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The isoscalar form factors of the nucleon are calculated assuming that the low-energy part of the spectral
functions is determined by the three-pion (mp in our approximation) and ICE intermediate states. The ef-
fect of the ru and v nmsons is evaluated using the relativistic effective-range approximation. The ivp [ XX)
and (XE) $$}amplitudes are considered in the approximation of a one-baryon exchange interaction. The
results are compared with experiments and a qualitative discussion of the relative weight of the ~ and q
contributions is given.

L INTRODUCTION

HE computation of the isoscalar form factors of
the nucleon is a long-standing problem of strong-

interaction physics. The reason for this has been mainly
the intrinsic difhculties associated with the three-pion
state, which happens to be the lowest mass intermediate
state and therefore the one supposed to dominate the
form factor. ' The extensive work on nucleon-pion scat-
tering including unstable-particle production ampli-
tudes by Ball et t2:1.' enables one to calculate the 3m -meson
contribution to the form factors in the approximation in
which two of the 3x mesons are in a resonant state p.
We consider this mp state for 3x, which corresponds to
neglecting F (1=3) and higher angular-momenta waves
in the pion-pion system.

The existence of two vector mesons with the quantum
numbers of the isoscalar electromagnetic current made
possible a phenomenological analysis of the experi-
mental data in terms of a Clementel-Villi —type formula
with two poles corresponding to the mass of the ro and
y mesons. ' The large experimental uncertainties, due
mainly to the difhculty of measuring the neutron form
factors, did not allow setting limits on the relative
weight of the contribution of each of these vector
mesons. This question becomes important now because
it might lead to the justi6cation of some assumptions
related to the symmetry scheme based' on SU3 or to the
newly proposed selection rule for bosons (A symmetry') .

In Sec. II, we express the form factors in terms of A
and D functions of the EE'. and xp elastic-scattering
amplitudes and the unphysical cuts in (1VE'Iep) and
(Xg I

ICE). X, D and unphysical cuts are calculated in

~This work supported in part by the U. S. Atomic Energy
Commission.' G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958);P. Federbush, M. L. Goldberger, and
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Sec. III, and a simplification of the form factors into the
two-pole formulas is done. The poorly known coupling
constants appearing in this calculation are discussed.
Finally, in Sec. IV, the results are compared with
experiments and a few conclusions are drawn.

Gz" = O(t '), Gsrr = O(r '). (II.3)

The result gives rise to the possiblity of writing un-

e E.J.Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119, 1105
(1960).

7 K. W. Chen, A. A. Cone, J. R. Dunning, Jr., S. G. Frank,
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Letters 11, 561 (1963).
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II. APPROXIMATION AND FORMULATION OF
THE y AND ay CONTRIBUTION TO

THE FORM FACTORS

In the usual manner we write the matrix element of
the nucleon isoscalar electromagnetic vertex as

6&p'I i.(0) I o)= (4po'po) '"~(p')
&&5.F '(V')+sF '(V'):~"j (I), (».I)

where p' and p are the four-momenta of the nucleon
and antinucleon,

~= (II+p')' V= (P+p'),
and

P= p"=m'.

The normalization of the form factors is then (we
suppress the superscript "5" henceforth unless it be-
comes necessary to specify it)

Ft(0) =-,', Fs(0) = —0.06,

in the units of e and e/2m, respectively.
It is customary nowadays to analyze the experimental

data in terms of electric and magnetic form factors'
G~ and G~ which are related to FI and F2 by

Ge ——F&+ (r/4m')Fs, Gsr

Fr+

F�s�.
(II.2)——

Latest measurements of the electron-proton scatter-
ing' have given strong support to the hypothesis that
both electric and magnetic form factors tend to zero as
the momentum transfer tends to infinity:
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subtracted dispersion relations for both isoscalar form
factors in principle. However, it is hardly expected that
the low-energy part of the spectral function exhausts
the description of the charge and magnetic-moment
form factors. We use subtracted dispersion relations.
Using the units m =1, we have

Ge(t) =GE(0)

t
G2r(t) = G2r(0) ——

" ge(t')
dt',

, t'(t' t)—
gM(t )

dt',
, t'(t'-t)

(114)

ger py
(~p) j„(O)[O)= .„„.&q2 q2-e&(S) V2(t),

(4O (a )rt2

e/2
(EE~ j„(0)~0)= (q —

q )„V2(t),
(4ietra)-)" 2

where e&(S) is the p-meson polarization vector and co's

are energies. Here, p2(t) and p2(t) are the phase-space
factors for xp and EE; q~ and q2 are the momenta of p
and 2r (E and E in the case of the EE channel). The
explicit forms of p~ and p2 are

p2(t) =2qx'/v't,
(v'i —1)2 p(e 4)3)1/2

p (t) =— 2q-'(t, )I
o- )

7
X

(mp' —e) '+V'(~ —4)'/~
—= (2V't)q, ', (11.9)

'%'. R. Frazer and J. R. Fuleo, Phys. Rev. 117, 1603 C'1960).

where ge(t) = ImGe(t) and g2r(t) = ImG2r(t).
Let us define g,'(t) and g,2(t) (2=E, iV) to be the

contributions to the imaginary part of the isoscalar
form factors from mp and EE, respectively:

gi =gi +gi ~

One may expect' that g,'(t) and g,2(t) have the forms

g''(t) =g.„p (t) V *(t)1",(t), t»;
(II.5)

g;2(t) =-,'ep, (t) V,*(t)I' 2(t), t&4mx2,

where I'x'(t)
C
I'2r'(t)) and I'e2(t) Li'~'(t)) are propor-

tional to the EX-mp and EX-EE, J=1, I=O helicity
amplitudes. Specifically, for the ~VX-EX amplitude
we have

I'e'= (2t"'/m)(T—+/qtr')

I'2r2= —(2v2m) '(T /qx2),

gg —g t S$+

where T+ and T are defined by formulas similar to

vertex functions which are defined by

where

1 "Iml' (t')
B,'(t) =— dt',

t' —t
(II.10)

we can write the following solutions for the I"s which
will satisfy the phase condition

r,i(t) = B;i(t)
D,(t)

1 ' B;i(t')—(t/t')B;~'(t)+- p, (t')X,(t')dt', (II.11)
7l gg

t' —t

3'q/D2 ——p2 '(t)e'~ sining, ,

-& 2/D2 p2 '(t)e"ii sin5x.
(II.12)

The h. s are cutoff parameters in each channel. These
cutoffs are introduced because the contributions of
various inelastic scatterings at higher energy are un-
known. The choice of the A s are discussed in Sec. IV.

The function 1/D2 (1/D2) has the phase of 2rp (EE)
scattering and is regular for t &9 (t&4mx2). tV2 (tV2) is
regular for t) 9 (t&4mir2).

A similar argument holds for vertex functions, and
we have

V2(t)=D2(0)/D2(t), V2(t)=D2(0)/D2(t). (II.13)

Substituting (II.11) and (II.13) into (II.5) we get
g,'(t) in terms of iV, D, and B as follows:

»(0)
g"(t) =C p (t) B"(t)-

ID;(t) l'-
1 ' B,i(t')-(tlt')B;i(t)

p, (t')X,(t')dt', (11.14)
7l gj

q-'(t, )= l.t —(v' —1)')Lt—(v' +I)']/«,

which is the square of the spatial part of the momentum
in the c.m. system of a pion and a compound particle
which has total energy ge in its c.m. system.

The unitarity condition on the i' EE-(JV'E 2rp)-
amplitude requires I", (I' ) to have the phase of
EE (2rp) in the region 4m22& t&4m2 (9& t & 25), and we
will assume that the effects of inelastic scattering are
small so that this phase condition will continue to be
approximately valid at higher energies. In addition to
the right-hand singularities given by the unitary con-
dition, the function F,"will have left-hand cuts which
are related to the physical singularities in the crossed
channel.

Defining B,'(t) (j=1, 2, i=E, M) to be the result
obtained by carrying out the integration over left cuts
of I', '(t),
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where
Cy= g pg and C2= y&-

lo,
300-

A more careful derivation of Eq. (II.14) is given in the F 2 [D (t) ~
g th 2QQ-

Appendix using the coupled N/D method.
IOO-

In the physical region, the effect of the left-hand
singularities can be estimated by replacing the branch
cut by a pole having appropriate position and residue.
This assumption seems reasonable because for E-X
scattering it leads to the mell-known effective-range
formulas. Making this approximation, we have

N, =),/(t+t, ), (III.2)

where tr) —9, t2) —4mx'. Then we get from (II.4) for

Pro. 1. ~D~(t)
~

' around the
resonance t1———5.0, ) 1

' ——1.45,
cutofF h.1=168(m ').

-2
lo, (~)f

300-

200-

IOO-

III. N, D, AND B FUNCTIONS AND REPRO-
DUCTION OF TWO-POLE FORMULAS

(A) N, D, and B

Denoting the mp and EX scattering amplitudes by
Tq(t) and Ta(t), we have

I I I

5l 52 53 54 55

The various coupling constants are defined by the
following interaction Lagrangian density:

&,n~ —g&~ps» ~+gN~z&~
+gN gP ~yA p"+gNXKN'YaeXK+H. c.

(Here H.c. means Hermitian conjugate. ) We will

neglect the magnetic-type (o„„q") interaction between
nucleon and p meson in our calculation. This approxi-
mation will be justified by the results in Sec. IV.

It might be worthwhile to mention how one can avoid
the complexity caused by projecting the partial wave
for p»t system. This could be done as follows: Using
the fact that the absorptive part of the isoscalar nucleon-
photon vertex, denoted by J„~, is expressed by Eq.
(III.5), we obtain two independent linear equations for

gz and g~ by taking traces' and separating gz and g~.
Then equating them to the right-hand side of Eq. (II.5)
in which I' corresponds to B,', we get

26 28 30 32 34
g A (1P &)1/2(2~) —3 d gr d ge 6 (rtg+rta g)—

a single channel,

"t (t)N (t)
D, (t) =1 p—Ct-'+ t )', (t)t;(t)e(t —8;)

R, t'(t' —t)

ReD;(t)+—i ImD;(t) .

We adjust the four parameters P ~, ) 2, t~, and t2 such
that each channel produces the co and q at the right
positions t„=m/=31. 2 and t~=m2'=53. 2 with the
right widths I' =9 MeV, and I'„=4 MeV. In other
mords,

ReD;(mg') =0,

where the superscript "I=O" means the isotropic spin-
zero component of the matrix element. We have ab-
breviated the sum over the p-meson polarization vector
in the expression.

q,

E k

Nr(tro) pr(tre)
I' =

mr(8/R) LReDr(ted) j
Na&ty)pa(tq)

FQ
m2(r)/r)t) [ReD,(ty) j

(III.4)

FIG. 3. Diagrams which con-
tribute to 8;&(t). p', qI, and q&
are the 4-momenta of the indi-
cated particles in the diagrams.

The
l Dr(t)

l

' and
l Da(t)

l

' which are obtained with
a set of parameters t~= —5.0, X~ '=1.45, and t2 ——10',
X2 '=0.67&10—', are shown in I'ig. 1 and Fig. 2.

As for the B functions, we take into account the con-
tribution from the Feynman diagram shown in Fig. 3.

Qr

qp

~ S. D. Drell and F. Zachariasen, Electromagnetic Strgcture of
NNdeons (Oxford University Press, London, 1961), Chap. III.
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The explicit forms of the nucleon currents are

(p'I iE(0) I
~p)'="

Substituting Eq. (111.7) into Eq. (II.14) for t„=t and

t„=t~ and performing the integration in Eq. (II.4),
we get

ggxut=v'« tt(p') v~,
(SE 6) co) t p tip —m

'Y~e"(e)
1 d' 2

GE(t)=0.5 1—dE' —dE'+ +
1 t/t-„ 1 t/-t„

where co, co„orx, and ~x are the energies of 7f, p, E, and

E.The results obtained are r;(t) =D;(t) I', (t),
B '(t) =(G/» pq, )LQ.(,)-Q.(,)l,
B '(t)=(G/«pq, t)CQ.(,)+2Q.(,)j,

we can express the d,&'s as follows:

&p'li (o) I
&&&' '

=(gE~K', 3gEzK')(4~K~tt) '"u(p')y~(y" q—i m—) 'y„, G~(t)=0.44 1 A—r' d~—'+
1 t/t. 1——t/t„

(III.S)

gEKE 1 QO(sk) m m& p
B '(t) =- +-.'Qz(zE) — —Qr(s~)

4s SPqK 3 g~

gEzK' 1 -Qo(sz)
+-' — +e Q2(»)

4K SpqK 3 R
m —mz p—Qi(EEz)

fS

&'(t)=(g '/4 )(24pq ) 'LQ( )—Q(»
+3(gEzK'/4K)(24pqK)-'LQ. (»)—Q2(»H

p = (-,'t —m')'t' qK=-,'(t—mK')'t',

m=nucleon mass, G=ggEg, /4z,
mz =& mass. The q, are defined in (II.9) and the Q;(e)
are the Legendre functions of the second kind.

2L(q.'+ 1)t/4j'"+1

2pqn

—,'t —mK'+ (md —m')
Sp— )

', t mK'-+ —(mz' m')—

(B) Two-Pole Pormulas and Coupling Constants

It is necessary to let the widths of F„and F„go to
zero in order to reduce G;(t) to two-pole formulas. Since

ReD(t) becomes zero at the resonance t=t„, ReD(t)~
(t—t,)(d/dt))ReD(t„) j is good approximation near the

resonance. Then from Eq. (III.3)

2I'E'(t-)

t„N&(t„) ReD', (t„) e

2PE'(t, )
2

t„N,(t,) ReD', (t„)

&~'(t.) g.,
Ar'=

0.44t„h r(t ) ReD'r(t ) e

I'~'(t„)
Ar2=

0.44t,N, (t„) ReD', (t„)

How much information we have for coupling con-
stants is the next problem to be discussed. There are
four coupling constants whose values are not well
established, viz. , g», g~g„g~p~, and g~g~.

As for g~g„we use the value obtained from the
p-meson contribution to isovector form factors':

gEg, '/4z =4.4.

The same constant determined from the existence of
spin-orbit forces is between 4 and 7."

The octet model4 provides the fermion and boson
coupling in terms of a constant d and g which is pion-
nucleon coupling constant, g'/4s = 14:

gEzK/(kr)'I'= —(1/V3') (3—2d)g,

gNzK/(4z') I =(2d —1)g.

According to Ref. 12 the lower and upper limits for
g» are as follows:

0.2((g, /e( &2.1.
1/LReD'(t, )]'

I D(t)
~

' (t—t„)'+N'p'/(ReD'(t, )$'
(111«) Since the lower limit is obtained under the assumption

that co dominates the nucleon form factors, we take

Therefore, in the limit N(t, )p(t, )/ReD'(t, ) ~ 0, we ha&e lg--/el &21. (III.9)

1 z.b(t —t,)

~
D(t) ~

N(t )p(t„) ReD(t )
(III.7)

' J. S. Ball and D. Y. Mong, Phys. Rev. 133) 31/9 (1964).» I. J. Sakurai, Phys. Rev. 119, 1784 (1960).
~ S. M, Berman and S. D. Drell, Phys. Rev. 133, 3791 (1964).
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IV. RESULTS AND CONCLUSIONS

Let us first look at the experiments. Four groups,
Hofstadter e1 al. ,"Kirson, "Balachandran e/ g3. ,

"and
Dunning et ul. , '6 have tried to fit experimental data to
two-pole formulas with (III.8) with and without sub-
traction, assuming the contributions from q and or to
be dominant.

The common feature of these four papers is that the
signs of dg' and d~' are positive and those of d~' and
d~' are negative except in the case of Ref. 15 where the
quoted error is compatible with opposite signs for d&'
and d~'.

Recalling the fact that we have two cuto6's A1 and Ag

and Aexible coupling constants d and g», three ques-
tions may be raised: First, are there any results from
this calculation which are independent of this arbi-
trariness2 Second, is it possible to reproduce any of these
d (i=E, M, j=1, 2) obtained by these four groups'
Third, are there any other possible sets of d;& which fit
to experiment in the low-momentum-transfer region?

Let us start with the first. There is a result inde-
pendent of the ambiguities; namely, dg' and d~' have
lower limits:

(IV.1)d'~'& 0.82, d~'& 1.5.
The answer to the second question is clear now. We

have only positive values for dg' and d~'. Therefore,
it is impossible to reproduce any of the d obtained by
the four groups.

So the third question becomes important. There are
three independent groups to be considered:

(1) ca dominant ( d »d;m, i=E, M),
(2) y dominant ( d ((d')
(3) p and co having equal contributions ( ~

d,'
~

dP) .

It is easily seen that it is impossible to get a good co

dominant fit because of the condition (IV.1).
We make the following observations: (1) The ratios

Ei=ds'/d~' and Ea=ds'/d~' are independent of the
coupling constants and depend only on the cutofFs A1
and A2, respectively. (Strictly speaking, this is true for
E2 in the approximation jIIq=Mg. However, E2 is
insensitive to the mass difference. ) (2) The R's are
monotonically increasing functions of the A's and have
the ranges 0.38&X'1&0.6 for 100&A1&220 and 0.52
&E2&1.0 for 100&A2&10'. A1 is required to be smaller
than 220 in order to satisfy both t1& —9 and I'„=9.0
at t„=31.2. The above observations together with re-
strictions (IV.9) and (IV.1) lead us to conclude that
only the p-dominant solution can account for the proton
data in the region t&60.

"C. de Vries, R. Hofstadter, A. Johansson, and R. Herman,
Phys. Rev. 134, 3848 {1964).

'4 M. %'. Kirson, Phys. Rev. 132, 1249 {1963)."A. P. Balachandran, Peter G. O. Freund, and C. R. Schu-
macher, Phys. Rev. Letters 12, 209 {1964)."J.R. Dunning, K. %'. Chen, A. A. Cone, G. Hartwig, N. F.
Ramsey, J. K. W'alker, and Richard Wilson, Phys. Rev. Letters
13, 631 {1964).

Tmr.E I.Two sets of parameters (d, g»/e, AI, and A~) which
give good 6ts to the data are listed. The residues of the poles ob-
tained from the sets are also listed.

ParameterslSet gf~l gg'l d~1 d~R d gs py/g A1 AQ

0.182 1.0 0.333 1.69 0.7 0.077 216 377—0.660 2.33 -1.20 3.49 0.97 -0.28 216 722

Using the isovector form factor obtained by
Hofstadter,

1
Gs "(t)=0 51—.1.26+1.26

1—//18

G~"(t)= 2.353 1—1.09+1.09
1—t/18

(IV.2)

State

Higher mass

Charge
73.3%
13.35
13.35

Magnetic moment

55.5%
11.1
33.4

This gives support to the empirical selection rule
which has been proposed by Bronzan and Low. ' The

the proton form factors, G =G +6 are shown in
Fig. 4 for sets A and B whose parameters are given in
Table I.The experimental data in Fig. 4 are from Chen
et ul. 7 Both Gg~ and G~~ become too small in the high-
momentum-transfer region,

Though sets A and 3 together with Kq. (IV.2) give
very good agreement with experiments for Gs~'(0),
G~"'(0) and G~"'(0), they give a higher value for
G~"'(0)

t Gs"'(0) =0.045 F' for set A which should be
compared with the experimental value 0.021&0.001 F'j.
Considering the fact that this calculation has employed
the simplest approximation (neglecting rescattering
terms, etc.), this qualitative agreement with experiment
can be appreciated.

The calculation with finite width for q and co showed
that a Clemental-Villi type formula is very good ap-
proximation in this momentum transfer region. For both
sets A and 3, the threshold condition G~(4m') =Gs(kn')
is not satisfied; however, this is not surprising because
both the low and high (t)4m') energy parts of the
spectral function are equally important at )=4m'.
Nevertheless, it is noticed that the imaginary part of
the form factors satisfies the threshold condition in our
formulation automatically.

In conclusion, we emphasize that our calculation
indicates the q contribution to the isoscalar form factors
to be larger than the co contribution. For instance, in
the case of the parameter set A, the percentage con-
tributions of &p, co, and hard core (higher mass contribu-
tion) to charge and total magnetic moment are as
follows:

Set A:
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2.0

I.8

t.6

I.2

I.O

0.8

0.6

FIG. 4. The experimental magnetic-
moment and charge form factors for
the proton, G~~ and G~ are shown
by z and ~, respectively, with error
bars representing the statistical error.
The G~ and G~ obtained from the
sets A and B are shown. The units
are m ~=1.

0.4

0.2—
lhl\ ~

0 I

IO

I

20
I

30 40
I

50
I

60

rough estimates of the ratio

R= I'(cu ~ e++e )/I'(e +e++e ) -(rtt„/m„)(g, „/e)'

using sets A and B are 1/300 and 1/25, respectively.
This can be directly checked from the decays involved
or eventually with colliding beams of electrons and
positrons.
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In this appendix, we shall go through the coupled-
channel X/D method in order to see the approximation
taken in writing Eq. (II.14) more clearly. This kind of
formalism has been given by other authors. '~" W'e
would like to approach it a httle di8erently. " (We as-
sume the instability of p can be completely contained in
the phase-space integral and the anomalous threshold
which may occur will be neglected. )

W'e denote the relativistically invariant J= 1 partial-

"S. Bergia and L. Brown in Proceedings of the Stanford Con-
ference on Nucleon Structure, 1963 {unpublished).

'II J. D. Bjorken, Phys. Rev. Letters 4, 470 {1960).
'9 This approach has been made through private communica-

tions with Dr. J. R. Fulco.

T=~VD ' (A1')

It is well known that T;, has cuts in the complex
plane of the square of total energy t, in the center-of-
mass system. Let us denote the right-hand cut by
R,; (R;;(t(~), which arises from unitarity in the t
channel, and the left-hand cut by L,; (Ret(R;,) which
contains all other singularities of the scattering ampli-
tude, T;;.

In Eq. (A1'). we define X and D such that N contains
only a left cut and D contains only a right cut. Using
unitarity, ImT,; '= p;8;;, an—d (A1'), we obtain

1 ImT(t')
X(t) =— D(t') Ct, (A2)

p(t')&(t')
D(t) =I—— dt'.

& t'(t'- t)
(A3)

Substituting D(t) in (A3) into E(t) in (A2) and defining
the left-hand-cut contribution to T,,(t) by

1
B;;(t)=

ImT;;(t')
df',

wave amplitude for scattering j~i as T,;:
EN mp EE

Y T11 T12 T18 T14
21 22 T23 T24 ~ (D ~) (A1)

ÃP T31 T32 T33 T34
T41 T42 T48 T44

T24, for instance, is the EX-EK scattering amplitude.
In compact matrix notation this is
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It is easily seen that X3$, X4$ E34 and $43 have a trivial
solution, namely

we 6nally get

N;;(t) =8;;(t)
(AS)%31=%41=$34=%43=0.

%21=0.

8;x(h') —(tlt') 8'x(t)
(t')iV x(at')Ct'. ( 4) Accordingly, we have

Since the vertices have no left cut, we get

8,1(t)=8„(t)=O. (A5)
Substituting (AS) into (A3), we get

Substituting the requirement (A5) into (A4), we get

,V1;——C, (constant), (A6)

D21 D31—D4$ D34 —D43 —0 ~

Now let us write the photon-nucleon vertex explicitly
for this case:

which can be identi6ed as the coupling constant'0 in
each channel.

The SXand y intermediate state would be negligible
because of its higher mass and electromagnetic nature.
Neglecting this state is equivalent to setting pt(t)=
ps(t) =0 in the equations (A3) and (A4).

Then from Eq. (A3) we have

Ds'= bs', C= ID l =DasD44 Da4D4a. —

ImT12 ——Tts*psT32+T14 paT42.

Substituting (A7) into the above equation, we get

%23
ImT12= C3p3 +C4p4

lD441'
(A9)

We assume time-reversal invariance T;;=T;; which
would be satis6ed automatically if 8;;=8;;.Then

T42 T24 = ( ~' 23D34+ V24D33),
d

T14 T41 (lV14Das —N13D34), etc.
d

where the explicit forms of %23 and cV24 are given
from (A4):

1 B„(t')-(t/t')8„(t)
-~23= 823+— pa(t')Naa(t')Ck',

1 824(l') (t/t')824(t)—
iA g4= 824+— p4(t')N44(h')Ct'.

7r

,lT
LAY L1=

lr

843(t )—(t/h )833(t)
ps(h') Vst(h')Ch. 'X (&12+ &as)

t' —t

1 8,(t') (t/t')8&, (h)—+- pa(t').V41(t') ch'

X(842+ha4), (t=2, 3, 4);

8"(h')-(tlh')8"(h)
p;(t') N, ;{t')ct',

7r

At this point we can see that the approximation given
in Sec. II is reproduced easily just by setting 8;;=0,
except 8«, 8», 824, and 8»,. namely, we neglect the
interactions raised by exchanging the particles in the
channel (ij) except as listed above. Then N21 Nal N41,
4 34 and $43 have to satisfy the following equations:

It is clearly seen that D33 (D44) and 1Vss (N44) are the
1V and D functions of the arp (ICE) scattering amplitude
by writing Tsa and T44 explicitly using (A1). Recalling
that D1 (Ds) and Ns (.Vs) in Kq. (II.14) are the 1V and
D functions for the arp (EEj scattering amplitude and
that 8,' (8,') corresponds to 833 (844), we see that (A9)
is equal to (II.14).

Now what change will be caused if we take into
account the 834 and 843 terms which allow co and q
mixing? (Since the experiment shows that o1 and 32

mixing is small, we will not take it into account in our
calculation. However, it is done here for the benefit
of further application of this formalism to some other
physical processes. )

D34/OAD43 %34/0/cV43.

(i and j are either 3 or 4) . Therefore, the photon-nucleon vertex becomes

~ L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, ImT12= lCl L( CaD34+C4D33) p4(1V24D33 N23D34)
453 (1956); S. C. Frautscbi, Regge I'ops and 5 Nefrix Theory
(W. A. Benjamin, Inc., New York, 3.963), Chap. III. +(CaD« C4D4a) ps(N23D44 N2—4D43)j. —


