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A Parity for Very Weak Interactions
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Relevance of the charge-parity quantum number A to very weak interactions is studied. It appears that
nonleptonic decays conserve AP, when P is real parity; a similar rule is postulated for the hadron currents in

leptonic decays. Observed relations between A —+ p~ and ~ A~ verify the AP rule with a deviation of
order 15% from A symmetry in the baryon octet. Simple relations are predicted between " -+ (A,Z) and

(A,X) ~E leptonic decays. The structure of nonleptonic baryon decays is almost completely specified by
introduction of one further symmetry postulate, which does not fit readily into the SU& framework. The
AP rule sheds no light on X~ ~ 2m decay.

HE quantum number A of charge parity provides
a selection rule for bosons on both strong and

electromagnetic interactions. ' One can in fact take A

to be strictly conserved by electromagnetic interactions
and to be violated only by such medium-strong inter-
actions as produce the baryon mass asymmetry. It is
natural to inquire whether A has any relevance to very
weak interactions (VWI). We again assume the VWI
to strictly obey selection rules on A, with failures
attributable to the medium-strong interactions.

For the present question the obvious test cases
EIO~ 2m and. E2' —+ 3m are completely opposite in
their behavior: Ay= —A, for the erst, Ay=A, for the
second. On the other hand, (AC)~= er(AC), for both
transitions where ~z=&1 is the unknown signature
under time reversal. Using CT= I', we have

as the selection rule for very weak decays. ' Although
Eq. (1) provides a suggestive formal relation between
real and charge parities, it is rather empty physically;
for example, it says nothing against E20 —+ 2m, which
appears to be strongly inhibited but not completely
absent. '

Another question of interest is whether relative
charge parity is a useful quantum number for baryons,
as is suggested by the formal approach. 4 Nonleptonic
decay of baryons provides an opportunity to study this
question in connection with Eq. (1), which relates the
asymmetry parameters of ~A+x and A~ X+7r
decays. Agreement with observation indicates that A is
well conserved by V%I among baryons of the lowest
octet if anticipated minor deviations of the octet from
A symmetry are used to interpret certain experimental
ratios.

Equation (1) halves the number of independent
terms allowed by the LU= ~ rule for baryon decay. A
single additional assumption (called W invariance
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below) is sufhcient to remove most of the remaining
arbitrariness and yield an interaction form in good
qualitative accord with observation. The operation of
8' invariance does not occur naturally in SU3, thus
suggesting a more complicated charge symmetry for
very weak interactions.

Extension of Eq. (1) to leptonic decay of hadrons can
ultimately be tested by the simple relations it predicts
among baryon leptonic decays. Under this extension
the divergence of the W meson must also satisfy Eq. (1)
if it mediates V%I.

1. BARYON SYMMETRY UNDER A

The operator A can be de6ned in a general fashion
that applies both to bosons and fermions4; its effect on
an ideal baryon octet is then

AZ; (Z—;). AA A. A „— p. A „0 ne (2)

where A'=1 and the superscript c means antiparticle.
The relative signatures in Eq. (2) are axed by conven-
tion; the absolute signature of the array then dis-
tinguishes two classes of octets in just the same sense
as the relative real parities of nucleon states. By de6ni-
tion, take the signs in Eq. (2) to represent positive
charge parity.

The application of Eq. (1) to baryon decay requires
the physical baryon octet to be a reasonably pure state
of charge parity, say 4'(+). The purity cannot be
perfect, since the mass diiference 26= (Mx —M~) is
distinctly nonvanishing. On the other hand, matrix-
element deviations associated with this failure are of
order 6/M= '„which gives a. good account of A failure
in boson transitions. ' In the next sections we wish to
assume that admixtures to 4'(+) in the baryon octet
do not exceed this order.

There are three main objections to consider: (i) The
2+ decuplet is not in fact matched by a reverse decuplet,
so that it must represent an almost complete lack of A
symmetry —a roughly equal mixture of f(+) and f (—).
(ii) The electromagnetic mass differences do not display
anything like A symmetry, which for example predicts
that M( ) M( ')=bMx= H—fN=M—(p) M(n) (iii)— .
To be an eigenstate of AC, the A. must have a vanishing
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magnetic moment, instead of the measured value —,'p, „.
We answer these along the following lines: (i) The
baryon octet is the simplest representation of the
charge group and therefore may not display all the
details revealed in a more complicated representation
like the decuplet. That is, the possibility of A symmetry
may occur for the octet by a sort of special degeneracy
which is lifted in the decuplet. (ii) The nuclear electro-
magnetic mass differences are strongly in6uenced by
the —,'+ decuplet as possible intermediate states. Hence
the 83f violate A symmetry strongly without implying
the same for the nucleons themselves. (iii) Failure of A

symmetry to order d,/M yields a A magnetic moment of
order 2(d/M)IJ~= $pN, as observed.

Existence of A as a meaningful quantum number is
tantamount to the assumption that hypercharge is
proportional to the third component of an I-independent
second isotopic vector, I,'=2F. In this case one im-
mediately obtains the charge octet as the basic fermion;
the same is true in SU3, where F is a scalar. Only higher
representations diGer in dim. ension for scalar and vector
V. An octet can always have accidental A symmetry
even if F is really a charge scalar.

The electromagnetic mass formula should contain
terms as high as quadratic in the charge coordinates:

M =ap+ (a,Y+b,I,)+a2Y'+ b2YI,+cnl, 2. (3)

The u terms are unobservable in the face of strong
mass deviations. For perfect A symmetry b&=0 and
bMg=bMN in contradiction with experiment. Strong
interference with the +~+ decuplet as an intermediate
state will obviously distort this symmetry, so that the
effective formula becomes

bM= (bi+b2y)I, +c2I 2

with bj, and b2 the same order of magnitude. ' Experi-
ment indicates that b&———3.8 MeV, b2=+2.5 MeV,
and c2= 1..0 MeV. It is interesting to note that the
mass relation

bM-. bM~= M(Z ) —M(Z+)——(5)

requires only linearity in F of the I, coeKcient. This is
a weaker assumption than full SU3 symmetry, on which
Eq. (5) was 6rst obtained. '

Under strict SUS symmetry, failure of A invariance
is indicated not only by nonvanishing p~ but by non-
vanishing p,„as well. ' It should be noted, however, that
this result depends critically on that feature of the SU3
scheme which is in poorest agreement with observation,
namely, the complete equivalence (i.e. , cancellation for

6 An elegant formulation has been given by L. A. Radicati @al. ,
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s1/sg=e1/eg indicates relative A failure in the electromagnetic
interaction to be exactly comparable vyith that in strong
interactions.
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p= 0) in strength and secondary electromagnetic eGects
of x-baryon and E-baryon interactions.

Bg{V2p(es)Am. —n(eg)As'}+H. c. (6)

Bg {vip(eg') LZ+ir' —Z'ir —j
—n(eg')fZ —

w
——Z+ir+j}+H.c. (6')

Bg"{n(e6")LE+sr++2's'+2 s. j}+H.c. (6")

B.{V2It(c,) m +—It (—ei) s }+Hc. (7)

B,.{V2LZ' --Z- o$(.,')=-'

+LZ
—s.+—Z+s.—j(&i') '}+H.c. (7')

B7 {LZ+s +Z'n'+Z s.+](ev") '}+H.c., (7")

where 7i(e)A~ = (4„(1+&pi)ipqQ *, etc. Here we must
use the scalar form of the interaction, even if it is only
effective or derived. In the current-current form the
vector contribution arises entirely from the A failure
expressed by 6; its use would defeat the purpose of
looking for A invariance in VWI.

The 12 constants 8 and ~ in the above equations
reduce to six under Eqs. (1) and (3):

86=87=8, g II g II gal
II I/ Itl ( )

Experimentally one Gnds that

)
B(=-- A~-)

)
=

~
B(A p~-) [

and that n== —nq for these two decays. This veri6es
to first order one part of Eq. (8) and hence supports
Eq. (1). Unfortunately, the only other comparison
possible is between P —+Ax and A —& nx',. under the
M= 2 assumption this yields no new information and
can never be so accurately determined as the decays
involving m

—emission.
To reduce further the number of independent con-

stants in Eq. (8), we may introduce an additional
postulate having no direct connection with A or isotopic
spin, namely, symmetry under the substitution

wo

w

To give this a name, we denote it as "lV invariance. "
Applied to Eqs. (6)—(8), it yields the additional relations

(10)

Equation (10) is in good agreement with observed. Z
decay; 8"=8' is a necessary condition for the absence
of polarization in charged-pion decay of Z+ and Z—.

It would be desirable to fix ~' by means of another

2. NON-LEPTONIC HYPERON DECAY

Assume the LU=-,' rule throughout. Then six inter-
action forms exist for pionic decay of hyperons:
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postulate along the lines of the previous two. One such
possibility is the following: Consider the baryon forms
(Z+n) and (PZ ), which are unique in requiring AI,
=+—,'. They are related by the operation AP (or A);
we might expect their relative signature to be opposite
to that for comparable terms with M, = ~, by a sign
alternation rule similar to that between Z and A. Thus,
one assumes

p(S»+P»(a q/q))A@ *,
X(Sg Pz(e. q/q))—" y *. (13)

Here q is the final momentum and the deviation from 2
symmetry is expressed by the parameter a in the
formulas

S»= (1—a)S, P»= (1+a)P,
Sx= (1+a)S, P-. = (1—a)P. (14)

The relative assignment of the (1&a) terms is unique.
Other arrangements would represent: A failure in the
V%I instead of in the baryons, if the first two factors
were (1&a) and the second two (1&a); or no failure
at all if the S factors were both (1&a) and the P
factors both (1&a). The numerical check on Eq. (14)
is that

(15)

With current data the left-hand side of Eq. (15) is
1.1&0.3 times the right-hand. side. Now taking O,q

The appropriate terms in Eqs. (6) and (7) are a sum of
the primed and double-primed coordinates; with the
previous symmetries in Eqs. (8) and (10), the un-
equivocal consequence of Eq. (11) is

(12)
as observed.

The nonleptonic decay term has now been reduced to
just two independent constants, 8 and ~. Although we
have tacitly assumed e to be real, nothing about its
magnitude has been specified. The postulate of 5' in-
variance does not seem to fit very naturally into the
framework of SU3, its eflicacy for very weak inter-
actions suggests that they may obey a more complicated
charge symmetry.

Precise comparison of data on A —+ Pn and " ~As
would allow some estimate of 3 mixture in the physical
baryon octet. Write the effective interaction in non-
relativistic form:

=0.66, ox= —0.4+0.1 we obtain a= (14&5)%.This is
exactly the amplitude of A mixture anticipated from
the crude estimate A/M found in boson decays.

3. LEPTONIC DECAY

In leptonic decay processes one might at least hope
that Eq. (1) would hold for the hadrons; and this seems
to be true in the known cases x„g, K„2, vr, 3, and E,3. For
leptonic decay of baryons the current-current form of
interaction is necessary; to reduce the baryon term to
a scalar form, write it as (f(y„L„)(1+eyq)f), where
L„ is an 2-invariant polar vector. Then the AI'=+1
assumption for baryon terms in conjunction with the
dd =

2 rule yields the interaction form

(Xy~(1+~ps)" py„(1+—eys)A) l„+H.c.
~(Py, (1+eye)

——vH+y„(1+ ey5)~
+@V«(1+~vs)&'+V2&y„(1+ eyr)Z)l„-+H-c

(. 1.6)

In this case the relative signs of heavy-particle polariza-
tion are the same instead of opposite as for ~A~
and A -+ pm; this results from using the V—A form of
interaction. One also expects that e'= 1 for at least the
bare baryons, with corrections in practice of order 20%
as observed in I-p decay. Equation (16) differs from
the prediction of an 5U3 theory of leptonic decays. '
Given 20% corrections to the axial-vector terms, the
situation is not yet c',ear experimentally; but all terms
in Eq. (16) are in principle accessible to experiment.

This same approach for 88=0 leptonic decays would
imply equality in amplitude and V—A relative sign
for m ~ p and —+ P decays; for leptonic decays of
V=O baryons the AI' rule tells only that the relative
signs for the various terms are those of isotopic spin
generators: viz. , (2'Z —2+1') and (XZ +2+A), which
makes them first-class currents in steinberg's sense. '

If the V%I interaction is mediated by a vector meson
lV, then the preceding discussion indicates that (B„W„)
satishes Eq. (1). Thus, if W„ is a polar vector it has
2=+1 like the p,' if a pseudovector, it should have
2= —1.
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