1.
(5.10b)

for Ar,Awp=~1, (5.10a)

[These estimates may be deduced from Eq. (2.29) by
considering the appropriate limits.] Then for a large
source we use Eq. (2.31b) and assume Eq. (5.4) to ob-
tain [here 5 is the counter efficiency as introduced in
Eq. (2.20b)]

MRz

S /S
)
N \N/., 4r3g

%.—_(%)bs[m,mg]—‘(%)a, (5.11b)

(TAT)Yy, (5.11a)

for cases (5.10a) and (5.10b), respectively. For photons
for example, emitted by a black-body source at a tem-
perature # through a filter passing a narrow frequency
interval év at a frequency »,, we have

(S) w(TAr,)12
—_— = T———— .
N a exp(hvo/ﬂ) —1
VI. THE CASE OF A POINT SOURCE
When [see Eq. (2.31)]
Z2pKLY A,

(5.12)

we may set X(12)=X,(12) in Eq. (2.26a) and in Egs.
(4.15) to (4.18). In this case a general evaluation is
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tortuous and we distinguish several limiting cases. [In

the spirit of an approximate description we now set

the spin weighting factor g of Eq. (2.29) equal to unity. ]
Case I [see Egs. (2.6) and (2.13)]:

VkwAws, VAr<&w, (6.1)

the case of “broad-beam spectrum” and ‘“fast elec-
tronics.” In this case we may take By(0)=B:(0)=1,
as in Eq. (2.16a), without serious loss of counting accu-
racy. Then, we obtain from Egs. (4.7) and (4.15) to
(4.18)

(Gav?)— [{Gav) JP=UC1 NG )TV /) +{G1)(Ge)
(G2) (Gy)

WR W

Case II:

Vkwhws, VAr>w, (6.3)

the case of a broad beam spectrum and slow electronics.
In this case it is convenient to replace several func-
tions having similar properties by a qualitatively defined
quantity e(7), having no more precise definition than

e(r)=1 for |Vr—(V,—V1)|<KVAr,

=0 fOI‘ | VT—'(Yz— Y1)|>>VAT,- (64)

For case II we obtain

[{Gav®) — [(Gav) 1T 1={G1)o{G2)o(T / AT,)
+(G1)(G2)o[ T(G1)o+T(Gz2)o]
B1(0)B-(0) 1 }

ch_L

X {312(0)322(0):&2
AT, Awp

TAwp
+{G1)o(Ge)o] 2[1] [ £4B,*(0)B»*(0)

Awg
Q15’1(0)32(0)
N At Awp

14¢.(7)
€

€\T)T

} . (6.5)

T,AwB

Case III:

V>whAwp, VATLLw, ArAwpll, (6.6)

the case of a narrow beam spectrum and fast elec-

tronics. In this case we again take B1(0)=B2(0)=1 and

introduce the “function” eg(r) [analogous to the ex-
pression (6.4)]:

es(r)=1 for

=0 for

Then for case III,

(Gav®)— [{Gan) P=(G1)(Go)(V T /w)[1 2 €5(7) ]
HG(GI TG+ T(G2)J(1=£1)[1+2e5(7) ]
+[(Gx>(G2>:|2[1:t4+(9:&6)63(7)](T/Aw3). (6.8)

[ V= (Vo= V1) | KV /Awg,

|Vr—(Y2—T1) |>B/Aws. ©.7)
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VII. SCATTERING EXPERIMENTS

We now consider a scattering experiment, as illus-
trated in Fig. 5. The scattered-beam particles are
counted in two detectors whose outputs are mixed,
with a relative time delay 7, in a correlator. It was
shown in I that the one-point x [Eq. (2.19)] in this case
has the form*s

Np
x(1)=(2m)*— /dwg(w)((@(q,yl,t,)[2>¢,s. (7.1)
i

Here “{---),” denotes an average over the target wave
functions go and then a statistical ensemble average
over target states. The additional subscript “S” on
“(-..)” represents an additional average over the source

volume:
dss
<"'>s= —_
s Vs

(7.2)

as in Eq. (2.26c). The quantity ¢;(g,y,t) is the wave
function for a scattered particle. It is, at large dis-
tances from the target,

¢i(q:Y:t) = ((27)“3’2/}’)
Xexp{ilg(y+d;)—wt]}F(@,d), (7.3)

where & is the scattering amplitude and d; is a vector
from a reference point in the target to the source point
of particle j in the source.!®

The two-point x [Eq. (2.26)] now has the form,
derived in I,

Np
X(12)=Cey=" Jdos@
X {(@*(g,y1,1)93(¢,¥2,t2))e,5.  (7.4)

Making use of (7.3), we obtain

Np
=— | dwg(w
x(1) ﬁy#/ g(w)

X <| g(Q:gl;J[ 2),_55 (NB/ﬁy12)51 ) (7.5)
and

T

x(12)=—2 / do g(c) exp{ia(yr—ys) —w(ti—ts)]}
nyiys .
X<§*(q’y1)‘i)§(%y2)d)>t.s) (7'6)

where we have defined the average cross section &, in
the second writing of Eq. (7.5).

From Eq. (2.18) we obtain the mean counting rate
for a single detector as

(Gr)=B1(0)((Z1wry1)/ Y1) N 551

= BAO)Z:(oy/ Vi) (VN), .7)

15 We now depart slightly from the notation used in I. The
quantity called x here was written as ((go,xgo)) in I

18 The scattering amplitude § was evaluated at "the retarded
time ¢— (y/V) in I. We shall not include this correction here.
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FiG. 5. Intensity correlations for a scattering experiment.

using Eq. (2.11). We see that

Fr=VNg (7.8)

is to be interpreted as the beam flux incident on the
target. [To account for detector efficiency, a factor 7,
Eq. (2.20b), should be included on the right-hand side
of Eq. (7.7).]

From Eq. (2.24) and (2.27) we see that

 {G1)o(Ga)o /‘ &’y /’ d*y,

(AGm) ==x
22’&02

Erwl

X fdwdw'g(w)g(w’)Bl(w'—w)Bz(w—w')

Xexp{i[(g—¢)(y2—y1)— (w—o'N(T2—T1) ]}
X (5*(Q:ﬁl;d)ff(‘bﬁ?,‘z))t,S(g(quﬁlyd/)9:*(9'@2,(2')>t,s y
(7.9)

where a different source point average [Eq. (7.2)] is
implied for the vectors d and d’.

Let us consider now a specific case to illustrate Eq.
(7.9). We suppose the target to be homogeneous and
composed of a large number NV of identical scatterers.
We shall write f for the scattering amplitude of any one
of these and, as in I, write

N
F(g,9,d)=f >;1 exp[—ig(§+d)-Z.], (7.10)

where Z, is the coordinate of a given scatterer. We shall
suppose that, as is the case for a gas or liquid, the scat-
ters are uncorrelated when separated by a distance large
compared to ®,, the “‘range of correlation” in the target.
We shall also suppose that we may set ¢g=p in &.
When @®, satisfies the conditions that
PZsPRKLR, P2 PR LY, (7.11)

where R is the distance from target to source, we may
neglect the finite size of the source and write

X(12)=X,(12(F*()F(2))Qr(12).  (7.12)
Here X,(12) is defined by Eq. (2.26b) and [see I for



COUNTING AND INTENSITY-CORRELATION EXPERIMENTS

further discussion of the notation]

(F*(1)F(2)e= *91) /(@)

X f P (n(x-+ir, n(x—3r, )
Xexpliplh(Git9—R] 1), (113)

where R is a vector from the fixed reference point in the
target to a fixed point in the source and (n(x’,t1)n(x,t2))
is the Van Hove correlation function for the target.
The quantity Qr(12) in Eq. (7.12) is

a3z
0r(12)= / —explip@e-00-2], (114
T

integrated over the volume of the target.
The quantity (7.9) now becomes

(AG12)=(AG12),l s, (7.15)
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where I g is defined by Egs. (2.31), but with Q(12) re-
placed by Qr(12) and thus T replaced by the target
area Tp in (2.31b), and

(G)o(Ga)o [ @y [ diy
(AGa) = A0 f . / : / dede
1 2

G162 21wy J 2 Zows

X g(w)g(w) By(w'—w) By(w—w’) exp{i[(g—¢')(y2— 1)

— (0= )(T2—T) ]} [(F*(1)F(2)):| 2. (7.16)
Fluctuations in
(Gav)=T[{G1){(G2)+(AG12)] (7.16)

may be evaluated from the general analysis of Sec. IV.
When the target is large enough that 771, we may use
Eq. (5.1) to evaluate these. The detector efficiency may
be taken into account by including in (Gi), and (Gs)o
an efficiency factor (or factors) #, as in Eq. (2.20b).
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This paper gives formulas for position operators that apply uniformly for all spins of particle. The three-
vector X, of the Newton-Wigner and Foldy type, is treated first. Then it is shown that, although X has
complicated Lorentz transformation properties, it is linearly related to a certain four-vector ¥, which is
built up from the Poincaré group generators. The four-vector is the generalization of the classical notion of
the component of the position four-vector in the direction perpendicular to the world line of the particle.

I. INTRODUCTION

ECENTLY a formulation of the theory of a free
particle with mass and arbitrary spin was given!
in which there is such a complete parallel with Dirac’s
theory for an electron-positron that all the known dis-
cussions for a spin-} particle can be extended to particles
with higher spins. The purpose of the present paper is to
make this extension for the study of position and to
develop formulas for three-vector and four-vector posi-
tion operators that apply uniformly for all spins.

The special features of the description of free particles
developed in Ref. 1 are that there are no auxiliary condi-
tions on the wave function and that the wave-function
components are spinors, so that the value of the wave
function at a point in space-time in one Lorentz frame
determines the value in all Lorentz frames. It is closely

* This research was done in the Ames Laboratory of the U. S.
Atomic Energy Commission.

!D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.
Rev. 135, B241 (1964).

related to Weinberg’s? formulation and Foldy’s.® In fact
there is an operator, which is a generalization of the
notion of the rest-to-lab Lorentz transformation, which
carries Foldy’s wave function into the wave function of
Ref. 1. Consequently properties of operators in Foldy’s
theory can be similarity transformed into the present
formulation.

For many of the observable quantities, such as
momentum, energy, and angular momentum, the corre-
sponding operators are simply the inhomogeneous
Lorentz group generators. The situation is not so
straightforward since position and other considerations
have to be made. Desirable properties for a position
operator X are that (i) it should be Hermitian with
respect to the appropriate Lorentz-invariant inner
product for each spin; (ii) it should fulfil the commuta-

tion rules
[X,X;]=0, (1)
[Xupil=1s;, (2)

*S. Weinberg, Phys. Rev. 133, B1318 (1964).
3L. L. Foldy, Phys. Rev. 102, 568 (1956).



