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An approximate method for treating loosely bound systems is discussed, with the deuteron‘ f(')rn} factor in
the impulse approximation treated as an example. Major advantages of the met.hOEi are that' it is simple and
unambiguous, and leads to a quantitative estimate of its accuracy. The principal physical assumption
behind the method is that the bound system can be regarded as coupled to only one channel at low energies.
One can use this to obtain simple, relativistically invariant expressions for scattering amplitudes in which
the bound state is described by a relativistic wave function. For the deuteron this wave function is related
to the d-np vertex with one nucleon off the mass shell. A method by which this wave function can be deter-
mined from phenomenological nonrelativistic wave functions is discussed.

1. INTRODUCTION

HIS paper presents a new approach to the treat-
ment of loosely bound systems in relativistic
scattering theory. The deuteron is the most famili‘ar
example of such a system, and we will specifically dis-
cuss the deuteron in this paper, although the methods
presented are quite general and can be applied to any
loosely bound system. In fact, the methods are appli-
cable to any scattering problem in which potentials can
be employed.

The number of interesting scattering problems in
which deuterons participate is large. There are, for ex-
ample, elastic and inelastic electron-deuteron scattering,
photodisintegration of the deuteron, and processes in-
volving pions such as 7t+d — p+p and e+d — 7+d.
In all of these processes the structure of the deuteron
plays an important role, and knowledge of this structure
is essential to a theoretical understanding of these
processes. In fact in many of these cases the deuteron is
viewed solely as a source of target neutrons, and then
very accurate knowledge of the deuteron structure is
essential before unambiguous information about neu-
trons can be extracted from these experiments.

Until recently, the only systematic way in which
deuteron structure was introduced into these problems
was through the use of nonrelativistic wave functions.
These wave functions are usually determined from a
two-nucleon potential, which is in turn chosen to fit the
nucleon-nucleon scattering data in the center-of-mo-
mentum system. Repeated use of this technique has
given one confidence in its validity, and it has become
fashionable, “because a fully relativistic theory of the
two-nucleon interaction does not exist at the present
time.”

In spite of the absence of a precise theory of the strong
interactions, one can still improve on the usual non-
relativistic approach to the deuteron; recent experi-
mental data justify such an effort, as evidence from a
number of sources has already produced discrepancies
which an improved theory may be able to eliminate.

Two of these discrepancies occur in the results of re-
cent measurements on the deuteron form factor. For a

* Supported in part by the U. S. Office of Naval Research.

number of years the deuteron has been a source of in-
formation about the neutron-charge form factor at low
momentum transfer. Recent measurements! suggest
that Gen=0 within experimental errors for momentum
transfers from 0.3 to about 6 F~2. Yet one of the best
measured constants of nuclear physics is the slope of the
neutron-charge form factor at g=0. This number comes
from the scattering of thermal neutrons by bound
electrons in atoms,? and the result is

—dGexn(¢?)/dg?= (0.02120.001) F+2,  (1.1)

Although it is not absolutely clear that this nonzero
slope is inconsistent with the form-factor data, it is
unlikely on the basis of our knowledge of the analyticity
properties of Gen(¢?) that both experiments have been
correctly interpreted. Furthermore, small corrections in
the theory of the deuteron form factor could easily alter
the interpretation of the form-factor experiments and
bring these data more into line with (1.1). It is our hope
that calculations to be done with the theory presented
in this paper will improve matters.

Another interesting result from Stanford is that the
deuteron magnetic form factor is 309, larger at 8 F-2
than expected from the nonrelativistic theory.? A pos-
sible explanation for this lies in the meson-exchange-
current contribution.® In addition, this discrepancy
could be partly due to other causes; calculations based
on a relativistic version of the impulse approximation
also suggest such an increase.5

Of course, in recent years it has been known that a
D-state probability of about 79 seems to be necessary
to reconcile a number of experiments involving the
deuteron.® This number is inconsistent with the simple
nonrelativistic theory of the magnetic moment, which
implies a D-state probability of 49. The explanation

! D. Benaksas, D. Drickey, and D. Frerejacque, Phys. Rev.
Letters 13, 353 (1964). Other references given here.

*See R. Hofstadter, Nuclear and Nucleon Structure (W. A.
Benjamin Inc., New York, 1963), for reprints of a number of
papers.

¢ C. D. Buchanan and M. R. Yearian, Phys. Rev. Letters 15,
303 (1965).

¢R.J. Adler and S. D. Drell, Phys. Rev. Letters 13, 349 (1964).

® F. Gross, Phys. Rev. 136, B140 (1964).

¢ See, for example, R. Wilson, The Nucleon-Nucleon Interaction
(Interscience Publishers, Inc., New York, 1963).
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RELATIVISTIC TREATMENT
for this undoubtedly lies in relativistic corrections to the
deuteron form factor.*

While none of these discrepancies is large numerically,
they are clearly beyond the experimental errors and
hence are of interest. Furthermore, the possibility that
they are only symptoms of more serious trouble cannot
be disregarded until we have numerical estimates of the
errors involved and how they depend on momentum.
Finally, a systematic analysis of the deuteron may give
us valuable clues about how to treat other strong-
interaction problems.

This paper is divided into five sections. Section 2 is
devoted to a discussion of the physical assumption
which we retain in this theory, and how this assumption
will be employed quantitatively in the remainder of the
paper. Since these ideas are an extension of earlier work
on the deuteron form factor,>” they will be applied to
the deuteron form factor as a specific example, and Sec.
3 is devoted to a derivation of the impulse approxima-
tion. In the next section we introduce relativistic wave
functions, which are generalizations of the usual non-
relativistic wave functions, and we propose a method by
which the relativistic wave function may be approxi-
mately determined from the phenomenological S- and
D-state nonrelativistic wave functions. Finally, Sec. 5 is
devoted to a summary of the paper and conclusions. In
this section we discuss the physical origin of relativistic
corrections to the deuteron form factor which emerges
from this analysis. An attempt has been made to write
Secs. 2 and 5 so that they may be read by one who is not
interested in details.

2. THE ONE-CHANNEL COUPLING
APPROXIMATION

The basic approximation we shall make in this paper
is that the deuteron couples strongly to only one
channel, the two-nucleon channel. It is this assumption
(also a part of any Schrodinger description of the deu-
teron) which prevents our approach from being appli-
cable at all energies. We shall refer to this assumption as
one-channel coupling.

Most readers will probably immediately grant the
reasonableness of this assumption. In this section we
will explore the basis for its validity and indicate how
one can formulate it in such a way as to exploit it.

First let us appeal to a crude but intuitive argument.
The size of a loosely bound system depends on its
asymptotic wave function, which goes as r~! exp(—\7)
where A= (2M zB)'2, M g being the reduced mass and B
the binding energy. Hence we could argue that only for
distances less than N\~ is a particular channel important.

For the deuteron regarded as a bound state of two
nucleons this characteristic distance is (u is the pion
mass)

Ro~ (Me)V2=q a3yt |

7 F. Gross, Phys. Rev. 134, B405 (1964).

(2.1)
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while if it is a bound state of a nucleon and an N-r pair
of mass A we have
[A+M ( 1

1/2 1
Pttt
IAM \M+A—Mp (M)

=—~04ut. (2.2)

it

Hence only at small distances (X Ry’) can we expect to
detect the presence of the N-N= channels.
Similarly, in momentum space the wave function is

4/ (pPP+N?) (2.3)

and the loosely bound channel dominates the more
tightly bound channels by a factor

P+7)/ (PP’ (2.4)
so that only for momenta of the order of
PR Mu (2.5)

will the presence of the additional channels become
significant.

It is therefore reasonable to expect one-channel
coupling to be valid at low energies. As Eq. (2.4) shows,
the quantitative success of the assumption depends
primarily on the ratio of the binding energies of the
different channels, and can be expected to work best
when one channel is very loosely bound while the others
are tightly bound, as in the case of the deuteron.
Furthermore, we see that at high momenta the ap-
proximation breaks down, since our interaction ‘‘feels”
out the structure at small distances and thereby is
sensitive to many channels.

Now the relativistic wave function of a two-body
system depends upon the relative four-momenta of the
two nucleons, and hence the above argument is not in a
form suitable for incorporation into a relativistic theory.
The first step is to find a way of stating the assumption
more generally.

A nucleon in the deuteron cannot really be dis-
tinguished from an Nr system, since the particle is
surrounded by its pion cloud. However, if the square of
its total rest energy  is close to the free value M2 then
one would expect it to be primarily a nucleon, for dis-
sociation into an N-r pair involves a large change in
energy and can occur only for times of the order of
At<th/AE=h/uc, i.e., at distances small compared with
L. However, if « is close to (M +u)?, then the nucleon
becomes increasingly like an N-r system. Hence, a
nucleon of mass (M ~+u)? cannot really be distinguished
from an N-r system, and nucleons which are this far off
the mass shell contribute in the same manner to the
deuteron as the N-N= channel, and are to be neglected.

But this consideration applies to both nucleons in the
deuteron. If pi*=u and p,2=1 are the masses of the two
nucleons, then the above argument suggests that the
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M (M+p)®

F16. 1. A region of the real «, ¢ plane showing singularities dis-
cussed in the text. The values of % and ¢=M? and (M-p)? are
indicated by broken lines. The double singularity at u=¢=M?is
shown by a large dot, and it is very close to the region of integra-
tion bounded by r?=0 in the lower left corner. The cross-hatched
region in the upper right corner is the region of double singularities
corresponding to % and ¢> (M+-pu)? The dot-dashed line gives the
boundgry of anomalous singularities of A, and hence the region of
double singularities corresponding to a singularity in A and % or
t=M? are shown by the heavy solid lines.

one-channel coupling approximation is really two
assumptions:

(a) The deuteron is well described at low energies by
considering only its direct coupling to the two-nucleon
channel.

(b) In treating this coupling, the principal contribu-
tions will arise from a small region about u~¢~ M2

Statement (b) follows because the truth of statement
(a) does not depend on any detailed considerations of
the interactions, but [as we have seen nonrelativistically
in Eq. (2.4)] only on the relative binding energies of the
channels. What we now must do is to establish that in
the relativistic case it is again only the ratio of the
binding energies which matters and at the same time
develop a quantitative way to exploit statement (b)
above.

First introduce the total and relative four-momenta
of the two nucleons

D= py+p,,
r=%(p1—p2)= (ro,1).

Then we now can replace the variables # and ¢ by the
equivalent variables 7, and r2 This is convenient, be-
cause in calculating scattering amplitudes in which
deuterons are involved we integrate the relativistic
wave function over . This region of integration, defined
by

(2.6)

— << ®,
0<r’< o,

can be mapped onto the #, ¢ plane as shown in Fig. 1.
The part of this region close to u=¢~M? is now the
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region of small 7o and r2. What remains to be discussed,
then, is why the results should be dominated by the
behavior of the wave function in this region.

This can be understood by examining the singularities
in the Bethe-Salpeter amplitude,® which can be written
in momentum space

Y(p1,02)=Sr(p)A%(P1,p2)CSeT (p2)ba,  (2.7)

where Sp(p) is the full Feynman propagator for a
nucleon of momentum, p, A(p1,p2)C is the proper d-np
vertex function with both nucleons off the mass shell, &,

(a) (b)

(c) (d)

F16. 2. Examples of diagrams included in the impulse approxi-
mation to the deuteron form factor. Double solid lines represent
deuterons, single solid lines nucleons, dashed lines pions, and the
wavy line a virtual photon. The dot-dashed lines are the three cuts
separating each diagram into three distinct pieces by cutting
rﬁmcleon lines only (see text). The same key is used in the following

gures.

is the deuteron 4-polarization vector and C is the charge-
conjugation matrix.® It is this amplitude which enters
into all scattering diagrams involving deuterons. Our
objective here is to eventually develop a simplified form
of (2.7) which is more tractable and yet fully consistent
with the one-channel coupling approximation.

Now the singularities in ¢ come from both the propa-
gators Sr(p), and from the proper vertex function A.
The singularities in Sr(p) are well known® to include a
pole at M? and a cut starting at (M +u)? The singu-
larities in A are not restricted to the real %, ¢ plane but
their location in the real «, ¢ plane can be readily found.

8 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

® Throughout this paper we use the metric 2= pi2—p? and the
conventions for spinors and gamma matrices given in J. D.
Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, Inc., New York, 1964).

10 See G. Barton, Introduction to Advanced Field Theory (Inter-
science Publishers, Inc., New York, 1963).

11 See, for example, M. Fowler, P. V. Landshoff, and R. W.
Lardner, Nuovo Cimento 17, 956 (1960).
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In the next section and in the Appendix we discuss this
question in more detail. The singularities in y are shown
in Fig. 1.

We now can see quite clearly why it is that for the
deuteron the matrix elements involving (2.7) are domi-
nated by the behavior of the wave function for small 7,
and r2, and why the one-channel coupling is valid. The
wave function is clearly largest in regions close to
simultaneous singularities in both % and ¢ The places
where these double singularities occur are shown in
Fig. 1. There is only one such singularity (the double
pole at u={=M?) which is very close to the region of
integration (its distance from the boundary is of the
order of a2), and the wave function is therefore largest in
this region. The next nearest singularities arise from the
anomalous thresholds in the d-np vertex (to be dis-
cussed in Sec. 3). The singularities characteristic of the
N-N= channel are a distance y2=2Mu away, and hence
have a much smaller effect on the wave function. Hence
once again we see that the ratio of the binding energies
of the different channels is the significant parameter.

Our considerations with the relativistic wave function
are really no different than those with the nonrelativistic
wave function, except that the occurrence of the extra
variable 7o has made it a two-dimensional problem.

(a) (b)

(c)

F16. 3. Examples of diagrams not included in the impulse approxi-
mation. For key see caption to Fig. 2.

Note that although none of the double singularities
lie in the region of integration single singularities in
either # or ¢ do. These can be regarded as singularities
in 7o, whose position depends on r%

Our simplified method for treating loosely bound
states can now be precisely stated. We will first write
down the general expression for any amplitude, em-
ploying the function (2.7). Then we will perform the
integration over the relative energy 7, by contour
integration. We shall see that the singularities in 7, all lie
along the real axis, so this is easily done. However, it
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follows from our above considerations that the term
arising from the singularity in « (or £) at M? will give the
largest contribution, and hence we will implement state-
ment (b) above by retaining only this term. This leaves
an integration over r to be performed and gives a simple
result which is a generalization of the usual non-
relativistic expressions. Furthermore, it will never be
necessary to know (2.7); we will instead need only the
residue of (2.7) at one of the poles % (or £)=M?2. But this
is simply related to the d-np vertex with one particle off
the mass shell, which can be more easily investigated.

In the next section we will illustrate this in detail for
the impulse approximation to the deuteron form factor.
Here we will show that the terms arising from more dis-
tant singularities are smaller by a factor of 3 (r?/Mu)?,
and hence confirm the validity of the one-channel
coupling approximation.

3. THE IMPULSE APPROXIMATION

As an example of a practical application of the ideas
sketched in the previous section, we will derive a simple
relativistic expression for the deuteron form factor in the
impulse approximation. In the course of our discussion
we will obtain an estimate of the accuracy of our ap-
proximation. The final expression we obtain for the form
factor, besides being of interest itself, will motivate the
definition of a relativistic wave function simpler than
(2.7), which will be discussed in Sec. 4.

We define the impulse approximation to be the sum
of all Feynman diagrams which can be partitioned into
three distinct pieces by making three cuts, each of which
cuts a single nucleon line on each leg. An example of a
few diagrams which contribute to the impulse approxi-
mation is shown in Fig. 2. There are some of these
diagrams [an example is Fig. 2(d)] which contribute to
the structure of the nucleon form factor.

It should be pointed out that a great many Feynman
diagrams are not included in the impulse approximation.
A few of these are shown in Fig. 3. These are diagrams
which cannot be partitioned into three pieces by cutting
nucleon lines only. Included in this class is the inter-
esting and important exchange-current contributions

[Fig. 3(c) is an example] which will be discussed at
some future date.

Fic. 4. Diagramatic representation of the integral (3.1). Th
bubbles are to be understood as the sum of all Feygrman( dia?gr’arm:
which could be inserted in place of them ; those marked with a “P”
are proper bubbles which exclude self-energy contributions to the
ext nucleon lines.
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Fic. 5. Schematic representation of the singularities in the
complex po plane (for p? small) of the integrand of (3.1). (a)

Singularities in A, A, and F alone, (b) singularities in the three
Sr’s alone, and (c) the combined singularities. The dotted oval
locates the three singularities closest to u~¢~M?2,

The sum of all the diagrams included in the impulse
approximation can be represented symbolically as in
Fig. 4. Here each bubble is taken to represent the sum of
all diagrams which could be inserted in place of the
bubble, and the proper bubbles (marked with a P) are
this sum excluding all self-energy insertions on the
external nucleon lines.

The sum of these diagrams can be represented by the
integrals®

Gor(Q)=K [ 049 tr(C- B (p,p)S # (PP (pr)
XSr(p1)A%(p1,p)CSET (p)} ans™
=K / d*p tr{AP(p,p2)Sr(p2)F* (P2, 1)

XSe(p)A*(p1,0)SrC(P)}Eams™, (3.1)

where A%(pn,pp)C is the proper d-np vertex function
with both nucleons off the mass shell, S¢(p) is the full
Feynman propagator for a nucleon of momentum p,
F#(po,p1) is the proper vertex function for the nucleon
form factor, £* and 7f are the deuteron polarization
vectors and C is the charge-conjugation matrix. Both A
and Sr were already introduced in Eq. (2.7), and it is
through their contribution to sums of Feynman dia-

22 T, Tran Thanh Van, Nuovo Cimento 30, 1100 (1963).
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grams like (3.1) that the relativistic Bethe-Salpeter
(B.S.) amplitude enters into all scattering problems.
Also®

(3.2a)
(3.2b)

AB(pr,pa)=—Cy° AP (po,p1) ] (CY) 7,
Sre(p)=CSrT(p)C1.
Finally, p; and p, are shorthand notation for

Plle_Pr
P2=D2”P,

¢q=D;—Dy=p,—p;, and K is a constant to be de-
termined from the Feynman rules. In this paper it will
not be necessary to know K.

The first step in evaluating (3.1) is to perform the
integration over po. We specialize to the Breit system
where q= (O:q)7 D,= (DO, —%q)s D,= (DO)%q) and per-
form the integral using the residue theorem. The p,
singularities of the integrand can be located, and are
shown in Fig. 5. They are compounded of the singu-
larities from the propagators and from the proper vertex
functions.

The determination of the position of singularities in p,
for the proper vertex functions is straightforward but
lengthy, and is discussed fully in the Appendix. It turns
out that the singularities lie only along the real p, axis
(it is for this reason that po is a convenient variable to
work with ; as mentioned in Sec. 2 the singularities in the
masses define a complex surface, and hence are not con-
fined to the real axis'). They generate two cuts which
run from — « to ¢_ and from a, to «, where in the case
of A and A

0=+,
a_=Do—[(M+u)+ (p-3a) ]2,

In a_ the + refers to A and the minus to A. For F* the
branch points are at

by=[ (M) +pi]"
— A+ p MR T,
b=~ [(M+uy+ps]”
+%[M2+p12]l/2_% M2+p22]1/2_
The location of these singularities is shown in Fig. 5(a).
As we mentioned in Sec. 2, the propagators contain
poles at == Eq where Eo=[ M*+p*]'2, the positive energy
pole being located in the lower half-plane. In addition,

they contribute a cut starting at p?=(M--pu)?, or
po=x[ (M~+p)?4p*]2. These singularities are shown

3.3)

(3.4)

13 An easy way to see (3.2a) is to note that CA is obtained from
AC by simply interchanging the initial and final state, i.e., by
interchanging p; and p. (since one of these can be regarded as
playing the role of an incoming nucleon while the other is an
outgoing antinucleon) and reversing the order of all 4 matrices
along each nucleon line in any Feynman diagram contributing to
A. But this can simply be accomplished by taking the over-all
transpose and recalling that Cyby#(Cy5)1=+T,
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schematically in Fig. 5(b). The poles from Sr(p1) are at

Ci(q)=Dox=[M*+ (p+39)*]2, (3.5)
while for Sr(p2) we have poles at C.(—q)
Ci(=q)=Do=[M*+ (p—39)*]**, (3.6)

and the cuts are similarly placed. In what follows we
will assume further that the singularities are such that
the invariant functions of these propagators can be
written in the form

I(p")=H ")/ (M*—p*—ie) 3.7)

where H (%) contains the cut starting at (M+4pu)? and
satisfies unsubtracted dispersion relations.

We now can proceed to do the p, integration by the
method of residues, knowing the singularities in the
integrand are placed as shown in Fig. 5(c). The contour
could be closed in either half-plane yielding the same
answer, and we will choose the lower half-plane because
it eventually yields a simpler result. Now there is little
interest in the full result; the considerations of Sec. 2
suggest that the largest contribution will come from the
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pole in po which corresponds to # (or £) equal to M2, and
that furthermore this term is the only one consistent
with the limitation to one-channel coupling (i.e., other
terms can be expected to be of the same size as the
contributions from other channels, which we are neg-
lecting). But this pole is clearly the pole at E,, and hence
the largest term becomes:

&y _
Go*(9)= K/ —— tr{AP(p,p2)Sr(p2) F*(pa,p1)
2E,

XSF(PI)Aa(Pl;P) (M_p)}zanﬁ*; (38)

where now everywhere that o occurs we must replace it
by Eo.

Equation (3.8) is our result for the impulse approxi-
mation. At this time it is instructive to make an esti-
mate of its accuracy. To do this we make use of the fact
that the integrand of (3.1) is a product of terms [here is
where we make use of assumption (3.7)] and has the
singularity structure of Fig. 5(c). Hence, a reasonable
estimate can be obtained by replacing all of the cuts by
poles, in which case we obtain for the integrand of (3.1)
(neglecting spin):

AfLp+i01/Lp—10)*]

1 \po)g

In Eq. (3.9) we have denoted C_(==q) by C(=) and let
A be a constant which represents the contributions of
distant singularities of po whose structure can be neg-
lected in this order of magnitude argument. We have
replaced the cuts starting at o, and a_ by poles at these
points. The function f(1?) has been introduced to ac-
count for the nontrivial structure of the residue of these
poles at a; and a_ contributed by the vertex functions A
and A due to the existence of the anomalous singularities
(recall discussion of Sec. 2 and Fig. 1). These singu-
larities do not appear in p,, but will appear in 12, and
will be important because they are so close to the

— A’ fLr+10*1/L—1a)*]

(po— Eotie)[po—C (+)—ie][po—C (=) —i€](po—as+i€) (po—a_—ie)

3.9)

physical region. Later we will choose the function f to
simulate roughly the position of these singularities in
the leading term, and use the same choice for the correc-
tion term. Although this will be quite rough, it should be
good enough to give us a fairly precise estimate of the
accuracy of the leading term.

One interesting thing about this estimate is that it
does not depend on the size of 4, and hence will not
depend on the over-all magnitude of the residues of the
poles at ¢, and a_.

Performing the contour integration in the lower half-
plane gives

A’ fLp+10*1/L(o—ia)*]

f dpul (o) =

Here the first term is the leading term we are retain-
ing, while the second term is an (upper) estimate
of the corrections neglected in this theory. From the
discussion of Sec. 2 we know that the major contri-

- — A+ 1Le—10] | +34 Lo+10 1/ (0—10)]

LE—C(H)IE—C(=)1(Eo—ay) (Eo—a—)T(a+~Eo)[a+-C(+)][a+—C(—)](a+—a—)'

(3.10)

butions from (3.10) when it is integrated over p will
come from the region where p is small. Hence, expand-
ing the functions £y, C(+) using Egs. (3.5) and (3.6)
we have:

/ dpol (po)=

1 I, Selleri (to be published).

wlat+ (p—10) I+ (p+30)7] 262 [Mut (p— 2@ TMu+ (p+29)7]

(3.11)
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where we have taken a,~M+u, a_=2(M —u). Note the
similarity between (3.11) and (2.4). The fractional
error introduced by the second term is

1 [+ (207 + (0—1a)]
2 [Mp+ (p+19)* 1 Mp+ (p—19)%]

and hence we see that for small q and p the first term
dominates the results. More precisely, if we expand!® our
results in powers of 7=p?/uM the errors arising from the
neglect of the second term in (3.11) (higher singularities
in po) are of second order, i.e., do not appear until terms
of order 7% And, in addition, the structure of (3.11)
shows that the results are dominated by contributions
from 7«1.

To examine this latter point more closely, we choose

f(r¥)=const/(r*+4?), (3.13)

where 82 is taken to be close to u?. Equation (3.13) is
motivated by the fact that the first term in (3.11)
corresponds to the contribution where the exchanged
particle (Fig. 4) is on the mass shell (p?=M?) and hence
fmust simulate the behavior of the d-np vertex function
with one particle on the mass shell [to be defined in
Eq. (3.15) below]. But this function is known’ to have
an anomalous threshold starting at M2?+2u(u-+2a),
which corresponds roughly to the choice of 82=y2.

With this choice for f, the first term is seen to be
simply a convolution of two relativistic Hulthén wave
functions.

We can now integrate (3.11) over p to get a rough
numerical estimate of the dominance of the first term
and hence the validity of the assumption that 7<<1. One
finds that for q=0 the ratio of the second to first term is
approximately

5=af/2(Mu)?=0.0035=0.35%,.  (3.14)

We return now to the discussion of our result, Eq.
(3.8). We introduce the deuteron-nucleon vertex, with
one particle on the mass shell as

Te(pr)= (M— p1)Sr(p)A*(p1, D—p1), (3.15)

where (D— p1)?=M?, and hence I' depends only on ;.
It is this quantity which completely describes the
structure of the deuteron in the one-channel coupling
approximation.

This vertex was introduced by Blankenbecler and
Cook!® and has been discussed by a number of other
people,®17:18 but it may not have been observed how
naturally (3.15) arises in all scattering processes in

(3.12)

15 Note that the same expansion parameter was obtained in
another related context by J. M. Charap and S. P. Fubini, Nuovo
Cimento 14, 540 (1959).

(1;:50R). Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745

7T. J. McGee and L. Durand, III, Bull. Am. Phys. Soc. 10, 62
(1965) and private communication.

18 M. Gourdin, M. LeBellac, F. M. Renard, and J. Tran Thanh
Van, Nuovo Cimento 37, 524 (1964).
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which the one-channel coupling approximation is ex-
ploited, and that subject to this approximation (3.15)
gives us a complete description of deuteron structure.
In terms of T, Eq. (3.8) takes a very simple form:
M+ p.
M2,__ p 2

2

Gor(g)=K f 04 55— M0 (p0) tr[fﬂ(p»

>< l(‘“
AI2

plzr“(;i’l) (M—p) } Eamg™, (3.16)

where from (3.2) and (3.15)

[8(ps)=—Cy T T (o) (Cy*)
=AK(D—ps, p2)Sr(p2s) M —ps). (3.17)

In writing (3.16) we have replaced F#(p1,ps) by
F#(q), the form factor with the nucleons on the mass
shell. Since so little is known about the form factor with
both nucleons off the mass shell, practical calculations
will employ this approximation, but as one can see the
derivation of (3.16) in no way is restricted by this
assumption.

Equation (3.16) is a simple and clearly covariant
expression for the form factor in the impulse approxima-
tion. Itis no harder to work with than conventional non-
relativistic expressions, and is superior in that it gives us
the correction terms up to order » unambiguously. In
the next section we shall define a relativistic wave func-
tion which gives (3.16) an appearance formally identical
to nonrelativistic theory.

It is amusing to observe that (3.16) is identical to the
results one obtains from dispersion theory by limiting
one’s self to the anomalous region.® This can be verified
by calculating the discontinuity in ¢* of the expression
[using Cutkosky’s rules and remembering that I'(p,)
and I'(p.) contribute to this discontinuity]. This is not
at all surprising, as the effect of retaining only the one
pole in the integration was to place the exchanged
particle on the mass shell, which defines the anomalous
region in dispersion theory. Since the anomalous region
is known to dominate the problem, we have another
way of seeing why this approximation is a good one.
Finally, it would appear that (3.16) has considerable
technical advantages to the dispersion theory expres-
sions, as fewer integrals must be negotiated, the intro-
duction of relativistic wave functions is more direct, and
the method of deriving (3.16) is simpler and hence may
be applied to more complicated cases.

4. WAVE FUNCTIONS

Now that we have a relativistic formulation of the
impulse approximation, it is desirable to make a con-
nection with nonrelativistic potential theory. The prin-
cipal reason for doing this is to make use of the extensive
accumulation of phenomenological information which
20 years’ application of potential theory to the two-
nucleon problem has produced.
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This connection is conveniently made by the intro-
duction of a relativistic wave function, which reduces to
the nonrelativistic wave function in suitable limits. Our
proposed wave function for a deuteron of 3-momentum
d and relative internal 3-momentum r is

K" [M+3D+1rT2(3D+r)[M— (3D—1r)]Ct.

da(r)= ,
2M[M?*— (3D+r)?
M?— (3D+1)"] 1)
where
D= (Dyd), Do=[Mp*+d2]*2, 43
r=(ro,1), ro=3Do—[M+ (3d—r)?J2,

K= (2K)42(2m)2.

It should be pointed out immediately that this wave
function is covariant and describes a deuteron of arbi-
trary momentum d, and is therefore not restricted to a
particular reference frame. Furthermore, (4.1) is simpler
to use and to calculate than the conventional (B.S.)
amplitude (2.7) because it depends on T', the d-np vertex
with only one particle off the mass shell, and hence
satisfies one-dimensional dispersion relations.

Any useful relativistic wave function must satisfy
three conditions. These are: (1) The wave function
must give a complete description of the composite
character of the deuteron (subject, of course, to the one-
channel coupling approximation), (2) we must know
unambiguously how to insert this wave function into
scattering amplitudes, and (3) we must produce a wave
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equation which this wave function satisfies, so that we
may calculate it.

The third condition will be discussed in a later paper;
we need not worry about it if we wish to treat the form
factor with phenomenological wave functions. The ideas
discussed in the two preceding sections have shown that
the vertex function I' and hence also the wave function
(4.1) satisfies the first and second conditions, at least for
the impulse approximation. Furthermore, it can also be
shown that application of the same ideas leads to an
expression for the exchange current contribution in
which (4.1) again completely describes the deuteron
structure.’ It would seem that we have at our disposal a
general technique for expressing relativistic results in
terms of (4.1), and this is the main reason for its
significance. In the usual nonrelativistic approach, one
is never certain how to treat the relative time (or
energy), or combine a nonrelativistic wave function ex-
pressed in terms of Pauli spinors with a relativistic
interaction term written as a Feynmn diagram, and
one of the major values of this formalism is that these
ambiguities are completely eliminated.

In terms of this wave function (4.1) Eq. (3.16) takes
a very elegant form:

1 » M
2(21)4/ P<Eo>
Xtr{éyq (0+10)F*(Q)-14(p—1a)},

where we have changed p to —p in the integration and

Gp*(g)=

4.3)

éa(r)=

K"2C-[M—(D=1] PGD+7)[M+1D+7Tns*

(4.4

DM~ (3D+1)]

This is an immediate generalization of the usual non-
relativistic results. For scalar deuterons, for example,
one writes for the form factor

1
Golg)=F(9)— f $(x)? explite-ngsy
i 47 P

=F(q) ! ( 39)d°

= 42(27)4/4’ P)o(p—3q)d*p

=F ! 1 1a)d? 4
= (4)2(21)4/¢(D+ZQ)¢(P—2‘1) p. (4.5)

Hence (4.3) is a natural extension of (4.5).

Let us now examine in somewhat more detail the
structure of (4.1). In preparation for this, observe that
the off-mass-shell projection operator can be written

(M+p)/2M =5 (1+B)u(p)a(p)

—3(1=B)(—po(—p), (46)

where #(p) and v(p) are the usual mass shell spinors® and
ﬁ=p0/Eo, Eo= [M2+p2:]‘/2. (47)

This decomposition leads quite naturally to the view
that the off-mass-shell projection operator describes a
superposition of physical nucleon states; the joint
presence of physical nucleons of momentum p and
physical antinucleons of momentum —p. This view is
supported by the fact that the residue at the positive
energy pole contains only the %% terms, while that at the
negative energy pole contains only the 5 terms. At
energies intermediate between these poles, we have a
superposition of states, or a sum of contributions from
graphs involving different time orderings.

This can be clearly seen if we substitute (4.6) into
(4.1) and rewrite as

$a()=¢**(r,d)u(3d+1)u”(3d—1)
+o(nd)o(—3d—nu?(3d—1),

¥ B. M. Casper (private communication).

(4.8
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where now
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K" (1+8)a (3d+ )l (3D+7)Ca” Bd— ).

¢t (rd)=

ki

[M2— (D+1"]
KM (1—-6)0(— 3= )T (3D+7)Ca" Gd— 1)

4.9)

¢_+ (ryd) =

[M*— GD+r)]

and ¢*t is interpreted as the wave function of the
deuteron in two positive energy states or two nucleons,
and ¢+ is the wave function for one positive and one
negative energy state, or using the usual hole interpre-
tation, it is the wave function of an antinucleon and
deuteron bound into a nucleon.!” These two processes are
shown diagramatically in Fig. 6(a) and (b), as well as
the contributions they make to the deuteron form
factor. The analogous processes ¢t~ and ¢~ do not
contribute to (4.1) because one of the nucleons is on the
mass shell.

The point is that Eq. (4.8) shows us that by virtue of
the relativistic invariance, there is always a small
contribution from ¢~ to scattering processes in which
deuterons are involved, and this is a new contribution
completely outside of the framework of conventional
potential theory.

We now turn to the question of determining the wave
functions ¢. There are two possible approaches one can
take. The first, a purely theoretical one, would proceed
from this point by development of a relativistic wave
equation for ¢, and its solution in, say, the meson ladder
approximation. It is our intention to pursue this at a
later time. The other approach, and the one we will
discuss now, is a phenomenological one.

1w
P

F1c. 6. Schematic of the different contributions to the wave
function of the deuteron. Time increases from the bottom to the
top of each diagram. (a) ¢+, (b) o=, (c) ¢, (d) ¢, (f) the
contribution (¢*)? to the deuteron form factor, (g) the contribu-
tion ¢+t (¢~ ), (h) the contribution (¢~ +)(¢**). The contribution
(¢~ 1)? cannot be drawn easily and hence is not shown.

The expression (4.8) immediately suggests a pro-
cedure for identifying our relativistic wave function
with nonrelativistic wave functions obtained from the
analysis of nucleon-nucleon scattering. Use of these
wave functions would seem to imply three assumptions:
(1) We must restrict ourselves to the center-of-mo-
mentum system, for it is in this system only that the
nonrelativistic analysis has been performed. (2) We
must assume that there is no contribution from the
negative energy states, for clearly nonrelativistic poten-
tial theory provides no mechanism for dealing with
these. (3) We assume that the nonrelativistic wave
functions were designed to be used with nonrelativistic
expressions for the scattering amplitudes. This last as-
sumption is necessary in order to define both the nor-
malization and the over-all factor of momentum which
should stand in front of the wave function.

Denoting the nonrelativistic wave function by ¢N%(r),
and emploving the three assumptions above, we have

¢t (1,0)= (Eo/ M)V?N"(r),

¢t (r,0)=0. (4.10)
The factor (£o/M)Y? is necessary to comply with as-
sumption (3) above, and reconciles Eq. (4.3) with (4.5).
Any ambiguity in the identification (4.10) could be
eliminated by a phenomenological analysis of nucleon-
nucleon scattering using this formalism. [Nole added in
proof. Subsequent investigation suggests that a better
procedure is to incorporate the factor (M/FE,)'? into
the current. This makes the normalization of the wave
function consistent. It alters the results (4.17) for u,
changing the —5r?/12 term to —2r%*/12. See F. Gross
(to be published).]

At first it might appear that these equations would
not enable us to determine ¢q4(r). However, as it turns
out ¢q(r) depends on only four invariant functions
which can be completely phenomenologically deter-
mined by (4.10). The rest of the results are kinematical,
and hence we have at our disposal a systematic way to
handle the nonrelativistic results in different reference
frames.

We will sketch the results of the determination of the
four invariant functions using (4.10). The invariant
functions are contained in the d-np vertex

P(p)ta=F(u)y-£—(G(u)/M)p-t— ((M— p)/M)
X[H @)y t= T (w)/M)p-£], (411)
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where from (4.1)
o=Mp—[M*+p*]",

u=p°. (4.12)
Introducing the nonrelativistic wave function
() u(x) ¢ 1 w(x)
v i V2 ox
3o-x(x-¥) io?
(D
( a? V2

where #(x) and w(x) are the usual S- and D-state wave
functions, respectively, and £ is the polarization vector
of the deuteron,’ the 3-space Fourier transform is

1
dNR(r) = (4m)V 2XP[“0(7)0' E+\F—sz(r)

X G180/ =0+ [0\ Dxs, (419
where r is the relative momentum,

uo(r)=/ u(x) jo(ra)xdx,

B (+.15)
'ZU2(T)=/ w(x) ja(ra)adx,
and ’
1 d\'sinx
jz(x)=(—x)’(— ——> — (4.16)
x dx x

are the usual spherical Bessel functions. Using the
representation given in Ref. 9, we can now explicitly
evaluate Eq. (4.10). If we retain only terms up to order
7, we have

N S5r2 o?
()= [mw@— ~—-)
r2+4a? 12M2 2M2

H(u) r?
u4ﬁ+~4wq,
M 3

o)

V2.V
a 3(r2+a?)
0=H (u),

w;»(r)

(4.17)

S

_2I(u)<1

r’— 2q?
+ ) .
M 4M?
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Solving for the invariants we have

NF (u) wa(r) r’+2¢?
Y2,
r’+a? V2 4M?

NG(u) 3M?
e e
r
Tl (4.18)
1 'Z,C'z(r))(1+r2+2a2>
+5(“°(’) V2 o)’
H(u)=0,
I(u)=3[G )~ F(w)](1— (r*—a?/2M?)),
where, to first order
u=M2—2(r+a?); N=K"2/(2m)"24M. (4.19)

Hence the four invariants have been evaluated in terms
of the S- and D-state wave functions®? and we can now
use (4.3) to calculate the relativistic form factor in
terms of the usual S- and D-state wave functions. We
will discuss these results in the next section.

5. SUMMARY AND CONCLUSIONS

We will summarize our method for treating loosely
bound systems in scattering theory. First, one makes the
assumption that the bound system is coupled to only
one channel (one-channel coupling approximation). The
validity of this assumption is discussed qualitatively in
Sec. 2. Then, one writes down a general expression for
the sum of all Feynman diagrams which one wishes to
consider (impulse approximation or exchange-current
contribution, for example) which is at the same time
consistent with one-channel coupling. This means spe-
cifically that no diagrams are considered in which the
bound state interacts directly with any channel other
than the principal one. Then, the singularities in the
integrand of the energy variable (or variables) are ex-
amined, and the integration over the energy(s) is per-
formed by contour integration, retaining only the lead-
ing terms arising from singularities close to the region
where both nucleons are on the mass shell (see Sec. 2).
These leading terms always place one of the two bound-
state particles on the mass shell, so that the bound-state
vertex with only one particle off-the-mass shell is all that
need be studied.

This process is illustrated in detail for the impulse
approximation to the deuteron form factor in Sec. 3. As
pointed out in this section, one of the advantages of this
procedure is that it collects systematically the leading
terms, and also admits easily a quantitative estimate of
the errors involved. Besides, it is fully relativistic and
unambiguous.

Contact with more conventional approaches is made
by defining a relativistic bound-state wave function in

* Note that these results agree as well as can be expected with
the identifications arrived by a different method in Ref. 5.
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terms of the bound-state vertex function with one
particle off-the-mass shell. For the deuteron this is done
in Sec. 4, the wave function defined in Eq. (4.1). The
major virtue of this wave function is that it is simpler
than the B.S. amplitude, but just as valid in the domain
of one-channel coupling. One may derive a relativistic
wave equation for this wave function, or make some
contact with phenomenology. A discussion of phenome-
nology is included in Sec. 4, with final identification of
the four d-np invariants in terms of the S- and D-state
wave functions (Eq. 4.18).

In conclusion, we can sum up three principal sources
of error in nonrelativistic potential theory which this
approach sheds some light on:

(1) Over all contributions due to relativistic kine-
matics [presence of the Ey term in Eq. (4.3) and 8 in
Eq. (4.9)];

(2) Contributions to the wave function due to motion
of the deuteron;

(3) Contributions from antiparticle states, through
the wave function ¢—+ (Eq. 4.8).

Let us discuss these effects in turn. The first effect is
the easiest to dispose of. It is not surprising that terms
involving (M?+ p?)*2 should appear in the correct ex-
pressions, due simply to the fact that the energies of the
particles satisfy relativistic expressions. However, inas-
much as phenomenological wave functions have been
calculated from potentials which have been chosen to fit
the data using a nonrelativistic theory, such over-all
factors should already be part of the wave function, and
we cannot properly regard them as corrections. What
they do tend to suggest is that an improved phe-
nomenology (i.e., consistent with more experiments)
should be possible with a relativistic formalism such as
the one presented here.

The preceding remarks do not apply to the second
source of error ; correction terms arise from the fact that
the wave function of a moving deuteron, ¢+*(r,d),
[defined in Eq. (4.8)] is not the same as the wave
function of a stationary deuteron ¢++(r,0) which one
identifies with the nonrelativistic wave functions. That
this is true can be seen readily by expanding ¢++(r,d) in
Pauli spinors. Besides the terms involving o-& and
a-1(r-£), we have other terms like (- 1)(d- §), o-d(r-£),
g-d(d-£),and (o §)o-d(o- 1), all of which are zero in the
rest system of the deuteron. Hence, in the scattering
amplitude where both deuterons cannot simultaneously
be at rest (unless ¢g=0) these terms will give small
corrections arising from the fact that the structure of the
wave function is altered when the deuteron is in motion.

Finally, the third source of error arises from neglect
of contributions from ¢—*. These cannot be estimated
without either a theoretical calculation of the deuteron
nucleon invariants, or some phenomenological treat-
ment of nucleon-nucleon scattering which includes these
terms. It would appear that both approaches are pos-
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sible, but for the time being the best assumption seems
to be to assume that ¢—*(r,0)=0. What we are saying is
that the nonrelativistic phenomenological potentials
have included as much as possible these negative energy
contributions, by virtue of the fact that they fit the
data.

An interesting, somewhat paradoxical result emerges
from this procedure. The condition ¢~+(r,0)=0 places
two restrictions on the d-np vertex invariants [defined
in Eq. (4.11)7:

H=0,

which is a result contrary to theoretical estimates of
these quantities from one-pion-exchange calculations.®
In these calculations it was found that H was a large and
important term.

The resolution of this apparent paradox may have
quite exciting implications about the two-nucleon sys-
tem. Although the situation is not yet clear, it may not
be out of place to hazard a few preliminary remarks
about it now.

Examination of one-pion exchange suggests that F is
small and H is large. This should be expected, however,
because the 5 interaction would tend to favor the nega-
tive energy part of the d-np vertex (H and I). This
suggests that the two pion contribution should have the
converse effect, and indeed this is exactly what one finds.
The two-pion exchange enhances F considerably and
depresses H (slightly). Hence, F is larger than it first
appeared, being enhanced by exchange of even numbers
of pions, while H is enhanced by odd numbers of pions.
However, it turns out that F and H have opposite signs,
and it appears that they nearly cancel for large mo-
menta. Since the .S state is described by a sum of F and
H® (Eq. 4.17), this would therefore show the symptoms
of a repulsive core, where neither F nor H alone shows
any such symptoms. Hence it appears that neglecting
may be acceptable even though it is large, provided we
replace F with a phenomenological hard-core wave
function, and that one should not be surprised if a
calculation of F (alone) shows no sign of a hard core.

(5.1)
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APPENDIX

In this Appendix we determine the location of the
singularities of the relative energy variable 7, for the
diagram shown in Fig. 7, which is the simplest of the
proper contributions to the deuteron nucleon vertex. It
is reasonable to suppose that all other proper diagrams
will contribute no singularities not already included by
this diagram. This remark is amplified at the end of the
Appendix.
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We will limit ourselves to scalar particles. Then the diagram, in Feynman parameters, becomes

1
- f ([P — i GD+r+ 0 — M i€ L AD—r— gf'— MP-Hic]y
7

=2

d(a+B+y—1)

where D=P1+P2 and 7=7(P1'—p2) (see Flg 7)
Taking as new variables of integration x=+ and
y=(a—B)/(1—7) we have

1 +1 dy 1
o Jo1 % (ro—rettie)(ro—ri—ie)

where

(A2)

—Dy [ Mp? 2\ 12
rot= o —+ b (r+1yd)2+ _) ,
YT <xT1—xl 2 s 2/ (A3

a?=M*—IMp*.
Note that it follows from (A2) that if r — —7, then A is
unchanged. Also the singularities in 7, are along the real
ro axis. It remains only to locate the branch points.
These will occur at the minimum value of ¢t and the
maximum value of r~ which occur in the region of

integration.
To find the extremes in x we require

Ore/dx=0= —a~ (@+1M pty?)+ut/ (142},
x=c/utc; c=[P+iMp**]2.
Hence the extremum in x of r¢%, Ry, is
Rt=— 3Dy [ (i eP+ (r+hpdy ], (Ad)

Now we will prove that the y derivative is never zero.

OR¢* 1 (utc) (M p2y/4c)+5 (r+3yd)-d
o=

dy L(utc)*+ (r+3yd)* ]
but we can show that

D[ (u+c)*+ (r+3yd)?]
>[(wt0)/cYiM o'y + (r+3yd)-dJ. (AS)

This follows immediately from the three inequalities

M p*(u+6)*> i M p*y* ((u+c)/c)?,

="z

&*(u+tc)*+ M p* (r+3yd)* (A6)
>Mp*y((ute)/c)(r+3yd)-d,
& (r+3yd)* 2 [(r+3yd)-d7?,
which in turn follow from
1> M p’y?/ 4o+ M p%y?) (A7)

1
f dadﬁd‘y - 3
0 [M p*aB+ (3D+1)ay+ (3D—1)By— M2 (a+B) — u2y+ie]

(A1)

which is true for all —1<y<1. To obtain (AS) we
simply add the three inequalities (A6) and use

D¢=M p*+d2.
Hence
dRt/3y<0 (A8)
and the branch points are at
0= [ (u+ M)+ (r£ 3 PEFAD,
~=u. (A9)

Note that as u increases, these branch points recede
away from the origin, and hence the branch points for
the sum of all possible processes will be determined by
that process for which y is a minimum, and this is just
the one-pion exchange diagram we have considered.

F16. 7. The one-pion-exchange
contribution to the d-up vertex,
discussed in the Appendix.

Our derivation did not depend on the size of the
deuteron mass; there were no “anomalous” thresholds in
the relative energy ro. The reason for this is that we
restricted ourselves to r2>0, and it is well known that
only for complex 3-momenta do anomalous thresholds
occur. This can be graphically seen by examining Fig. 1.
The “region of integration” in the figure is the region
covered by r2>0, and it can be seen that no line of
constant r*>0 (parabolas similar to the boundary) will
intersect the dot-dashed line which is the line of
anomalous singularities of the vertex function. For r2<0
we would encounter these singularities, which at »= M?
(for example) are located along a cut beginning at
t=M>42u(u+2a).

If we choose p; and D as our independent variables,
then 7= p1—3D, and we obtain for the branch points in
the p,° plane

ap=[GutMy+p]s,

¢-=Do—[(u+M)p+ (p—d)*]"2.  (A10)



