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vantage of presenting a big diGerence between the
Cerenkov/scintillation pulse ratio for fast charges and
for fast monopoles. For example, if a Lucite Cerenkov
counter is used, then the ratio for fast monopoles is
2.25 times that for fast charges. The ratio expected from
fast charged monopoles is intermediate between the
ratio for fast charges and that for fast monopoles. The
range of unsaturated response of the scintillation
counter will limit the pole strengths for which this type
of experiment can be used. These considerations ma.ke
this type of experiment particularly useful in searching
for small-pole-strength rnonopoles or charged monopoles.

First-Method Experiment

This type of experiment compa. res the pulses from
two Cerenkov counters with diferent refractive indices.
The difference between the (Cerenkov counter a/
Cerenkov counter b) pulse ratio for fast charges and fast
monopoles depends on the permittivity ratio (e,'/eq').
For example, if a lucite/water combination is used then

(~,'/eq')=1. 27 and fast monopoles yield a (counter
u/counter b) ratio that is 1.27 times that for fast
charges. Fast charged monopoles would yield ratios
intermediate between those for fast charges and fast
monopoles. In the low-ionization region this type of
experiment is limited by two considerations. First, a
small pole strength yields a small number of Cerenkov-
counter photons which results in poor statistics with
which to determine the (counter a/counter b) ratio.
Secondly, slow charges can give the same pulse ratio as
fast monopoles and, at least for cosmic-ray work, there
are a lot of slow charged particles in the low-ionization
region. Here "slow" means a particle which is not fast
for both counters u and b. As pointed out previously, '
particles which are slow can be discriminated against by
introducing a third Cerenkov counter using a ga.s.
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We study the problem of renormalization for the interaction of a charged scalar meson 6eld with a fixed
two-level point source. Our especial interest is coupling-constant renormalization. We study in particular
the problem of obtaining eigenstates and eigenvalues of the Hamiltonian for the 6xed-source theory. We
propose a model for the fixed-source theory, in which mesons exist only if their mornenta (k) lie within an
in6nite set of intervals: 0&k &ko, $A&k &h., )4~&k &A', etc. , where ko is of the order of the meson mass,
and A is much larger. We solve this model by treating the mesons in the nth interval (or lower) as a per-
turbation on mesons in the (n+1)st interval (and higher). This reduces the problem to the solution of two
strongly cut-oB Hamiltonians, one of which must be solved for an infinite sequence of coupling constants
(g„), one for each momentum interval. We show that even if the low-momentum coupling constants g1,
g2, etc. , are small, the sequence goes to infinity as n —+ ~. We analyze the I,ee model similarly; here the
sequence is undefined above some finite value of n. We show a close analogy between our analysis and the
analysis of quantum electrodynamics of Gell-Mann and Low. Then we analyze the full fixed-source Hamil-
tonian qualitatively. We expland the meson 6eld in terms of a complete set of "wave-packet" states, the
coe%cients being discrete oscillator variables. The states are so chosen that the self-interactions of oscillators
dominate the coupling between oscillators. For each order of magnitude for the meson momentum, there is
one pair of oscillators coupled to the source; this coupling can be analyzed analogously to our model. The full
6xed-source Hamiltonian is thereby reduced to the solution of a Hamiltonian for two oscillators coupled
to a two-level source.

I. INTRODVCTION

HE Hamiltonian formulation of quantum me-
chanics has been essentially abandoned in in-

vestigations of the interactions of x mesons, nucleons,
and strange particles. This is a pity. The Hamiltonian
approach has several advantages over the kind of
approach (using dispersion relations) presently in use.

*Supported in part by the U. S. OfFice of Naval Research.
t Alfred P. Sloan Fellow.

One advantage is that all properties of a system are
uniquely determined, given the Hamiltonian of the
system. A second advantage is the existence of many
approximation methods for solving a given Hamilton-
ian. The principal approximation methods are per-
turbation theory, the variational method, and the. K.B. approximation. A third advantage is that one
can often analyze a Hamiltonian intuitively, using the
uncertainty principle and classical arguments, to get
order of magnitude estimates of its solution; from such
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an analysis one can often determine what approxi-
mation procedure will work best.

There are two reasons why the Hamiltonian approach
was discarded in the study of strong interactions. One
reason was that no one knew what Hamiltonian to use,
or how to obtain the correct Hamiltoaian. The other
reason was the problem of renormalization: the problem
that whenever one tried to solve a Hamiltonian for a
Lorentz-invariant theory, particle self-energies and the
like were infinite.

The problem of renormalization has several aspects.
One is the practical aspect just mentioned, namely, that
whenever one has tried to solve a Lorentz-invariant
theory with a standard approximation procedure such
as perturbation theory or the Tamm-DancofI' method,
one gets infinities. Then there is a more fundamental

difhculty. This difFiculty is that any estimate of the
order of magnitude of the interaction energy gives
inhnity, for a relativistic quantum-field theory. For
example, the simplest relativistically invariant inter-
action Hamiltonian, for a neutral scalar field g(x), is

where go is a constant. Ke might estimate the order of
magnitude of Hl by computing the square root of the
matrix element (Q~Hr'~Q) where ~Q) is the vacuum
state for a free field. This matrix element is inhnite. This
difIiculty is a fundamental one, despite the crude nature
of such estimates, because any sensible method for
solving Hamiltonians requires that one first make just
such crude estimates of the order of magnitude of the
terms in the Hamiltonian.

A third aspect of the renormalization problem is that
there is only one Hamiltonian known that can be solved
but requires renormalization. This is the Hamiltonian
of the Lee model. ' Unfortunately, the Lee model
(formulated so that the renormalization is infinite, i.e.,
without a "cutoG") cannot be solved without intro-
ducing a "ghost state"—a state with negative norm—
which is undesirable. This example has made many
people pessimistic about the possibility of resolving the
renormalization problem.

It is not known whether relativistic Hamiltonians can
be solved exactly without encountering the same
infinities that occur in perturbation theory, and without
introducing ghost states such as occur in the Lee model.
It is clear that the appearance of infinities in perturba-
tion theory does not imply in6nities in the exact theory
since one can use perturbation theory only when the
interaction energy is small, and this is demonstrably
not the case for 6eM-theoretic interactions. There are
other approximate methods for solving Hamiltonians
besides perturbation theory, but they are equally use-
less so long as one cannot establish their validity even
qualitatively. So to resolve this question one will have

& T. D. Lee, Phys. Rev. 95, 1329 (1954).

to learn to make qualitative analyses of relativistic
Hamiltonians, using order-of-magnitude estimates, the
uncertainty principle, etc.

Ke do not have the competence to make such an
analysis at the present time. To develop the necessary
techniques, it is useful to have model Hamiltonians
which embody some but not all the difficulties presented
by fully relativistic interactions. One such model
Hamiltonian is presented in this paper. Our model is an
offspring of the theory of scalar w mesons interacting
with a fixed point source. Our model Hamiltonian
involves an interaction Hamiltonian which by any
order of magnitude estimate is infinite. In perturbation
theory it gives inhnities analogous to coupling constant
and self-energy divergences in relativistic theories.
However, we will be able to analyze it in a sensible way:
not completely, but well enough to provide considerable
insight into the real problems involved in solving
Hamiltonians requiring renormalization (in particular,
coupling constant renormalization).

Gell-Mann and Low' have considered the problem of
what a solution of a relativistic theory would be like, if
a solution exists. They examined quantum electro-
dynamics in particular. Their principle conclusion was
that the "bare" coupling constant eo which appears in
the unrenormalized Hamiltonian could not be arbi-
trary; it could take on only special values, or, in other
words, it would have to be the solution of some kind of
eigenvalue condition. To quote from their abstract:

"Thus it is shown that the unrenormalized coupling
constant eo'/47rhc, which appears in perturbation
theory as a power series in the renormalized coupling
constant ei/4zhc with divergent coefficients, may
behave in either of two ways: (a) It may really be
infinite as perturbation theory indicates; (b) It may
be a finite number independent of ei2/4z. hc."

We shall discuss the ideas of Gell-Mann and Low in
more detail in Sec. VI.

Now we give a brief outline of the contents of this
paper. In Sec. II we formulate our model Hamiltonian.
In Sec. III we replace the original model by a sequence
of Hamiltonians H„and analyze the individual Hamil-
tonians in the sequence. In Sec. IV, we show how to
define our original model as a limit of the sequence
considered in Sec. III. In Sec. V we analyze similarly a
model derived from the Lee model. In Sec. VI we com-
pare the results of the analysis of our models with Gell-
Mann and Low's analysis of quantum electrodynamics.
In Sec. VII we discuss a method for qualitatively
analyzing 6eld-theoretic Hamiltonians, which involves
expanding the 6elds in a discrete orthonormal set of
functions. We state our conclusions in Sec. VIII.

II. FORMULATION OF MODEL
In this Section we formulate our model Hamiltonian.

%'e begin by quoting the complete Hamiltonian for
' M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).
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charged scalar mesons (s-+) interacting with a fixed

point source with two quantum levels ("proton" and
"neutron"):

H = co),(agtag+ b), bg)

+go (2cok)-'t'{(ak+bgt)r++(aqt+bg)T ) (1)
k

where

J~ means (2ir) 'J'd'k,
cd& means (k'+p')'~"",

p, is the meson mass, which we assume is of order 1,
akt creates m+,

6k~ CreateS e—,

go is the (unrenormalized) coupling constant,
v+ takes the neutron state into the proton state,

is the Hermitian conjugate of 7.+.

The commutation relations of ak and akt are

[ag,a, &]=[bg,bg tj= ( 2x)' 'b( k—k').

This Hamiltonian when solved in perturbation theory
leads to two divergences. The ground-state energy is
linearly divergent; the renormalized coupling constant
(related to a ground-state matrix element of r+) is
logarithmically divergent. It also has the property that
an estimate of the interaction energy gives in6nity. For
example let us estimate the order of magnitude of
Jj,a J(2cdq) '~'; then we compute

Ke must ask immediately what are the advantages
and disadvantages of our model compared with the
original 6xed source Hamiltonian. First, we want to
make clear that our model Hamiltonian is not supposed
to be an approximation to the complete fixed source
Hamiltonian: We consider it as a completely new

Hamiltonian. As to possible disadvantages, the im-

portant question is whether our model Hamiltonian has
the same renormalization problems as the original 6xed
source theory. It is easy to see that it does. To prove
this we look at the nature of the divergences for the
original fixed source theory. In perturbation theory
these divergences take the form of integrals over
momentum. A linearly divergent integral will be of the
form

and a logarithmically divergent integral will be of the
form

In each case the integrand behaves as k—' or k ' only if
k is much larger than the meson mass p, . In our model
the integrals over all k are replaced by integrals over our
sequence of intervals. For example, the logarithmic
divergence becomes

k '
n=l

akag'(2(vi, )-'"(2i0g ) '"
~
0),

where fQ) is the meson vacuum state. This expression
is easily computed and yields the quadratically diverg-
ent integral

Our model Hamiltonian is constructed as follows: Ke
take the Hamiltonian of Eq. (1) and throw away most
of it. Specifically, the integration over all k is replaced
by an integral over an infinite set of intervals. The
intervals are as follows (k is the magnitude of k)

where ko is an arbitrary number of the order of the
meson mass p and A is an arbitrary number much larger
than either ko or p. This is the only modification we
make; the integrands in Eq. (1) are unchanged. What
we have done is to chop out most of momentum space
leaving an in6nite set of well-separated intervals. We
shall do this for both integrals in H, so that in our
model, mesons with momenta outside our intervals do
not exist.

with the integrals being over —,'A"&k(A". These inte-
grals are independent of n, and therefore the in6nite
sum diverges. So our model Hamiltonian has the diverg-
ence difhculties that we wish to investigate.

The advantage of our model Hamiltonian is that we
can analyze it. This is because the mesons in different
momentum intervals differ in their energies by orders
of magnitude. For example a meson of momentum A"
has an energy A.", while a meson of momentum A" ' has
energy A"—'. This suggests that we can treat the mesons
of momentum A" ' or less as a perturbation with respect
to mesons of momentum of order A". This idea is the
basis of our analysis.

III. ANALYSIS OF MODEL HAMILTONIAN

In this section we shall present an analysis of our
model Hamiltonian (defined in Sec. II). We use the
method just proposed: mesons of momenta A." ' or less
are regarded as a perturbation relative to mesons of
momentum of order A". Evidently, we cannot carry out
this program unless we cut oG our Hamiltonian at some
finite value of n. Therefore, instead of working with the
model Hamiltonian defined in Sec. II, we now de6ne a
sequence of Hamiltonians. We first define "Hi,b" to be
the Hamiltonian of Eq. (1) with the integral being only
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over the interval 0(k(ko. We dehne Hi to include
integration over the 6rst two intervals: 0(k(ko and
~A(k(A. The remaining Hamiltonians H„are dered
analogously: for H„we integrate over aH our intervals
through ~~A."(k(A". We shall analyze each of the
Hamiltonians H„, and then try to recover our original
model Hamiltonian as a limit of the H„as n becomes
in6nite.

We 6rst study Hi, b. It is equivalent to the complete
6xed source Hamiltonian with a strong cutoG. ' There
are no problems of renormalization in Hi, b. One can
solve it when go is small by perturbation theory. One can
solve it when go is very large by %entzel's strong cou-
pling approximation. ' lf go is of order 1, one may use
variational methods (for example, the Tomonaga
approximation'). One can also estimate both the free-
meson energy and the interaction energy by our crude
methods and discover that both are of order p. ' So Hi, b

is a Hamiltonian which we understand and can solve
to reasonable accuracy.

Secondly, we study the Hamiltonian Hj,. The idea
here is to divide Hj into an unperturbed Hamiltonian
HD and a perturbation HI. The unperturbed Hamil-
tonian Ho is simply the Hamiltonian H of Eq. (I) with
the integrals restricted to the single interval 2A(k(A.
The perturbation is the same as Hi, b. Note that our
method of dividing H j into an unperturbed part and a
perturbation has nothing to do with the size of the
coupling constant go, both the free-meson energy and
the interaction energy get split up in our procedure.
Both terms contribute to the unperturbed Hamiltonian
Ho, and both contribute to the perturbation H».

To analyze Ho it is convenient to introduce a scale
transformation in order to eliminate (or more correctly,
to determine) its dependence on A. First we make a
change of variable in the integral, letting

so that the range of p is si(p&I. Next we introduce
new creation and destruction operators depending on
p instead of It:

ay~=A —'~'A ~, u =A.—'l'3,pt ~ ps

b,t=X-»'B, t, b,=s~»8, .

The purpose of the factors A '" is to ensure that the
commutation relations of the Ap etc. will not involve

' For an introduction to cutoff 6xed source theories, see: E. M.
Henley and W. Thirring, Ekmeelary Quantum F~dd Theory
(McGraw-Hill Book Company, Inc. , New York, 1962).' G. Wentzel, Helv, Phys. Acta 13, 269 (1940};14, 633 (1941).
For further references, see Ref. 3.' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 {1947).See
also Ref. 3.

This estimate is wrong, if go is large. If go is large, the lowest
eigenstates of Hh, b involve a large number of mesons. Qualita-
tively, the interaction energy varies as the square root of the
number (o) of mesons, while the free-meson energy is linear in e.
The minimum total energy occurs for ergo', the minimum energy
is of order pgp'.

A. It follows from Eq. (2) that

fA„A p. t]=PB„By.t]
=A'(2ir)'P (gp —Ap') = (2n-)'b'(p —p') . (6)

Finally, we have

Now one obtains

with

p(~~'.&~+B~'B)+go (2p) "'

with ~(p(i in the integrals. The Hamiltonian H, is
very similar to Hi,b, it also has no renormalization
problems and can be solved at least roughly for any
value of go. It is worth pointing out the importance of
the finite lower limit -', on the momentum p in H, . If
this limit were replaced by 0, the charge renormalization
integral would be

which diverges at the lower limit. There is no mass p, in
H, to provide a low-momentum cutoB for this integral.

The Hamiltonian H, has two symmetries. First of all,
it conserves charge, if we think of the proton source
level as having charge 1 and the neutron level having
charge zero. Secondly, it is invariant to the exchange
~+~ x, p~ n. There is no state of definite charge
which is invariant to this transformation, for such a
state must have charge ~~. Therefore the ground state of
H, must be at least doubly degenerate. We shall assume
that the ground states have the same quantum numbers
as the source levels. This is known to be true for very
weak or very strong coupling. %'e can call these ground
states ~P) and ~$); the source levels with no mesons
present will be referred to as

~ p) and
~
n).

In addition to the ground states, the Hamiltonian H,
has excited states, which are either discrete levels
usually called "isobars, "or continuum levels which are
meson-scattering states. We shall not need to know
anything about these states except the energy spacing
between the ground state and the 6rst excited state.
This spacing is of order 1 unless go is very large, in which
case it is of order go '.4 The latter case will be ignored
for the present.

tA'e have now completed our discussion of Ho and can
consider the eGect of the perturbation Hi,b. Since the
first excited state of Ho is of order A above the ground
state, we can consider Hi, b as a perturbation provided
it is much smaller than A. But according to our previous
analysis of Hi, b by itself, it is of order p, and therefore
indeed much smaller than A. However H0 has a de-
generate ground state, so we must use degenerate
perturbation theory, In fact, the ground state of Ho is
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highly degenerate, for to the ground states
I P) and

I
X )

of H, we can add any number of "laboratory" mesons
(mesons of momenta &kp) without changing the eigen-
value of Ho.

Let us now examine the total Hamiltonian HQ+H), ),
in the lowest order of degenerate perturbation theory.
Ke shall consider only those states which reduce to the
ground state of H, in the absence of the perturbation.
In lowest order, the energies and eigenstates are deter-
mined by an eRective Harniltonian "H,ff" obtained by
restricting the full Hamiltonian to the subspace of
states spanned by I

I') and
I
sV) plus arbitrary numbers

of laboratory mesons. The laboratory meson creation
and destruction operators are unaRected by this
restriction. The unperturbed Hamiltonian H0 becomes
simply a constant AEO where Eo is the ground-state
energy of H, The r matrices become operators which
act only on the two levels IP) and

I iV), since they do
not aRect the laboratory mesons. In particular r+ has
only one nonzero matrix element

a= P'I.+I X). (10)

The other three matrix elements are 0 by charge con-
servation. We can choose the relative phases of

I P) and

I
1V) so that n is positive. We can restate this result by

introducing a raising operator ra+ for the states IP)
and

I &):
I
f') =

r~+
I'~'r).

Then, in the restricted Hamiltonian H, ff, r+ becomes
nrem+, likewise r becomes erg . Note that if we had not
restricted ourselves to the two ground states of H„but
allowed excited states as well, then r+ would have been
a much more complicated matrix connecting IP) and
I.V) to all the excited states of Hp of appropriate charge.

The eRective Hamiltonian now reads

Hsff +Ep+ Mk(aktak+bktbk)+goa (2cok)
k k

X ( (ak+ bk') r++ (ak'+. bk)r )(12)-
with the integral over k restricted to 0&k&ko.

Evidently, H, ff is the same as the original H~,q except
for an. additive constant E0 and, more importantly, a
change in coupling constant from go to goo.. This is
hardly a surprise. %hat we have found is that when the
mesons of momentum of order A ("A mesons") are
added to Hr, q to form Hj, the eEect on the lowest
energy levels (energies small compared with 4) is simply
what one would predict from renormalization theory:
the ground-state energy is shifted and the coupling
constant is modified.

Ke can now carry over our previous discussion of
H&,z to show that the energy levels of H, «diGer from
the ground-state energy of Ho by an amount of order p, ,
as expected, and the perturbation analysis is justified.
Ke must except from this remark the eigenstates of

H ff which involve a large number of free laboratory
mesons and therefore a large energy; I presume that we
can restrict our attention to states with not too many
mesons.

It is now a trivial matter to analyze the Hamiltonian
H„. This Hamiltonian involves mesons in all intervals
up to the interval -',A"&k(A". Now the mesons with
momenta of order A", interacting with the source, form
the unperturbed system, and the mesons of momenta
A" ' or less are treated as a perturbation. The un-
perturbed Hamiltonian can again be analyzed by means
of a scale transformation, which reduces it to the
Hamiltonian H, apart from a factor A". Thus, the full
Hamiltonian H „becomes

H„=A "H,+H„g. (13)

Let us indicate explicitly that these Hamiltonians
depend on a coupling constant go ..

H. (gp)=A"H, (g )o+H. g(go).

Now we use degenerate perturbation theory just as we
did for H j. Here we restrict H„ to the subspace of states
spanned by IP) and IX) plus arbitrary numbers of
mesons of rnomenta A." ' or less. The result is an
eRective Hamiltonian of the form

H fr=A"Eo(gp)+H y[Sp (gp)].

The constant n is as before the matrix element
(f'Ir+IcV); n depends on go since the ground states
I
I') and

I X) depend on gp. The effective Hamiltonian
describes only the ground state of H„and those excited
states with energy of order A" ' or less above the ground
state.

What we now have is a recursion formula which we
can state as follows: The lowest energy levels of the
Hamiltonian H„(gp) are equivalent to the energy levels
of A"Eo(go)+H —iLf(go)], where

f(go) =a(go) go.

By repeated use of this recursion formula, we see that
we will generate a sequence of coupling constants:

gn= go)

g- i=f(g.),
g=p=f(g--i),

g=f(g~).

The ground state and lowest excited states of H„are
described by Hi b(g) apart from a constant; H~, b
describes those excited states with energies of order p,

above the ground state. To get excited states with
energies of order A one must solve Hq(gq). To get
excited states of energy of order A-'one must solve
Ho(go), and so forth.

Ke have now completed our analysis of the cuto6
Hamiltonians H„. %'e know the order of magnitudes of
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the components of H„: mesons of momenta of order
(m&n) contribute a free energy and an interaction

energy of order A . This fact allows us to solve H„by
perturbation techniques, which reduce the problem of
solving H to the problem of solving H, and Hi„b, both
of which can be handled by conventional methods. Our
principal result is the appearance of a sequence of
coupling constants g; we must be able to solve H, for
each of these coupling constants.

IV. LIMIT OF THE SEQUENCE OF
HAMILTONIANS

Now we consider the problem of solving our original
model Hamiltonian, which formally is the limit of H„
as n —+ ~. %'e shall solve this problem by redefining
our original Hamiltonian. Namely, we require that the
coupling constant g in Hi„b stay fixed, as n ~ ~, and
permit the original coupling constant go to vary as
necessary to achieve this. This procedure is a logical
development from intuitive notions of coupling con-
stant renormalization. To keep the ground-state energy
finite we also must subtract from H„ its ground-state
energy: call it E„.Then what we propose, precisely, is
the following: Ke define a sequence of coupling con-
stants, starting with a given value of g.

v+r-+r-.+= i. (20)

(a) the eigenvalues E„„(forfixed m);
(b) the matrix elements (E ~E ~ )=8
(c) the matrix elements (E „~uq~E~.„);
(d) the ratio of the matrix elements (E „~r+~E ~ );

to the matrix elements (P; n
~

r+
~
Y: I);

where
~
P; 44& and

~
X; e) are the two ground states of

H„. In fact, every quantity listed will be independent of
e (for fixed m, m', and k) if 44 is sufficiently large. This
can be proved as a consequence of our analysis of the
Hamiltonians H„. One can easily discuss matrix ele-
ments of operators other than a~ or r+.

One is tempted, of course, to ask what happens if we
keep go fixed, in the limiting process, instead of g. But
this is a pointless question, for, once we have determined

g experimentally, we know that the Hamiltonian H
mnst be given by the limit of Kq. (19), and no new
information is gained by seeing whether another limiting
process gives the same result.

Let us look in more detail at the sequence of coupling
constants g, gi, etc. First, we show that the quantity 0;

is less than one. This is because

gi=f '(g)

gm=f '(gi)

g.=f '(g. ), t'- Every term in the sum over x is positive, and one of the
terms is n', namely the term with

~
x)= ~.V). So a' is less

than or equal to one. It is trivial to show that n cannot
be equal to one (except when go is 0).

Because n is less than one, we have
where f ' is the function inverse to f We must t.hink of

g as being determined "experimentally, " as if our
Hamiltonian described some physical system. Since all
the properties of the low-lying eigenstates are deter-
mined by Hi, b which depends on g, it is no problem to
determine g. It does not matter, for our purposes, if the
function f ' is multiple valued, for whenever one has
several possibilities for a particular g„, one can appeal
to experiment to make the choice. Ke now define our
model Hamiltonian H as

f(go) &go (22)

Secondly, we note that for go))1, f(go)= 2g4 This is -a.
consequence of Wentzel's strong coupling theory4 and
will not be proved here. For small go we have f(gp)=go+ order go'. lf f(go) is a continuous function
of go, it follows from these results that the equation
g„,=f(g„) has at least one solution g„ for any value of
g„ i. Hence there exists a complete sequence (g„) for
any value of g. Furthermore, this sequence is increasing.
The sequence cannot have a finite upper bound for if so
it would approach a limit point, which we can call go,
and we would have

H=Lim (H (g ) —E (g )) . (19)

The limit that we propose is a strange one, since the
operators H„do not all act in the same Hilbert space;
instead, as n increases the number of eigenstates of H„
also increases. (Those who quibble because the number
of eigenstates is infinite for any n and therefore cannot
increase may observe instead that the number of meson
degrees of freedom increases with n. ) We should discuss
what quantities actually have limits as n~ ~. To
simplify our discussion, suppose that H„has a discrete
spectrum with eigenvalues denoted by E „and states
~E„„).Then the following quantities have limits as

go= f(go)
which is impossible.

So whatever the value of g, the sequence of coupling
constants g„ is an increasing sequence which approaches
infinity as n becomes large.

This is unfortunate, for when n is so large that g„' is
of order A, our perturbation analysis ceases to be valid.
This is because the first excited (isobar) state of H, has
an energy only g„' above the ground state when g„ is
large; when multiplied by A", this gives an energy of

Let
~
x) be a complete set of eigenstates of H, . Then

Z*(&Plr'l*)&*lr IP&+&Plr l~)&*l "IP))= I (21)
(18)
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order A"—', the same order as the terms we treated as a
perturbation. So to solve H„ for very large g„, the whole
set of isobar states of H, must be taken into account in
the perturbation analysis, rather than just the two
ground states. This is an involved task; we do not
attempt it here. Because of this difhculty, the analysis
of our model is incomplete. Our analysis would also be
incorrect if, for values of gp of order 1, the ground states
of H, did not have the same charge as the two source
levels.

V. AN OFFSPRING OF THE LEE MODEL

Another Hamiltonian that can be analyzed in the
manner of Secs. III and IV is derived from the Lee
model. ' The Lee model Hamiltonian can be obtained
from the fixed source Hamiltonian of Eq. (1) by
dropping the 7r meson terms (i.e., we suppress bp. and
bi,t) Ke c. an then construct a model Hamiltonian by
replacing the full momentum integration by an integral
over our sequences of intervals. Ke can then perform
an analysis analogous to Secs. III and IV. Ke describe
this analysis briefly.

First of all we have charge conservation, but we no
longer have charge symmetry. To ensure that the
physical proton state has the same energy as the
physical neutron state, we let the bare proton state have
an undetermined energy. This means adding a term
Fv++ to the Hamiltonian, where v++ has the properties:

~0 fgp P (29)

Z—2 g+lg2 p
—3 (30)

with —', &p&1 in all integrals.
Ke now solve H„by degenerate perturbation theory.

We restrict H„ to the subspace of states spanned by
IP) and I/V) plus mesons of momentum A" ' or less.
Under this restriction

7+ ~ QTg+)

r++ ~ Prs++

where rg~IP)= IP), rii~IX&=0, and

=(PI,+lx)=z,
P=(PI ™IP&=z'

(31)

(32)

(33)

(34)

g =f (g i)— (35)

Thus, we obtain an effective Hamiltonian which is just
H„ i(ngp); the added term is E„ irip~ with E„ i set
equal to Z'e .

It is now easy to see that exactly as in Sec. IV, we
want to dehne a sequence of coupling constants g„. In
the present problem we will have

I p&=
I p),

r++le)=0. (36)f(g p) =Z(g p)go

where f ' is the—inverse function for the function f
(23) given by

(I p) and
I
pi) are the two source levels. )

Now we define, as before, a sequence of Hamiltonians
H„. The added term for H„will be denoted by E„~++.
We break H„ into an unperturbed and perturbed
Hamiltonian, as before. The added term must likewise
be split, say

But now for large gp, Z(gp) behaves as gp '. Hence
f(gp) has a finite upper bound. If g„ i is larger than this
upper bound, g„does not exist. But since Z(gp) is always
smaller than one, the sequence (g„) is increasing; there
will inevitably be a 6nite value of rr, , above which g„
does not exist.

E„=A "Ep+e„. (24)

Then after performing the scaling as in Sec. III, we
obtain

H„=A"H, +H„g,
where the added term in H„~ is e 7++, and

H, =Epr~+ pAptAp+gp (2p) '"
P P

X (A pr++A ptr ) (26)

with ~&p&1. We choose Ep so that the ground states
I P) and

I iV) of H, are degenerate. These states and Ep

are easily derived; we obtain

IP&=z Ip&
—g, (2)- p- A, lx&, (27)

I-i )= l~&,

VI. COMPARISON WITH QUANTUM
ELECTRODYNAMICS

dc(0,e') = 1. (37)

'See Ref. 2. Some of the manipulations involved are well
presented in N. N. Bogoliubov and D. V. Shirkov, Entroduction to
the Theory of Qgantized Fields (Interscience Publishers, Inc. , New
York, 1959},Chap. VIII; however, some of the important ideas
are discussed only by Gell-Mann and Low.

8 We use the same metric as Gell-Mann and Low: (—1, 1, 1, 1}.

Ke want to compare the results of our analysis of
two model Hamiltonians with the analysis of quantum
electrodynamics by Gell-Mann and Low. First we shall
restate the ideas of Gell-Mann and Low in a form suit-
able for our purposes. For background the reader is
referred to their paper. ' Let e be the physical electron
charge, and let nz be the physical electron mass. Let
dc(k'/pap, e') be the photon propagator apart from a
factor k 2; we require the customary renormalization
condition
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Now define a one-parameter family of coupling con-
stants e), as

ei'= e'-dc(X'/~ '-', e") (3g)

These constants e~ depend on e, but we shall not need to
indicate this explicitly. Gell-Mann and Low introduce
a fancy subtraction scheme for renormalizing pertur-
bation theory, in which the subtractions are performed
at momentum P instead of momentum 0. The result of
their scheme is

(1) their renormalized coupling constant is ei, not e;

(2) their photon propagator is normalized to 1 at
O'=X' instead of 0;

(3) their photon propagator is a function which may
be written d(k'/X' &m/P' &ei')-.

(4) their photon propagator is related to the usual
one according to the equation

e-'de(k'/m'&e'-) =@'d(k'/X' m'&!'X'&e),
"). "(39)

Alternatively, one can use Eq. (38) to express e' as a
function of ei"-, and then defirie the function

d (k'/X', m'/X', ei')
by Eq. (39).

(5) They argue that the function d(k'/V, m'/X', @')
does not depend on m, when m'/X' is small.

This result is crucial to their discussion. They illustrate
it with an example from fourth-order perturbation
theory and propose a reason for it to be true to all
orders [see, e.g. , preceding Eq. (5.1) of Ref. 2]. Some
people tend to regard this result skeptically, and to use
this skepticism as an excuse to disregard the con-
sequences which Gell-Mann and Low deduce from it.
None of these people have succeeded (to my knowledge)
in finding a specific counterexample to this claim of
Gell-Mann and Low, although the paper it was made in
is now over ten years old.

The specific equation we need is obtained as follows.
We rewrite Eq. (39) as

e~-' = ei'd (k-'/X"', m'/K', eq'-') .

Differentiate with respect to k, holding A, and e}, fixed
(which means that e, on which eq also depends, is fixed),
and then set k'=P': we obtain

where
d(@')/dX = 2X 'P(m'/K ', ei,

"—)&-.(41)

(42)

for A&)m.
d(@"-)!dX= 2X

—'P(eg') (43)

Now, according to result 5, for A,&)m, the dependence
of &f& on m"-/Y is negligible, -so that to a good approxi-
mation &f& depends only on @'. Thus we have

Ke can understand this equation by setting up an
analogy with the results of the analysis of our model
Hamiltonians. The function e~' is analogous to our
sequences {g„},and has the same significance: The
constant g„determines the solution of the unperturbed
part of the Hamiltonian H„, which determines the
essential features of the behavior of mesons of momen-
tum A". The constant e}, determines the essential
features of the behavior of propagators and vertex
functions when the momenta are of order X; in particu-
lar these functions can be computed by a perturbation
expansion in e}t if e}, is small.

Ke can illustrate this point by studying the photon
propagator in perturbation theory. Let X be very large,
and let k be of order X. Then d (k'/X'&m'/V e&,') takes the
form of a double power series in ei' and ln(k'/X'). ' For
order of magnitude purposes, the coe%cients can be set
equal to one and we obtain

d (k"V,m'/X'-&eq') = 1+ei'[ln (k'/V)+ 1]
+e,4[in'(k'/V)+ ]+ . (44)

Since ln(k /X"-) is, by assumption, of order 1, this series
in e},' converges rapidly if &'&&1; we can compute d
using the perturbation expansion in e}, if e~&&1. This is
not true of the function dq expanded in powers of e;
for large k we have (in order of magnitude)

d (ek/ m', )e=1+e'i[in(k2/m2)+1]

+e'[ln'(k'/m')+. ]+ . (45)

Clearly, this power series converges rapidly only if
e' ln(k"-/m') &(1. So the criterion for whether the photon
propagator can be computed in perturbation theory,
when k is of order A. , is not e&&j. but e},(&1.

Equation (43) for ei is analogous to our recursion
formula for g„:

g. = f(g-). —

This equation determines how g„changes with e, given
g„, while Eq. (43) for & determines the rate of change of
e)„given e),. Ke note that there is no question that the
function f (g„) is independent of the meson mass p; this
mass disappeared when we approximated +k by k, for k
large. Thus, when we go from quantum electrodynamics
to a theory which we understand, the question of mass
dependence becomes trivial. I suspect the same will be
true of quantum electrodynamics when a decent formu-
lation of it becomes available.

Gell-Mann and Low discussed the possible behavior
of ei for very large X, using Eq. (43). There is a close
analogy between this question and the problem of how
the sequence {g„}behaves for large N. First let us
discuss how the sequence g„behaves, in terms of possible
types of functions f We show in Fig. . 1 three types of
functions f The curve labe.led A is the function that
results from our Lee-model-type Hamiltonian discussed
in Sec. V. The curve labeled B results from our fixed
source model. The curve labeled C has not been derived
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FIG. i. Plots of the
function f(x) versus
x. Three cases are
shown: the curves
labeled A, 8, and C.
The line D is the line
f(x) =x.

from any model but it is instructive to discuss the
behavior of the sequence {g„}for such a function. We
have discussed curves A and 8 previously. If f is given
by curve A, then the sequence {g„}stops after a finite
number of terms. If f is given by curve 3, then the
sequence {g„}exists for all n, i it is increasing, and it
approaches infinity as n —+ ac . Now consider the curve
C. %'e have not shown the whole of this curve because
of the enormous number of possibilities for the remain-
ing part of the curve. The part shown has the following
properties:

(a) The inverse function f '(y) is uniquely defined
for not too large y.

(b) The equation y =f '(y) has a solution y = go.

(c) If y&go, then y& f '(y) &go, if y&go, then
y&f '(y)&g'

From these properties it folloms that if the low-momen-
tum coupling constant g is smaller than go, then the
sequence {g„)will be increasing, and approach go in the
limit n —+ ~. If g is greater than go, but not above the
range of the curve C, then the sequence {g„)will be
decreasing and again approach the limit go as n ~ ~.

For both the curves 8 and C, we see that the sequence
{g„}approaches a limit as n —+ oo which is indePendent
of the low-momentum coupling constant g that we start
with. For the curve B, the limit of g„ is in6nite; for
curve C the limit is the 6nite number go which solves
the equation

go= f(go) ~

of type C, the diQ'erence g„—g ~ passes through 0 as
g„passes through go, hence the curve C of Fig. 2.

To find @' as a function of li from Kq. (43), we simply
integrate this equation. To simplify matters let f be
independent of ns if X &m, and let e},be e at 5, =m. Then

A~

ln(X'/m') = dx/P(x)
&ns

For curve A, the integral is 6nite for eq' —+ ~ which
means we get a 6nite upper bound for X, beyond which
e), is undefined. For curve B, X increases as e},~ increases
and X —+ cc aS e},' —+ oc. In thiS CaSe We Can inVert Our

equation to get e}, as a function of X; we see that e},
-"

increases as X increases and e),'~ ~ as X —+ ~. For
curve C, the integral diverges as e),' —+ eo'. For e},'&eo'",
X increases as e},' increases. Hence, if e '&eo', the func-
tion e},' will be increasing, and approach the limit eo-

ash —+ ~.
The curve A will never occur in practice. For if it did

occur then e}, would not exist for large X. But because of
our definition of ei [Eq. (38)1, the photon propagator
also would not exist for large photon momentum k. But
quantum electrodynamics cannot exist without a
photon propagator, and in particular the function f
will then not exist either. So, instead of the curve A
being a possibility, we have the possibility that no
consistent quantum electrodynamics exists.

The curves B and C were the specific alternatives
considered by Gell-Mann and Low, and led to their
alternatives (a) and (b) which we quoted in the
Introduction.

VIL QUALITATIVE ANALYSIS OF COMPLETE
FIXED SOURCE HAMILTONIAN

In the Introduction we emphasized the importance of
making qualitative estimates of various terms in a
Hamiltonian before trying to solve it quantitatively.
For this purpose, the creation and destruction operators
a~ and a~t are a nuisance. In particular, the operator
c},t, since it creates a meson in a plane wave state,
creates states of in6nite norm. Thus, if one tries to
estimate the "order of magnitude" of u},t in the manner

We can invent possible forms for the function f(x)
which are analogous to the three curves A, B, and C for
f These are show. n in Fig. 2. To set up the analogy, we
note that g„—g & constitutes the change in g„as the
momentum changes by a factor A; therefore g„—g„ i is
roughly analogous to the derivative of e},' with respect
to Ink, which is just the function tf. Now for curve A for
f, the difference g„—g i becomes very large as g„—+ ~.
By analogy we obtain the curve A of Fig. 2. For the
curve 8 for f, the difference g„—g„ i is just a constant
times g„when g„ is large. Thus we obtain the curve B of
Fig. 2 which is linear in x for large x. Finally, when f is

FIG. 2. Plots of the
function p(x) versus
x. Three cases are
shown: the curves
labeled A, 3, and C.

eo
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C

(2,0)
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(2,-I)

(3,I)

(3,0)

(3,-l)

(4,3)

(4,2)

(4, I )

(4~0)

(4,-2)

FIG. 3. Our divi-
sion of phase space
into cells of unit
volume shown in two
dimensions (one co-
ordinate and one
momentum dimen-
sion}. Each cell is
labeled with its in-
dices (n,m}. Ax)hk)= -', . (51)

different oscillators. Ke shall not try to demonstrate
that our choice of restrictions accomplishes this until
we discuss a particular Hamiltonian.

Our first requirement is that all the functions u&(k)
be good wave packet functions. By this we mean that,
if Ak~ is the momentum width of the function u~(k), and
hx~ is the width of the Fourier transform s~(x) of u~,

then the product Ax&LB& is near the lower limit set by
the Heisenberg uncertainty principle

I 2 4
momentum k

we have used, which is to calculate the norm of the state
created by aI,~, we get infinity. So far we have not had
to estimate a~~ itself, but only integrals involving a), ~

of the form J"aqtu(k)d'k. If the function u(k) in the
integral is normalizable, then the resulting operator
creates a normalizable state and estimates are possible.
However, in relativistic Hamiltonians, the operators
analogous to apt are integrated with b functions (to
ensure momentum conservation) rather than nor-
malizable functions.

What we shall propose here is that the creation and
destruction operators, which depend on the continuous
variable h, be expanded in terms of a discrete, complete,
orthonormal set of functions u~(k). The coeflicients of
this expansion are themselves creation and destruction
operators for mesons in normalizable "wave-packet"
states. %'e obtain

ag ——Pi ug(k)a(,

ag~=ggu~ (k)a~~.

The operators ag and a~~ are operators with the same
commutation rules as an infinite set of harmonic
oscillator variables:

[a(,a ]=0,
[a(,a t]=S),

[a~~,a t]=0,
(50)

where 5g is the Kronecker delta.
%'hen a Hamiltonian involving a), and aI, ~ is re-

expressed in terms of the operators ag and a~~, we obtain
a Hamiltonian for an in6nite set of coupled, perhaps
anharmonic, oscillators. It seems to be easier to analyze
such Hamiltonians qualitatively than to analyze
Hamiltonians containing the operators a~ and a~~. Ke
shall illustrate this shortly by discussing the full 6xed
source Hamiltonian of Eq. (1).

There are very many complete orthonormal sets of
functions u~(k). However, the complete sets of interest
to us will have to satisfy some restrictions, which we
shall now discuss. The restrictions will be imposed with
the aim of making the self-interactions of the individual
oscillators more important than interactions between

For order of magnitude purposes, each function N~

can now be thought of as occupying a "cell" in phase
space, of unit volume. If the set of functions N~ is com-

plete, then the total volume occupied by the functions
u~ must 611 all of phase space. The orthogonality of the
diferent n~ means that regions occupied by di6erent N~

should not overlap.
These conditions are supposed to be understood

qualitatively. That is, the function u&(k) and s&(x) are
certainly not 0 outside their assigned regions in momen-
tum space and position space, respectively but, hope-
fully, their "tails" outside these regions are small and

go rapidly to zero as one goes away from the assigned
region. I have been unable to construct a speci6c
example of a complete orthonormal set of functions
satisfying these requirements: the functions I construct
always have long tails in position space and no tails in
momentum space, or vice versa. But the conditions
proposed represent, I think, the physics of a complete
orthonormal set of wave functions, and if so it is reason-
able to proceed as if such a set of functions did exist.

Ke still have to specify how phase space is to be
divided into unit cells; we shall presume that we may do
this arbitrarily. The particular division that me shall
adopt is one in which momentum space is divided
evenly on a logarithmic scale. To be precise, we divide
momentum space into an infinite number of nested
spherical shells, the nth shell being

2n—ling(2n ~ (52)

Now for each shell separately we divide position space
linearly into cubes of the appropriate size. For the nth
shell the volume in momentum space is of order 2'" so
the volume of a cell in position space will be of order
2—'". So in order of magnitude the cubes may be de6ned

m,—~ &2"x;&m;+2,

where the x, are position space coordinates and mq, mq,
and ns3 are arbitrary integers. Our division of phase
space is illustrated in Fig. 3.

Now we shall assume that there exists a complete
orthonnormal set of functions u~(k) corresponding to
the division of phase space just described. To be
precise, u&(k) will be labeled by four indices (n, m&, m&, m3)
which specify the location of the corresponding phase
space cell; let us use the single symbol / to stand for
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these four indices. From the normalization requirement

(&)I'=f I

(*)I'&'*=& (54)

we can compute the order of magnitude of u~ and v~.

The volume of the nth shell in momentum space is of
order 2'", and the volume of the corresponding cell in
position space is of order 2 '". Hence, inside these
regions we have

(55)

Outside these regions, N~ and v~ are smaller.
To illustrate the usefulness of expanding the creation

and destruction operators in terms of oscillator vari-
ables, we shall examine the Hamiltonian of Kq. (1)
(with no limitations on k in the integrals). First we must
express H in terms of the operators g~ and a, ~~. We must
introduce corresponding oscillator variables also for b~
and b~t. Then II has the form

H=Pqgt Cj((ajta(+bjtb()+go+&Dr(a&r++b(r )
+go+(D('(b(tr++a)tr ), (56)

where

all 0: t= (u, 0,0,0). These latter D& we denote by D„.
They are easily estimated from the known volume of
the eth shell and the known order of magnitude of
u((k); we get

D;2" (u&0)
~28n/2 (u(0)

We have now as a rough approximation

(60)

Q(C(&(a«a(+b(tb()+go+„D„(a„r++b„r )
+go +„D„'(b„tr++a„tr ), (61)

where the operators a„, etc. are the operators c~, etc.
with m;=0. In this approximation the free-meson field
has been replaced by independent harmonic oscillators
for each phase space cell, with a frequency depending
only on the mean momentum of the cell. The inter-
action of the meson field with the source has been
replaced by an interaction of those oscillators located at
the origin (where the source is) with the source. The
remaining terms of the original Hamiltonian are to be
considered as a perturbation.

To get orders of magnitude, we first neglect the inter-
action with the source, in Eq. (61). Then we have
independent harmonic oscillators. In this case the
orders of magnitude are evidently

C,;= (o(,u;o(k)u((k), (57) 8) 1q Q)t 1 (62)

D( (2(o(,)-"'u((k——) . (58)

C(( 2" (u) 0)
-1 (u&0). (59)

Now consider D~. The function u~(k) carries s, k-
dependent phase factor associated with the center of the
appropriate cell in position space, unless this center is
at the origin. Thus D~ will be small unless the m; in l are

The Hamiltonian H is now the Hamiltonian of an
infinite number of oscillators coupled to each other and
to a two-level source.

To simplify our Hamiltonian, we examine the coefFi-
cients C;~ and D~. Except for the factor co~, the matrix
C would be diagonal because the functions u~ are
orthogonal. Even with the factor opj„ the o6-diagonal
terms should be small: If the momentum shells n; and
n~ are distinct, then the functions I; and u~ do not over-
lap very much. If u; and N~ are in the same momentum
shell but different spatial cells, this fact will be reflected
in a rapid variation in the phase of I 1~ as a function of
k, which, again, makes the integral small. So, for a first
approximation, we keep only the diagonal terms C~~ of
the matrix C. These we can estimate to be a mean
energy times the normalization integral. In the nth
shell the mean energy is either about p, , or about 2",
whichever is larger. Let p, be 1 for convenience. So

for all t. The energy contributed by the 1th oscillator is
of order 2" or 1 whichever is larger. As in our model, the
oscillators associated with large momentum in, phase
space contribute most to the energy. Now suppose the
order of magnitudes of a~ and u~t are unchanged by the
presence of the source. The matrices v+ and v- are of
order 1 at most Lthis follows from the sum rule, Kq.
(20)$. The energy due to the interaction of uth shell
mesons with the source is therefore of order 2", if m&0,
or 2'"~' if m&0. This is of the same order as the free-
meson energy for n&0, and much smaller for n&0.
Since the interaction energy of a meson is not greater
than its free energy, we do not expect the interaction to
change the order of magnitude of a~ and a~t. LThis
discussion fails if go is very large, for then the inter-
action energy is large and the orders of magnitude do
change (compare Ref. 6).j

Let us consider now the problem of finding the ground
state of II. First, we ignore the oscillators not located at
the origin since in our rough approximation these are
uncoupled. For the oscillators coupled to the source we
use the same method as we used on our model of Sec.
II. We cut o6 the Hamiltonian at a large finite value of
n, say X. Then the oscillators associated with shells
within the 3,'th shell are treated as a perturbation on the
cVth shell oscillators. Thus, our unperturbed Hamil-
tonian Ho is

Ho (dN(aNtaN+bN bN)+goDN(aNT +bNT )
+goDN" (bNtr++aNtr ), (63)
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where or~ is Cu for /=(X, O,O,O). The perturbation
consists of the analogous terms for sz&iV.

The unperturbed Hamiltonian Hp is the Hamiltonian
of two harmonic oscillators coupled to a two-level
source, which is a problem in ordinary quantum me-
chanics. It cannot be solved exactly, but otherwise it is
a trivial problem to analyze, for any value of gp. It
should have a doubly degenerate ground state, as did
the unperturbed Hamiltonian of our model.

The perturbation has to be analyzed by degenerate
perturbation theory. The states which are degenerate
are the two ground states of Ho, and with each of these
states the oscillators of the lower shells (e(.V) can be
in arbitrary states. As in the analysis of our model, the
perturbation, in lowest order, leads to an effective
Hamiltonian of the form

H,u=EO+Q„(~ (v„(c„tu„+b„tb„)
+f(go)Z &xD (& r++b r )

+f(go)Z- D-'(b-t"+~-~ -), (64)

where f(go) is go times the ground-state matrix element
of 7-+. As in our model, we see that the effective Hamil-
tonian is similar to the original Hamiltonian cutoff at
&V—1, except for an over-all energy shift and a modi6-
cation of the coupling constant.

It is unnecessary for our purposes to continue this
analysis. There is one point that must be discussed,
however. In our rough approximation, we disregarded
the coupling terms between oscillators (involving the
constants C,~ with j&f). We also disregarded the
coupling to the source of oscillators not, located at the
origin. These terms were dismissed as being a per-
turbation, but in our approximate Hamiltonian the
terms with e&.V were also a perturbation, yet were
taken into account. Ke can justify our procedure as
follows. If we take into account the oscillators not
located at the origin, then we can choose the unper-
turbed Hamiltonian to involve the self-energies of all
Xth-level oscillators. The ground states of the un-
perturbed system consist of either of the two ground
states of H p, with the other Sth-level oscillators in their
ground states. The oscillators of the lower shells can be
in any state. The perturbations now consist of

(a) the coupling terms between oscillators of the
Xth shell,

(b) the coupling to the source of oscillators of the
Xth shell not at the origin,

(c) the coupling of oscillators in lower shells to
oscillators of the Xth shell or lower shells.,

(d) the coupling of oscillators of lower shells not
located at the origin to the source,

(e) the self-energies of oscillators of lower shells, and
(f) the coupling of oscillators of lower shells at the

origin to the source.

In lowest order perturbation theory we are interested
only in matrix elements of the perturbation betwee~

ground states of the unperturbed Hamiltonian. It is
easily seen, by explicit calculation, that perturbations
(a) and (b) do not contribute to these matrix elements,
nor do those terms of (c) which involve coupling to
Eth shell oscillators. But now the dominant terms in
the perturbation are (e) and (f), in particular those
terms from the cV—1st shell. This is the justi6cation for
taking only terms (e) and (f) into account.

Our rough analysis reduces the problem of solving the
Hamiltonian of Eq. (l) to the solution of Hamiltonians
like Ho LEq. (63)$, which couple two oscillators to a
two-level source. As in our model, the Hamiltonian H p

has to be solved for an infinite sequence of coupling
constants, one for each shell in momentum space. To
arrive at this simplihcation we made some very crude
approximations, but this is always what one has to do
with complicated Hamiltonians.

To conclude this section, we shall use our analysis
just given to explain why it has been so difIicult to
obtain good solutions of the fixed source theory of the
pion-nucleon interaction. ' In this theory the pions are
pseudoscalar not scalar, and there are three pions, not
two. The cutoG, experimentally determined, is about
six times the pion mass. The standard method for
solving this theory is the Tomonaga intermediate
coupling method, ' which in essence replaces the meson
6eld by nine oscillators. The nine oscillators are associ-
ated with the three charge states and three spin states
of p-wave pions; all nine oscillators are associated with
pions of the same mean energy. The wave function in
momentum space associated with these oscillators is
varied as part of a variational calculation of the ground
state.

In our analysis we found that the most important
oscillators, as far as the interaction energy was con-
cerned, were the oscillators located at the origin with
mean energy of the order of the cutoff energy. Hence we
would expect the variational method to determine
mainly the behavior of mesons near the cutoff energy.
But practically speaking, we are interested in the
behavior of low-energy pions, which are described by
oscillators with low-momentum wave functions. These
do not contribute very importantly to the energy; in
our analysis they were treated by perturbation theory.
In a variational approach one would want to allow more
oscillators than considered by Tornonaga and require
the wave functions of the extra oscillators to have a low
mean momentum.

VIII. CONCLUSION

In this paper we analyzed in detail a model Hamil-
tonian obtained from the theory of charged scalar pions
interacting with a point source. To construct our
Hamiltonian we suppressed the mesons with momenta
outside an infinite sequence of intervals. By keeping
some of the very large momentum mesons, we ensured

' See Ref. 3, p. 179.
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that our Hamiltonian had the same renormalization
problems as the full 6xed source theory. %e were able
to solve our model Hamiltonian to the extent of reduc-

ing it to the solution of two strongly cut-oR fixed-source
Hamiltonians (IIq,b and H,).

Ke also discussed a corresponding model derived
from the Lee model (Sec. V). We compared the results
of the analysis of these models with Gell-Mann and
Low's analysis of quantum electrodynamics (Sec. VI).

In Sec. VII we showed how one could perform a
qualitative analysis of a complete fixed-source Hamil-
tonian. The basic idea was to expand the meson field in
a complete orthonorrnal set of "wave packet" functions.
The coeKcients in the expansion can be thought of as
the quantum variables for an infinite set of oscillators,
each associated with a cell in phase space of unit
volume. The division of phase space was chosen so that,
for a given momentum range, the self-interactions of the
oscillators were more important than the coupling
between oscillators; and so that the mean energies
associated with diferent momentum ranges were
su%.ciently diGerent to allow the use of perturbation
theory.

There are a number of ideas involved in the analysis
of our models which probably are important in the
analysis of any Hamiltonian which requires coupling
constant renormalization to give 6nite results in
perturbation theory. Let us discuss these ideas briefly.

First, we note the result of our model that there is not
just one coupling constant, but an infinite number of
coupling constants, each relevant to a particular mo-
mentum range. In a strongly cut-o6 theory one has a
single coupling constant, and one uses perturbation
theory, or variational methods, or strong-coupling
theory, depending on whether the coupling constant is
small, or of order one, or large. In a theory involving
renormalization, some of the coupling constants may be
small and others large in which case one would have to
use both perturbation methods and strong-coupling
methods to obtain a complete solution of the theory. In
any case, it invariably turns out in practice that if the
low-momentum coupling constant is small, the coupling
constants increase as the momentum increases until
perturbation theory is invalid.

Secondly, we note that after breaking down the full
Hamiltonian for our static model into contributions
from the various momentum intervals, the individual
contributions were finite and could easily be estimated.
The Hamiltonian as a whole was 6nite only when cut
oR, and the eigenstates of the Hamiltonian had to be
defined as a limit with the cutoR going to in6nity. In the
Hamiltonian of a fully relativistic theory, it is no longer
sufFicient to break up the Hamiltonian into contribu-

tions from various momentum intervals, because in this
case the momentum conservation 5 functions cause
trouble. One must introduce discrete oscillator vari-
ables, as was done in Sec. VII, to replace the field

variables, and then divide the Hamiltonian into con-
tributions from various cells in phase space. Then the
individual terms are finite and can be estimated.

Thirdly, we found that the disparity in energy of
mesons of different momentum was the key fact that
made possible our analysis of the model Hamiltonian.
Ke were able to regard the mesons of low momentum
as a perturbation with respect to the mesons of large
momentum. Renormalization resulted from the per-
turbation analysis: low-momentum mesons were de-
scribed by an eRective Hamiltonian containing re-
normalized constants. Ke can expect the energy dis-

parity to be of fundamental importance in working out
a theory of renormalization for Hamiltonians of rela-
tivistic theories.

Fourthly, we found that qualitatively the full fixed-
source Hamiltonian, involving a meson field coupling
to a source, could be reduced to a Hamiltonian involving
two oscillators (associated with a single phase-space
cell) coupled to the source. This Hamiltonian has to be
solved for an infinite set of coupling constants, one for
each momentum range. (For low moments the Hamil-
tonian is modified to take into account the meson mass.
To save space we have not discussed this problem. )
Analogously, one would hope that a qualitative analysis
of a Hamiltonian for a relativistic quantum field would
reduce it to the Hamiltonian of a small number of
coupled anharmonic oscillators, whose parameters
would depend on the momentum range being considered.

To conclude, we note that in the past our under-
standing of renormalization problems has depended on
models that can be solved exactly, such as the Lee
model. There is scant hope that me will ever understand
the Hamiltonians of relativistic theories if we await an
exact solution of them. Therefore we have tried to
emphasize methods for understanding the renormaliza-
tion of Hamiltonians which do not require an exact
solution. To analyze our model we partially solved it,
but were left with two Hamiltonians Iri,b and H„which
are not exactly soluble, to my knowledge. In analyzing
the full 6xed-source Hamiltonian, we relied entirely on
qualitative arguments.
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