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relations among the terms of the nonleptonic current: It also follows from CP invariance and conservation of

V2(E'~ ') =VX(E'[m )=/6(E'~g)= (ICg'[ ')
=VS(X20[g)= (re+—[~+), (13) ~(&2'I+"e )=~(nlIt~'e+e )=o

and
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Starting from the Lagrangian theory of quantum electrodynamics with massive photons, we Gnd that
the lowest order radiative corrections to the fourth order "box" diagram of the Compton scattering ampli-
tude contribute terms proportional to (lnt) for large t, violating the Regge behavior if uncanceled. The
sixth-order ladder diagram and two others obtained from it by interchanging one of the external photon
vertices with a virtual photon vertex are re-evaluated. It is found that the unwanted terms contributed by
all these diagrams exactly cancel, proving that in this theory, the fermion lies on a Regge trajectory, up
to the sixth-order perturbation.

I. INTRODUCTION
' 'N quantum electrodynamics with massive photons,
~ ~ perturbation theory has been applied up to the
fourth order to investigate whether the fermion lies on
a Regge trajectory. ' The diagrams that contribute in
the second to the fourth order are shown in Figs. 1 and
2. Their sum gives'

BR„„=—y'1'g„(P —m) '(1+y'L (s—m')I, (s)
—(s—mP)Ii(s)] ln( —t)/8+)I'i„, (1)

where
s= (pg+kg)',

t= (p1—p2)',

I„(s)= x"dx/Pm'x+0(1 —x)—sx(1—x)1,

F2y —yp (kgk2y/kf ' k2) )

1'g, =y,—(lr2kg, /kg k2),

respectively, and p the coupling constant. ' Kith the
use of the external photon gauges F1„, F2„ instead of
y„, y„, all other second and fourth order diagrams do
not contribute.

The situation is more complicated in the sixth order,
where contributions come from more than one diagram.
In particular, when radiative corrections for the vertex
parts and the self-energy parts are inserted in Fig. 2,
terms proportional to Lln( —t)j' are obtained. We show
in this paper that the contributions from diagrams
3(a)—(f) in Fig. 3 exactly cancel the extra terms con-
tributed by diagrams 4(a)-(c) in Fig. 4, giving the
correct coetficient for Dn( —t)$' as required by the
Regge behavior. Thus the fermion is proved to lie on a
Regge trajectory, up to the sixth order of perturbation,
in the Lagrangian theory of quantum electrodynamics
with massive photons.

Pa

and m, X, are the masses of the fermion and the photon
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FIG. 1. Second-order Feynman-Dyson
diagram.

' Our metric is so chosen that p'= po' —P.
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II. RADIATIVE CORRECTIOÃ TO THE SQUARE DIAGRAM

We hrst turn our attention to Fig. 3(b). The self-energy part of an electron with momentum q in the
lowest order is given as'

Z(q) =A+8(q —m)+(q —m)'Zf(q), (2)

where 3 and 8 are independent of q and are eliminated by renormalization, and where

1 m(1+x)+ (q+m) (1—*)([2mmx. (1+x)]/[m~e+) 2(1—x)]—1)
Zr(q) = (Svr') 'y' x(1—x)dx ds

0 a m'xa+X'(1 —x)—x(1—x)s(q' —m2)

Now we have

(3)

5R„„(")=i' ~„(p,—1+m)r,„(p—1+m)r, „Z,(p,—1)&, d 1

[(pm f)2 m2][(p 1)2 m2][p yR] (2x)4

We may substitute Eq. (3) into Eq. (4) and evaluate
the resulting expression in the limit t —+ oo and s fixed.
This tedious process can be avoided. , however, if we
note that, for q

—+ ~, Eq. (3) gives

~~(q) ~ (16+) 'v'»(q' —m')/(q —m) (5)

If we substitute Eq. (5) into Eq. (4), we 6nd that the
integrand di6'ers from that of Fig. 2 only by a factor
(y'/16m') in[(p& —l)'—m']. When p& p& is very large,
this factor is approximated by —(y'/1&r ) inn, where
n is the Feynman parameter for the internal electron
line of momentum pq

—I in the square diagram. Thus
we get

BR„„~' & = (41r) '(y'/4a)'I'2„[ —(p+m)IO($)
+PI~(s)]I'~.[ln(—t)]'. (6)

The vertex part is written as'

A. (q2, q~) =1~.+A.f(q2,e), (S)

where q2 and qj are the outgoing and incoming electron
momenta respectively, and where L is independent of
qj and q2 and is removed by renormalization. The func-
tion A, f(q&, q&) is quite complicated. We note, however,
that it is invariant under the transformation q&+-+ q2

plus reversing the order of the gamma matrices. Now,
as q~' ~ ~, with qm', (q&

—q2)' hxed, we get

&,g (q2, qg) ~ —(160)-'y' in(qP —m') y,
+ (Sa')-'y'm (qg, —qm, )[ln(qP —m')]'/(qP —m')
—(4~') 'v'(m —

qm) v. (q2 —ke)
Xln(q~' —m')/(qP —m'). (9)

Figure 3(e) is calculated in the same manner and A similar expression is easily obtained when q& ~ ~,
as expected, gives the same result,

(3b) gq (se)

If we insert the self-energy part into the internal
electron line of momentum p l in Fig. 2, th—e diagram
is only of the order lnt since ln[(p —l)'—m'] is bounded.
Ke may also see this by noticing that lno. , where 0, is
the Feynman parameter for the internal electron line
of momentum p l, is not large. —

Next we turn our attention to Fig. 3(a) and Fig. 3 (c).
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' See, for instance, J. M. Jauch and F. Rohrlich, The Theory of
I'hotons and E/ectroris (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1959), Secs. 9-4 and 9-6.

(e)
FIG. 3. Radiative corrections to the fourth-order

Feynman-Dyson diagram.



REGGE PQLES I N QUANTUM ELECTROD YNA M ICS a 467

Fzo. 4. Sixth-order ladder
diagrams.
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with qz, (qx—qm) fixed, from the invariance property
mentioned above.

Substituting Eq. (9) into the square diagram, we
obtain after some algebra

(10b)

The fact that the external photon gauge I' is used
should be remembered in deriving Eq. (10b).

Similarly, we have

5R„,(' ) = —5R „(")= —5K

From Eqs. (7), (10), and (11) we obtain the total

contribution of radiative corrections to the fourth-
order square diagram as

(3tL) +cm' (3b)+cm' (3c)+gg (3d)+gg (3e) +cm (3f)

= (2~) '(V'/4~)'r2. [ (0+m)I—o(s)

+pI, (s)]r,„[ln(—t)]'. (12)

III. DISCUSSION

The calculation in the above section is straight-
forward and in fact quite simple. On the other hand,
if Regge asymptotic behavior holds, the sum of the
sixth-order diagrams should give, in consistency with

(1), a total contribution to order [ln(—t)]'

—y2rs„(p —m) '( —[(s—m2)IO(s) —(s—mp)Iq(s)]2)&[ys ln( —t)/87rs]2}r&, . (13)

Thus the term of Eq. (12) must be canceled by the
contribution from some other diagrams. 9/hat diagrams
can these be? In view of the fact that Eq. (12) involves
the functions Io(s) and I,(s), which are connected with
the fourth-order square diagram, these diagrams must
have a two-particle intermediate state in the s channel
which are the only diagrams that can be reduced to the
fourth-order square diagram when some of the vertices
are fused together. Furthermore, the contribution of
these diagrams must not be independent of t. These two
requirements leave us with only the three diagrams of
Fig. 4.

These diagrams have been considered in detail by

Polkinghorne. 4 He found that they, taken together,
give just Eq. (13). Therefore, if his computation is
correct, the asymptotic behavior is not of the Regge
form. In the next section, we re-evaluate the contri-
bution of the diagrams of Fig. 4, and our result is in
disagreement with that of Polkinghorne. Instead, we
find that the contribution Eq. (12) is canceled and we
indeed obtain the desired answer Eq. (13).

IV. CONTMBUTION FROM DIAGRAM a
OF FIGURE 4

In this section we consider diagram (a) of Fig. 4. We
have

5K,(")=y'
yp(P, f,+m)r—,„(P f,+m)y—.(P f, 12+m—)y—, (P f,+m)r—,„(Pg—f,+m)y.

[(p2—ts)' —m'][(p —ts)' —m'][(p —t,—12)2—m2][(p —t~) —m2][(p —t )'—m2][t '—)p][t22—g']

d4lg d4L2

X . (14)
(2m)4 (2s)4

We note that if the numerator in Eq. (14) is set to unity, the right side of Eq. (14) is of the order' ' [ln(—t)]'/t.
4 J. C. Polkinghorne, J. Math. Phys. 5, 1491 (1964).
~ P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22, 263 (1963).
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The numerator in Eq. (14) can be written as

[2pi —y,ti]r i„(p —/i+ m) y, (p —/i —/i+ m)

Xy, (P—li+m)ri„[2Pi, —/iy. ]. (15)

To evaluate Eq. (15), we move Pi to the left and. Pi
to the right until they operate on the proper spinors
to give m. To exhibit the process of evaluation, we shall
do one of the terms in Eq. (15) in detail.

We consider the product of 2p» and 2pi, in Eq. (15),
and first move pi to the right:

4r g„(p—/i+m) pi(p —li —/i+ m)pg (p—/i+ m) r i.
=8[pi (p 4—ti—)]r2 (p /2+m)p2(p li—+m)ri„

8(pi' p2)r»(p /2+m) (p /1 /2 m)

X (P—li+m)I'i„
+8[pi (p—4)]r»(p —/i+m)(p —li —/g —m)piri„
—4r» (p—li+ m) (p—li—/g —m)p, (p—li —m)

X[{P„r,„),—r,„m]. (16)

We shall retain only those terms in 5K„„&~' which give
at least Dn( —t)]' for large gati. Since the denominator
alone is of the order [ln(—t)]'it, the numerator has to
contribute a factor t. We shall show that the last term
in Kq. (16) can be neglected. To see this we note that
{piiri„)+ and mI'i, are both finite as gati

~ ~,' and
to get a factor t we have to form products of pi with /i
or 12, with the displacement parts of li and l2 contrib-

uting the factor pi. Now the coefficients of pi in the
displacements of li and l2 are proportional to Feynman
parameters which are small in the region of integration
giving dominant contribution at large t. It is important
to observe that this does not necessarily imply that
terms involving (p.. /i) and (pi. /i) are small, since some
other factors which have enhancement effects may be
present. To avoid getting into uninteresting mathe-
matical details, we here state without proof that terms
like (pi /u)/i', (pi /i)4', (pi /i)/P, (pi 4)/i' are of the
order [ln(—t)]i and must be kept, while terms like

(pi /i)/i', (pi /i)/P, (pi /i)/i', (p2 /i)/i' are of the order
unity, and can be discarded. Terms like (pi /z)(/i l2),

(pi li)(li /i) are even as large as t. However, the con-
tributing part of (li /i) comes from the products of pi
in the displacement of li with pi in the displacement of
/&. Since Pi is always moved to the right and P& to the
left, terms like (pi ti) /i li can be discarded, while the
existence of terms like (pi /i) li /i, if uncanceled, would
violate the Regge behavior. Now we may examine the
last term of Eq. (16). We move the factor P& to the
left, and it is easily seen that all terms obtained are
small and can be discarded. Also, since the factors
(pi p) and (pi p) are finite as t —+ ~ with s fixed, all
terms in Eq. (16) involving these factors can be seen
to be small.

The first term in Kq. (16) can be evaluated to be

—16[P, (l,+t,)][P, (P—/, )]r,„(P—/, +m)r, „+8[P, (/, +/, )][{r,„,P,j,—mr, „](P—1,—m)(P —/, +m)r, „
=8LP, (l,+t,)]t,'r, „(P 1,+ )r,—„8[P, (l,+—l,)][(.P, t,)'— ']—r,„(P—/, + )r,„. (17)

The factor [(pi—/i)' —m'] in the second term of the
right side of Eq. (17) can be used to cancel the same
factor of the denominator in Eq. (14), and the ex-
pression left is independent of pi and hence of t. Thus
the second term in Eq. (17) is of order unity, and Eq.
(17), or the first term of Eq. (16) is approximately

8(Pi /i)/iirg„(P —li+m)I'i„. (18)

Similarly, the third term of Eq. (16) is approximately

8(p, t,) p/r, „(p/, +m)r, „. (19)

The second term in Eq. (16) is the term retained and
discussed in Ref. 1 and everything in it has to be kept.
From Eqs. (16), (18), and (19) we obtain

4r,„(p—1,+m)p, (p—1,—1,+m)p, (p—1,+m)r, „
=8(Pi tg)/iver»(P —li+m)ri„

+8 (Pg. li)/Pr»(P —/i+m) I'i„
—8(Pi P,)[(P—4)'—m' ]r,„(P—1,+m) r„
-8(p p.)[(p—/.)'- ']r..(p-/+ )r,
+8(pi pg)r»(p —/g+m) (p—m)

X (P—/i+ m) I'i, . (20)

As was pointed out in Ref. 1, the last term in Eq.
(20) gives the exact amount required by the Regge

behavior, and the third and fourth terms in Eq. (20)
are of the order [ln(—t)]'. We shall see later that they
are exactly canceled by corresponding terms in diagrams
(b) and (c) of Fig. 4.

We now turn to other terms left in Eq. (15). By
similar manipulations we may get

y, / r»i(p—/i+m)pi—(p /i /2+m—)y„—(p li+m)ri-,
=—8(p, /, )/p(r, „/,+t,r»)r, „

+8m (pi. /2)/pr»ri,
+8(p, l,)l,PI',„/,r,.
+8(pi /i) (r»ti+/gr»)/i(p —li+m)ri„, (21)

and

—2r,„(P—/i+m) V.(P—li —/p+m)Pi(P —/i+m)ri„/iV.
= —8(p, /, )/;r, „(r,„l,+t,r„)

+8m (Pg /i)/i'rg„ri.
+8(p, /, )r,„t,r,„pl,

+ 8(p, -/, )r,„(p—/, +m)l, (r,„l,+l,r,„). (22)
Kith

y,/ir»(p —/i+m) y. (p—li —/i+ m)

Xyp(P —/i+m)ri„/iy, =0,
the numerator for 9R„„(4') is equal to the sum of Eqs.
(20), (21), (22).
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V. CONTRIBUTION FROM DIAGRAMS (1) AND (c) OF FIGURE 4

We now turn to diagram (b) of Fig. 4. We have

d4la d4l4

5R/s sp

(22r)4 (22r)4

y, (/+/+m)y. (/+m)r „(/t+/+m)y, (p—/+m)F .(p —/+m)y.
X (23)

[(/2+1 )2 m2][/ 2 m2][(p +1 )2 m2][(p 1 )2 m2][(p 1 )2 m2][/ 2 y2][(p 1 /4)2 I12]

We first state that when the numerator in Kq. (23) is
set to unity, the right side of Eq. (23) is of the order
I/l. Now the numerator is a product of five momenta
whiz, h can form at most two dot products. To obtain
something of the order of Dn( —I)]2, one of them has
to produce a factor t and the other has to give an en-
hancement effect of Dn( —t)]2. We next observe that
if the internal electron line with momentum /4 in Fig.
4(b) is contracted, the diagram is identical to Fig. 4(a)
with the interns, l electron line with momentum P—12

contracted. Therefore, the terms in the numerator of
Eq. (23) which have a factor (l4' —m') can be identified
with some corresponding terms in Kq. (14). This fact
simpliies the calculation greatly. Otherwise, since
terms as large as Dn (—I)]' are present in Eq. (14), one
has to make sure that not only the dominant terms but
also the next order terms are all evaluated correctly.

The numerator in Eq. (23) can be written as

2/p(/2+ 14+m)P1 (14+m)rip(P P2+14+—m)

Xy p(P —12+m)F1„—y p(/2+/4+m)y. (/4+m)
XI"2„(p—p2+/+m)y, (p—12+m)I'l„l y. . (24)

Let us first examine the first term in Eq. (24). The
momentum factor p—12 in the extreme right position
cannot be used to form dot products which give either
a factor of t or enhancement e6'ects, since the coefficient
of p2 in the displacement of 14 involves products of two
small Feynman parameters, while Pl in the displace-
ment of /3 can be moved to the right to become m,
without encountering any of the momentum factors.
Thus both dot products have to come from the other
four-momentum factors, and we may neglect es in those
propagators. Making use of the identity

yQ&CD' p = 2EDCBA, —
we obtain for the first term of Eq. (24)

—4(P—P2+/4)F2 /4Pl(/3+/4)(P —/2+m)r, .
=8(pl /4)l4'F2„(p —/2+m)F, „. (25)

Similarly, we can obtain the second term in Eq. (24) as

—8(ll /4)/42F2„(p —/2+m)r, „

+8(/2 l,)l,'r,„r,„/, . (26)

The numerator of Kq. (23) is equal to the sum of Eqs.
(25) and (26). Since all terms of Eqs. (25) and (26)
have the factor 14', which can be replaced by /4' —m'

as their difference is sma}l, by previous discussion all

terms in Eq. (23) can be identified with corresponding
terms in Fig. 4(a). Comparing the two contracted dia-

grams, we see that there is the correspondence

/4 p2 ll 12)

~3=~a.

Thus Eq. (23) is equal to the numerator

S(p, p,)[(p—1,) —m]r, „(p—1,+m)r, .
—8 (pl /2)/22F2p (p—1,+m) I'1.

8(p2'/1)/2 F2 (p /1+m)F1
+8(p2'll)4 F2prlp/11 (27)

evaluated with the denominator of Fig. 4(a).
The contribution of Fig. 4(c) can be obtained from

that of 4(b) by the substitution

p, p 1, 1 r»~r„
and with the order of the y matrices reversed.

Adding up the contribution from Figs. 4(a), 4(b),
and 4(c) we get as the numerator

S(p, p,)r,„(p—1,+m)(p —m)(p —1,+m)rl,
+8(p, /, )r»(p —/2+m)l, (l,r,„+r,„l,)

+8(pl l2) (/2F2„+F2„/2)/2(p —/1+m)rl' (28)

The first term in Eq. (28) gives exactly Eq. (13), while

the last two terms in Eq. (25) can be evaluated to give

exactly the negative of Eq. (12). Therefore, the sum of
Figs. 3 and 4 gives the correct term required by the
Regge behavior. In obtaining Eq. (28), the fact that

ql =—qlo = qql

has been utilized, where ql0 is the displacement of ql and

ql q1 q10 ~

In conclusion, the conhrmation of Regge behavior
at the sixth order is a nontrivial check which lends
credence to its validity to all order. That a contribution
from radiative corrections exactly cancels the unwanted
terms in ladder Fig. 4 was not anticipated, and the
meaning of the cancellation is not entirely clear.
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