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Expressions are obtained for the 5U(3) (g) and (t) crossing matrices in terms of isoscalar factors and

Racah coe%cients (6-j symbols). Careful attention is given to the question of phases and states. The cases
«3XS and SXS are considered as examples. Methods for obtaining crossing matrices by means of pro-
jection operators are illustrated by examining the case of 3X8 in detail.

1. INTRODUCTION

ITH the success of the SU(3) theory in explaining
the symmetries of strong interactions, ' ' atten-

tion has been given to deriving the crossing matrices of
SU(3). Various techniques are available for this. For
example, one can use projection operators as did
Cutkosky, ' or one can use the SU(3) Clebsch-Gordan
coefFicients as was done by de Swart. 4

In this work, we will obtain a general expression for
the u- and t-channel crossing matrices in terms of iso-
scalar factors and Racah coefIicients. Techniques using
projection operators will also be discussed. It will be
seen that a judicious use of both of these methods will
facilitate obtaining a crossing matrix.

Particular care is given to the touchy question of
phases. It is hoped that this paper will illuminate the
understanding of this aspect of the subject. Throughout
this work, special attention is paid to the case of 3 x 8,
which is important in discussing Sakata particle or
quark-meson scattering. 88 is also worked out in
detail.

In Sec. 2, we discuss the mathematical apparatus in-
cluding the definition of crossing matrices, phases,
states and fields, and SU(3) direct product states. Our
expression for the SU(3) crossing matrices is derived in
Sec. 3. The next section is devoted to the method of
projection operators with reference to the case of 3 x8.
The projection operators of the s, u, and t channels for
3 x 8 are found. This gives a check to the results of Sec.
3. A discussion follows in Sec. 5.

2. MATHEMATICAL PRELIMINAMES

a. Crossing Matrices

In finding a crossing matrix in the literature, one must
be sure to ascertain if the matrix is for the u or( channel,
if it is for projection operators or for amplitudes, and to
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understand the relation between the projection opera-
tor and amplitude matrices.

In this paper, the s, u, and t channels will be de-

fined by
(s) a+A ~ c+d,
(I) u+d~ c+5,
(t) a+c ~ 5+d.

(2.1)

and using

P-"(q,P) =2 ~-p"'Pp'(P, q),
P

(z)=t (-z)

(2.3)

(2.4)

allows us to discover that

h '(z)= P Ap. "'hp"( —z)= P(8"') p-'hp"( —z), (2.5)

where 8"' is defined to be the u-channel amplitude
crossing matrix. Thus

floss [(g sss)T] 1—(2.6a)

where "T" means transpose. For the case of elastic
scattering,

plus —(g sss) t (2.6b)

Similarly, one can show that

If ts —[(g ts) Tj—1 (2 'I)

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1955).

The relationship between crossing matrices for the
amplitudes and projection operators can be understood
in terms of the l matrix of the pion-nucleon interaction. '

4m.

t„,(z) = v(q) p(p) -P P.(p, q)h. (z), (2.2)
(4co„coq)'t2 a=~

where q and p are initial and

final

s momenta, n = (2T,2I)
labels the (T,J) states, the P 's are projection operators
onto the n states, and the h 's are related to the phase
shifts and hence the amplitudes in the o. state. Equa-
tion (2.2) is quite special to the Chew-Low theory, but
it is adequate for our purposes, since we use it only to
illustrate the connection between the crossing matrices.

Defining the u crossing matrix for projection opera-
tors to be
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With Eqs. (2.6) and (2.7) one can relate the crossing
matrices obtained by using either projection operators or
amplitudes.

g(N) =1. (2.10)

However, for the quark model, this will not do, as
there is no T,= Y=O state. We want to obtain a phase
convention that will reduce to (2.9) in the octet case
and yet will allow

in the Sakata model and

in the quark model. The question of the phases involved
in states and creation operators will be discussed in the
next subsection.

What we suggest is that

g(N) = (—1) exp(r(N)/3 P(T.;+Y—,/2)/X), (2.12)

where r(N) is the triality" of the N representation, the
sum extends over all states of the IR, and X is the
dimension of the IR.

The octet IR trialities are all equal to 0, while that of
the 3(3*) is equal to 1(—1). This will allow (2.11b) to
hold. The reason for the g;,» is a "centering" phase.
All octet IR's and quark triplets are "centered" about
the Y, T, origin, i.e., the sum equals zero. But, for in-
stance, the Sakata triplet is not. This extra factor will
compensate for that and, with the triality contribution,

6 (a) E. V. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1935); J. J. de Swart, Rev. Mod. Phys. 35, 916 {1963).(b) C. C.
Shih (private communication) has verihed the phase factor
(—1) exp(T, +)I') by using a generalization of the methods of
Sec. II of Ref. 14.

'M. Gell-Mann and Y. Ne'eman, The Eightfold g ay (K. A.
Benjamin, Inc. , New York, 1964), Chap. 7.

8 G. E. Baird and L. C. Biedenharn, Proceedings of the 1964
Coral Gables Conference on Symmetry Principles at High Energy
(%. H. Freeman, San Francisco, 1964), p. 58.

b. Phases

In this work, we will use the Condon and Shortley
and de Swart phase conventions. " Since we shall be
using the triplet representation, this will require some
discussion for de Swart defined his phases with respect
to the octet model.

De Swart showed that the relation between eigen-
states of the representations N and N* is'

IN, T,T„Y)=g(N)(—1)r~tr
X IN*, T, —T., —Y)*. (2.8)

He realized that since every irreducible representation
(IR) in the octet model has a state with T,= Y=O,
g(.V) could be defined by

IN, T,O,O&= IN*, T,O,O&, (2.9)

will yield (2.11a).Thus, (2.12) gives us the desired rela-
tions (2.11a,b), and reduces to de Swart's convention in
the octet model.

With these phases we can now interchange quark
and Sakata triplets. All our results, i.e., field operators
and crossing matrices, are the same. One just has to
change the labels. We shall arbitrarily use Sakata triplets
for convenience, but we emphasize that our results are
equally valid for quarks.

0'"
I 0)= I4'&-

I p)
a'*I o) =

I

0'&-
I »&,

p "lo&=IV &-l~&,

y lo&= &,*10&=
I v,&- l~&,

O'IO&= ~2'IO&=
I
~2&- ln&,

W'I o)= ~~*I0& = —
I
~~&- —IP&

(2.13)

The octet IR Geld operators can be written as

p' p3= K+,
Pqg=K',
rP'q 2 ——~

p(pg= ~—= (m+)*,

K'= (K')*, ——
P'vp)=K =(K+)*,

(I/v2)(f'~2+0 '
v i) =~",

(1/v'6)(0'v i 4'v 2+28& 3)= n'. —

(2.14)

9 P. Carruthers, Unitary Symmetry in Strong Interactions
(Interscience Publishers, Inc. , New York, to be published). This
book is a comprehensive treatment on the subject of SU(3) de-
signed especially for the reader who is learning the subject.

c. States and FieMs

Due to the diferent phase conventions that have been
used, some confusion exists over the phases that should
be associated with the field operators versus the states.
We desire, on the one hand, the simple convention of
complex conjugation and, on the other hand, the Condon
and Shortley and de Swart phases. This question is dis-
cussed by Carruthers. ' We shall state the results perti-
nent for our purposes and refer the reader to the above
reference for the details.

When we refer to a field operator, we will use the
symbol of the particle, for example, x+, but if we are
referring to a state that is associated with a particle, we
shall use

I
s.+&=

I
1,0,0)=

I T,T„Y). (Note that, if there
is no confusion, we shall omit the X symbol in the state. )
No (—) sign is associated here, as this will be identified
with the fields operating on the vacuum. With this

I

n.+) we have that T
I
m+) = +v2

I
x'&, to agree with the

Condon and Shortley phases.
The triplet field operators can be written
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Their relation to the octet states is

I
Ic+)'

I
K')

I
2r+)

l~')

I
2Y-)

ln)

I
go)

(2.13)

TI Y1
1

F=2, T=1
T2 F2

k 1

Y=2, T=O

T2 Y2

1

Y=1, T=~

TABLE I. Isoscalar factors for 3XS. Given are the isoscalar
factors

3 8 'p~
TIY1 T2Yg TY

for the series 3X8=3+6*+15.

The states la), a=1, ,8, which will be used later
are given by

T1 Vl
j,

T2 Y2

1 0

Y= —12 T=g

1—(2Y++2Y-)
1—(—

I 1,0,0)+
I
1, —1, 0))

v2

0 0

TI F1
1

1

0 0

T2 Yg

0
0 0

1

Y=1, T=g'

Y=O, T=1

(EC++E)— .
v2

(K+ E)— —
K2

0 0
1

TI
1

0 0

T2 Y&

1 0—1

T. Y2
—1

0 0

Y=O, T=O
15

1

—1/v2
1/v2

1 (K'+E')—
v2

Z

(K' E")——
W2

lo,o,o)

(2.16)

denotes the IR, v= (T,T.,Y) and t—he subscript y dif-
ferentiates between different IR's of the same dimen-
sion. (We are following de Swart's notation, ' ' so here
the 1IY's and y's are states, not 6elds. )

SU(2) (isospin) wave functions can be given by

and transforms as the regular representation with
generators F. I See Eq. (3.23).j

d. Direct Product States

C(T1T2T, TlzT2gTg) I t21 Vl) I p2&v2). (2.18)
T1sTRg

(w

r F (Y,Y, T.Y, TYJ(Pj P2 P~ Pi P2
I yl, vl) I p2, vl), (2.17)

P &Z&Q Py P2 P

gU(3) states @ can be given as a product of two Combin'ng Eels. (2.17) and (2.18) ™plies
IR's by

where

where

pz p2
~x T T, Y I, (2.19)

are the Clebsch-Gordan (CG) coeflicients for gp(3), y (
P2 Py

Tj.Yy T2YI TV
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(
pg p2 p~

C(T3T2T
v Tlv T2v T)

Vy P2 V

Y=1, T=$

are the isoscalar factors. Comparing Fqs. (2.1&), (2 lg) TAELE II. 13&&sea&a«actors for 3X3. &iven are the lsoscslal
factors

and (2.19) shows that 3
TIYI T2Y2 TY

for the series 3X3~=1+8.

T2

0 0

Tables II—VI of Ref. 6 contain the isoscalar factors for
8&8, 8&10, 8&27, 10@10and 10@10*.Tables I and
II of this paper give the isoscalar factors for 3&8
=3+6~+15 and Sx3*=8+1, which are given by
Carruthers. ' They were obtained by demanding that T+
and V~ obey Condon and Shortley phase conven-
tions, i.e.,

Tl
0 0

Tl Yl
1

T2
1

Y=O, T=1

Y= —1, T=$
T2 Y2

—1

T, I T,T., V&= [(T~T.)(T~T,+1)O'I'

X
I
T, T,+1, V). (2.21)

The SU(3) Clebsch-Gordan coefficients were taken to
agree with de Swart's phases. ' One can consult the liter-
ature for information on the procedure, "'0 but the
reader must take care. Many conventions have been
used to de6ne the operators E+, T+, V+, U+, and the
phases that connect them to the states.

Tl ~ I
1

0 0

T2 Y2
—1

0 0

Y=O, T=O
8

1/N
1

V'a—1/v3

3. 8U(3) CROSSING MATRICES

Using the orthogonality conditions given in Sec. 11
of Ref. 6, one obtains the relation

I v I v) (I v Iv I v I

)I=XI Pa
V3 p4 pl V2J vY4vl lp3V4 p pl V2 V

(3.1)

where I" is the s-channel amplitude. Similar results for the I and t channels are

/343 342 331 344 (333 342 34P) (431 I34 3 y)

kv3 v, * v, v, * v ~~kv3 v,* vi kv, p,* vi
(3.2)

P2 p4 pl p3 p2 p4 Pp pl p3
(3.3)

where v*=—(T, —T„—V).
Owing to (2.8) and (2.12), we have

v v v v v* v v')p +2 2+r4 p
KV3 P4 Vl V2 P3 V2 Pl V4

(3.4)

where, for us,

(
133 334 333 342 t 342 134 131 343 )P —( 1)+vv+vv F
V3 V4 Pl V2I V2* P, V, P3*)

r —= T.+-,' V+-,'r(N) —Q (T„+,' V;)!X- (3.5)

=—T +2'JJ. (3.7)

The point to be made is that P is always equal to (&I) for our representations. Thus, we can use the ~ at will, de-
pending on what is convenient for sums that will later come into play.

' The book listed in Ref. 7 has a large collection of reprints of the basic papers in the 6eld.
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Combining the above and the Clebsch-Gordan orthogonality relations in
and 8"crossing matrices, (»» u (ui u4(»IB"'lu'P'v')= 2 (—1)'"""'l P l

vlVR Ev3 V3 V (VZ V4 V V3
vs v4+

u4 u (ui u3 u 'l u3
( upy l

B"
l

u'p y ) = p (—1)+38~38 p l

v1vs V4 V4 V kVy V3* V ) V3vs+vs

where
F v//»= 2 (ups I

B"'lu'P'v')F*'// »

(11.2a,b) of Ref. 6, yields, for the B"*

"' ", V,(("' "' ", 8,(, (83)

(3.10)

F',»= 2 (upvlB" luPv)F';t;. (3.11)

These are the inverses of de Swart's pzzz and pzz matrices. '
It is possible to further reduce Kqs. (3.8) and (3.9). B"' can be written as

P~ Pi P4
Bll8 — Q ( I)+'IJ 3/2+ s4 /4 P

T1Y1TBY3 T3V3 T2V2* TV TgYg T4V4* TV
Ts Ys+T4Yg+
T'Y'

lt P3 P4 P , PI P2
XZ"'(TiT3T3T4, T'T)l. pl

, ,
7' 312

ET3I'3 T4F4 T'Y' TzI'3 T3V3 T'V'
where

Z" = P P (—1)~-3+"3C(T„T„T;m3, —m, , m)
2T+ 1 m mtms

mgM4+

XC(Ti T4 T mz m4, m)C(T3, T4, T'; m3, m4, m')C(Ti, T3,T'; mi, m3, m) . (3.12)

For clarity, we have set m=—T,4. The factor (1/(2T+1)P„) is equal to 1, since (3.8) is valid for any m.
Implicit in this expression are four Kronecker deltas: (i) b(m, mi+m3), (ii) b(mi+m3, m3+m4), (iii) h(m, mi —m4),

and (iv) i/(mz —m4, m3 —m3), three of which are independent. By summing over m3, m', and m, using the Clebsch-
Gordan coefficient identities found in Chap. 3 of Rose, ' and choosing (+v3) and (—v4) as the phases, one finds that
(u3= mz m3+m4)

1 (2T'+1)(2T+1)

2T+1 (2T4+ 1)'
Q f Q C(TzT3T'; mi, m3)
m4+ mImms'

XC(T T3T4,' mi+m3, u3)C(TiTT4, mi, m3 —u3)C(T3T3T; m3,u3)}(—1) '+r8. (3.14)

Combining (6.3) and (6.6a) of Rose" and the identity P 4*(1)= (2T4+1), we have

Z '= (—1) 'r+r( 32'T+1) W( TzT3T4T T'T),
where W(/zbcd; ef) is the Racah coefFicient. Thus

92 P~ IJ4
(up~i B- l'P'~') = 2 (-I)'~"~"/'

T1Y1TsYs T3V3 T2—Vg TV T&Vj. T4—V4 TV
TsYsT4Y4

(3.15)

P3 P4
X Q Z"'(T,T3T3T4, T'T) p'

, ,
~'

I
(3 16)

TtYt T3V3 T4T4

Z"8(TzT3T3T4, T'T) = (—1) r'+r (2T'+81)W(TzT3T4T3, T'T)

Tj T2 T= (—1)»+»8+r4(2T8+1)
T3 T4 T

a b s

c d I
"M. E. Rose, F/emenfary Theory of Angular Moeserifum (John Wiley R Sons, Inc. , New York, 1957).

(3.17)

(3.18)
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is the 6-j symbol, for which tables are available. "The 6-j symbol has the advantage of easy manipulation of its
indices. The reader is referred to the tables by Rotenburg et al. ,"or Chap. 24 of Wigner" for further details.

A similar expression is obtained for the l-channel crossing matrix:

( ~2 ~4 ~ '} ( ~t u3(.~~Iffy"I'~'~')= Z (-I)'-~ &""I
T&Y1TgYa ET2—Ye T4Y4 TY J (TtYt T3 Ye T—Y
T8FITgF4

I /

X Z Z"( TtT2TeT4T'T)l
r'Y' ET3Y3 T4Y4 T Y J ETtYt T2 Y2 T Y

Z4'(TtTeTeT4) T'T) = (—1)~&+r'(2T'+1)W(TtT'TT4, T,T3)

Tg T Tg=(—1) r r'(2T'+1)
T4 T T3

(3.20)

(3.21)

Except for phase factors, the expressions Z"' and Z" are identical with the SU(2) crossing matrices for arbitrary
isospin that were obtained by Carruthers and Krisch. "However, since the phase factor varies depending on whether
the crossed SU(2) particles are pair-conjugate or self-conjugate, it is an unnecessary complication to express our
SU(3) crossing matrices in terms of SU(2) crossing matrices. )We note here that the crossing matrices are similar
in structure to the SU(3) Racah coefficients given by Krammer. "j

The expressions(3. 16) and (3.19) are independent of T and Y contained in the IR g. This can be put to advantage,
for a judicious choice of T and I' will reduce the work involved in calculating a matrix element. For example, if we
take (T,Y) = (0,2), then the (6e

I
8"'I3) element reduces to one term.

~3 8' 6*yt3 8* 6* (3 8 3~ 3 8 3(6*III"'I»=I, , II w(-; —, —; —;;o o)

= —38'

The 8"'and 8"crossing matrices for 3 & 8=3+6*+15
are listed in Tables III and IV. The I crossing matrix
agrees with the results previously found by Capps"
and Cutkosky. "The I and t crossing matrices for 8 &8
are given in Table V. The top sign is the element for
the 8"' matrix, the bottom that of the 8"matrix. The
two matrices can be related by

(I py I
&"

I I 't3'~') = b(88PP)
X $1(88''p )(pfi y I

&"'
I
~'0' r'), (3 22)

TABLE III. The elements of the crossing matrix
(p l

B"'(3,8,3,8}~
p') multiplied by 8.

where the $~'s are given in Table I of Ref. 6. The 8 x 8
matrices agree with those of Cutkosky' and de Swart, '
respectively.

It should here be stated that in the literature
8~ ——82 ——8' is that octet which transforms according to
the regular representation (R.R.) and which has been
formed by V~FV where V is a vector that belongs to
the R.R. The octet 8q ——8~——8 is that octet which trans-
forms according to the R.R. that has been formed by
V*DV. The matrices I' and D are the two sets of eight
8&(8 matrices that are formed from the antisymmetric
structure constants f;;e and the symmetric constants
d;;I, by

3

15

—1—3
3

—6
6
2

(3.23)

(3.24)
8» means 8,~ 8,.

Our conventions for the listing of the crossing
matrices are the same as those in Ref. 14 and have the
following physical interpretation. Suppose there is scat-

1' M. Rotenburg, R. Bivins, N. Metropolis, and J. K. %'ooten,
Jr., The 3-j and dj Symbols (The Technology Press, MIT,
Cambridge, Massachusetts, 1959)."E. P. signer, Group Theory and its Applications to the
Quantum Mechanics of Atomic Structure (Academic Press Inc. ,
New York, 1959)."P. Carruthers and J. P. Krisch, Ann. Phys. {N.Y.) 33, 1
(1965).

"M. Krammer, Acta Phys. Austriaca, Suppl. 1, 183 (1964).
16 R. H. Capps, Nuovo Cimento 34, 932 (1964)."R.E. Cutkosky, Phys. Rev. Letters 12, 530 and Errata 572

(1964).

~l
~each

1
828
818

16
1

5/4
161 g5

TABLE IV. The elements of the crossin matrix
(p, lB"(3,8,3,8}

~
pc') divided by 6.
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Tsnts V. The elements of the crossing matrices fiipy( 8"'(8,8,8,8) [ p'&S'v') and (iffy(8" (8 8 8 8) (&i'&8'v')

The upper sign refers to the o matrix and the lower sign to the t matrix.

27
10
10*
811
812

1

27

7/40
9/40

~9/40
27/40

0

~9/8
27/8

10

~ 111

+/+5
1+5

0
~5/4

10*

+ 11I

~A+5

0
~S/4

811

10
0
0

1

0
+1/y5
~1/+5

0

0
0

0
1/+5—1/+5

0

0
0

~1
0
0

wk
0
0
1
2

~1

1
x

~k
wk

1

0
0~l8
1

tering in the s channel in the p,, multiplet state. In the
t channel, the crossed scattering has the physical inter-
pretation of being the exchange of a state in the multi-
plet p, which gives rise to forces in allowed, multiplets
p, &. To find the magnitudes of the forces, one reads down
the column p, . The force in the p, g state is proportional
to the entry in the row labeled by p&.

that is valid for isospin. " [The r& & are Pauli spin
matrices. ) The result here is

P {a)i y(P}n.
(p ) . .— —s y&a&i &,&p&~.

2

=s8-p8* +Ad-p. &«"* +hsf-pr~&"'&, (4.3)

To proceed further, one generalizes to realize that
we are considering tensors of the type

D(a) ki. ~ g k~(a) i (4 4)
'8 D. E. seville, Phys. Rev. 132, 844 (1963).' P. Carruthers, Ann. Phys. (N. Y.) 14, 229 (1961),Appendix A.

4. PROJECTION OPERATORS

In this section, we will obtain the projection opera-
tors for the direct and crossed channels of 3 x 8. We will
use this and other methods to obtain the crossing
matrices as illustrations of tensorial techniques that
can be used to 6nd crossing symmetry. Cutkosky' and
Neville" have discussed the 8 &8 case. However, since
Neville was scattering bosons, he did not encounter the
phase difFiculties of the 8~2 and 8~l matrix elements.

When discussing the 3 @8 system we will label the
channels by

(s) B;+Pp -+ B;+P,
(u) B&+P —+ B;+Pp,
(f) B,+B;~Pp+P. .

The projection operators will act on states S'At',
where 5&' and At' are the three-component and eight-
component number states given by (2.13) and (2.16).
(Ps) p;,, can be found immediately. It is analogous to

~ (a) i ~(P) n .

(PT 1/2)u ijp= = sr gr P j ~ (4.2)

where cV~ and M( )i come from the 3 and 8 3 @3*
tensors, respectively. The fourth symbol is to be con-
tracted with the j of the state S&.

The projection operators will have forms such as

P y(P)ns D(a) ki. (4.5)

Our representations will come from the traceless tensors
that are symmetric and antisymmetric in the upper
indices. Thus

Tr D(15)= Tr D(15)=0 (4.7)

yields two equations in s and s' which have the solution
s'=s= st. Putting this into (4.5) and (4.6),

(Pts) ., ;,=pr[X &'' &X«&"

+28.p8'; ——.'X«&' a& &",—Oj. (4.8)

Since the last term is zero, what we are doing is sub-
tracting the third term from the symmetric combina-
tioIl of D~i and D'" . But the third term is the P3
projection operator and came from contracting i and m,

in D~', which then obviously is a three-component ten-
sor. Thus, we are subtracting the appropriate amount of
the P3 projection operator from the symmetric and
antisymmetric tensors to obtain Pts and Ps~. (Edmonds"
uses a similar method to prove tensorially that,
3 x 8=3+6*+15.)

Writing (4.8) in terms of the d's and f's,

(P»)-p; i=r[ '8-p8'i+s~-p»-«"*i bf-pr~&"*&j—(49)
r can be determined by using the fact that (Pts)'= Pts.

~ A. R. Edmonds, Proc. Roy. Soc. (London} A268, 567 {1962).

(15 rr
D~

~

8k &
&a&i ~&&&a&s 8i

r's'& s ~
~8" &&& &';, (4.6)

&&ti &t'3

where r and t are normalization constants, and s, s',
a, and a' are constants to be determined to make

t'y5
D~ 6e traceless.

g6~

Taking the symmetric case and demanding that
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Tr Q(PN), p... S.——
i j a, P

(4.10)

Here E= j.5, if a= 4, so that

(Fgb)ap ,;= 8'S. hapl';+, Sdap~h'"', 888f—apX'~'*, . (4.11)

Similarly,

(Fs*)-P;*c=sb P~*~—Sd Pv~'"' —ksf Pv~'"'~ (4 12)

However, it is easier to use a trick that is valid in this
case":

-0 0 0. '.0 0 0.

fSSi""'

=—{—&~sl &O'I+&8 ~l &0'I }I
B') IB'&

g6
0 0 0 0 —1 0

1 0 0 —0 0 0

Therefore,
Since f,p~= fp ~ a—nd d p~=dp „, it is a matter of

algebra to find the I crossing matrix. The result is

(F )p- =A .(F*)-p;*=(B".)'(F.)-p, (413)

where B"'is given by Table III, in agreement with (2.6).
Obtaining the t crossing matrix is now relatively

simple. Ke can say immediately, because of transforma-
tion properties, that

(F»8) p;O= —(—')'"d
p

&'"'

(F~)-p;o=
2/6

(4.15)

(4.16)

(4.17)

meaning that

Pj 8 p,

FSsS ZfaPv~

(4.14)

This gives us A &,(3 x &), and it agrees with (B„r) ' of
Table IV.

Ke mention another method that will give the values
of P8,8 and Pj, If

(F888)aP;cJ=Cfasy~ 'j
~

Py g 8

P88= 3b b

P3

P818 C —C 5C Py5

The determination of three matrix elements will give
us the three normalizations and hence the entire matrix.
%e could use the results of Sec. 3, but there exist
methods using projection operators. For example,

F=—(F8Ps I Fsss I
B'B;)

= &F~sl { 2 I &s, T, 2'*,I'&(&sT,T*,I'I }I
B'B'&.

T, Tz, Ye8

Using

gives us
(FSS)aP;yb (FSS)aP;cp(FSS)cp;yb

2
I
C

I fybcfapc= 4
I
C

I fybcfcpcfcpsfapy
= 12

I
C

I
'f, s.f p. ,

where the equations
Sfabc=— F ab y

Trl F F'j=38'

(FSS)aP; yb = (F888 F888) aP~ yb

=ICI'f sf p Tr{x"x&"'}
=2ICI'f&s.f p'

(4.19)

(4.20)

(4.21)
Ilsing the states given in Sec. 2 and the SU(3) Clebsch-
Gordan coefficients in the tables by McNamee and have been used. The F's are the SU(3) regular repre-
Chilton, "we have sentation matrices.

Equation (4.19) shows us that C= &i/g6, so that
1

F= {(1,1,0I+&1, —1, 0I }(1,0,0I
v2

ai
(Fsss) aP= faPy~

1
&&

——I1,0,0)
I
1,1,0)(&,1,1,0I

V3

To obtain the phase, one just must realize that what we
have done here is entirely analogous to the SU(2) pro-
jection operator"

+—
I 1,0,0&l 1, —1, 0)(&, 1, —1, 0

I

&3
(PNN cc ), 188 r{y)c (4.22)

» K. ])ames (private communication).
~ P. McNamee, S. J. and F. Chilton, Rev. Mod. Phys. 36, 1005

(1964).

The phase is the same, for the x states are just the first
three ln& states, the Pauli matrices r'"' are contained
in the upper left-hand corner of P, ' ' and the &'s are
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the SU(2) antisymmetric structure constants analogous
to the f's of SU(3). Therefore, we know the sign
to be (+).

In a similar manner, by considering (I'~~ & 0),
one can obtain the phase and normalization for I'~.

5. DISCUSSIOÃ

At this juncture we wish to discuss points of interest
in the expressions for the crossing matrices (3.16) and
(3.19).For the case of elastic scattering (p1= p3, yg =p4),
crossing symmetry is especially important because it
determines the sign and magnitude of the forces in the
direct (s) channel due to the crossed (t) and (I) channels.
A bound on these forces can be given by 6nding a bound
on the respective element of the crossing matrix.
Capps" has shown that if SU(N) invariance is assumed,
then the limit on the force exerted in a u or t state of
multiplicity Ã„or iY& due to the exchange of an s
multiplet of multiplicity 3 ., is limited by

(5.1)

(5.2)

These formulas agree with the explicitly obtained re-
sult for SU(2)."

The relations (5.1) and (5.2) tell us that a multiplet
with large multiplicity leads to a large crossing matrix
element for multiplets in crossed channels that have low
multiplicities, but not vice versa.

Because of this, Capps" argues that since the crossing
matrix element is the limit on the forces, it is natural
that the representations higher than 8 and 10 have not
been found thus far to be taken by the lighter particles.
The fact that there are more octets than singlets is
also not in violation with this outlook, because often a
direct product will contain more octets than singlets.

However, one must take this argument with mixed
feelings, for, as Capps points out, this does not explain
why, if one uses a triplet model, octets are found but

~ R. H. Capps, I'roceedings of the loath Annua/ International
Conference on High-I'. nergy Physics, Dubna, 14 (Atomizdat,
Moscow, 1965).

triplets are not. One must beware of mistaking group
theory for physics. The solution to this puzzle is likely
to lie in the dynamics of the triplets, and a study of it,
perhaps to see if triplets can bootstrap properly, may be
a fruitful path to follow. Capps" and Cutkosky" have
discussed this question.

For the u channel, if p, 4
——p,2*, i.e., if the crossed par-

ticles belong to representations that are the complex
conjugate of each other, then the orthogonality theorems
found in Refs. 4 and 6 for SU(3) can be applied to show
that (8"')'=I. The corresponding result is true for
8" if p, 3——p, 2*. Also, because of the relationship of the
crossed and uncrossed multiplets, many matrix ele-
ments can be 6gured out from elements that have al-
ready been calculated by using the formulas given in
Ref. 6 that connect different isoscalar and/or SU(3)
Clebsch-Go rdan coeKcients. These points are dis-
cussed in detail in Refs. 4 and 6. A striking example that
we have already observed is the connection between the
u and t matrices if pi =@2=@3=p4= 8.

The method given in Sec. 3 for obtaining crossing
matrices is convenient because it removes thinking from
the process. One just has to crank away. However, for
those who like elegance, saving time, finding projection
operators, or assurance, the use of projection operators
or a combination of the two methods may well provide
them. At worst, the operator methods provide a valua-
ble check. However, if no tricks are to be found, one
can use (3.16) and (3.19) and calculate matrix elements
to one's heart's content.
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